1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
// Copyright (c) 2024 Ken Barker
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//! The `vector` module contains functions for performing great circle
//! calculations using `Vector3d`s to represent points and great circle poles
//! on a unit sphere.
//!
//! A `Vector3d` is a [nalgebra](https://crates.io/crates/nalgebra) `Vector3<f64>`.
use crate::{great_circle, Vector3d};
use angle_sc::{trig, Angle, Radians};
pub mod intersection;
/// The minimum value of the square of distance.
pub const MIN_SQ_DISTANCE: f64 = great_circle::MIN_VALUE * great_circle::MIN_VALUE;
/// Convert a latitude and longitude to a point on the unit sphere.
/// @pre |lat| <= 90.0 degrees.
/// * `lat` - the latitude.
/// * `lon` - the longitude.
///
/// returns a `Vector3d` of the point on the unit sphere.
#[must_use]
pub fn to_point(lat: Angle, lon: Angle) -> Vector3d {
Vector3d::new(
lat.cos().0 * lon.cos().0,
lat.cos().0 * lon.sin().0,
lat.sin().0,
)
}
/// Calculate the latitude of a point.
/// * `a` - the point.
///
/// returns the latitude of the point
#[must_use]
pub fn latitude(a: &Vector3d) -> Angle {
let sin_a = trig::UnitNegRange(a.z);
Angle::new(sin_a, trig::swap_sin_cos(sin_a))
}
/// Calculate the longitude of a point.
/// * `a` - the point.
///
/// returns the longitude of the point
#[must_use]
pub fn longitude(a: &Vector3d) -> Angle {
Angle::from_y_x(a.y, a.x)
}
/// Determine whether a `Vector3d` is a unit vector.
/// * `a` - the vector.
///
/// returns true if `a` is a unit vector, false otherwise.
#[must_use]
pub fn is_unit(a: &Vector3d) -> bool {
const MIN_POINT_SQ_LENGTH: f64 = 1.0 - 12.0 * f64::EPSILON;
const MAX_POINT_SQ_LENGTH: f64 = 1.0 + 12.0 * f64::EPSILON;
(MIN_POINT_SQ_LENGTH..=MAX_POINT_SQ_LENGTH).contains(&(a.norm_squared()))
}
/// Normalize a vector to lie on the surface of the unit sphere.
/// Note: this function returns an `Option` so uses the British spelling of
/// `normalise` to differentiate it from the standard `normalize` function.
/// * `a` the `Vector3d`
///
/// return the nomalized point or None if the vector is too small to normalize.
#[must_use]
pub fn normalise(a: &Vector3d) -> Option<Vector3d> {
/// The minimum length of a vector to normalize.
const MIN_LENGTH: f64 = 16384.0 * f64::EPSILON;
const MIN_NORM: f64 = MIN_LENGTH * MIN_LENGTH;
if a.norm_squared() < MIN_NORM {
None
} else {
Some(a.normalize())
}
}
/// Calculate the square of the Euclidean distance between two points.
/// Note: points do NOT need to be valid Points.
/// @post for unit vectors: result <= 4
/// * `a`, `b` the points.
///
/// returns the square of the Euclidean distance between the points.
#[must_use]
pub fn sq_distance(a: &Vector3d, b: &Vector3d) -> f64 {
(b - a).norm_squared()
}
/// Calculate the shortest (Euclidean) distance between two Points.
/// @post for unit vectors: result <= 2
/// * `a`, `b` the points.
///
/// returns the shortest (Euclidean) distance between the points.
#[must_use]
pub fn distance(a: &Vector3d, b: &Vector3d) -> f64 {
(b - a).norm()
}
/// Determine whether two `Vector3d`s are orthogonal (perpendicular).
/// * `a`, `b` the `Vector3d`s.
///
/// returns true if a and b are orthogonal, false otherwise.
#[must_use]
pub fn are_orthogonal(a: &Vector3d, b: &Vector3d) -> bool {
const MAX_LENGTH: f64 = 4.0 * f64::EPSILON;
(-MAX_LENGTH..=MAX_LENGTH).contains(&(a.dot(b)))
}
/// Calculate the relative longitude of point a from point b.
/// * `a`, `b` - the points.
///
/// returns the relative longitude of point a from point b,
/// negative if a is West of b, positive otherwise.
#[must_use]
pub fn delta_longitude(a: &Vector3d, b: &Vector3d) -> Angle {
let a_lon = a.xy();
let b_lon = b.xy();
Angle::from_y_x(b_lon.perp(&a_lon), b_lon.dot(&a_lon))
}
/// Determine whether point a is West of point b.
/// It calculates and compares the perp product of the two points.
/// * `a`, `b` - the points.
///
/// returns true if a is West of b, false otherwise.
#[must_use]
pub fn is_west_of(a: &Vector3d, b: &Vector3d) -> bool {
// Compare with -epsilon to handle floating point errors
b.xy().perp(&a.xy()) <= -f64::EPSILON
}
/// Calculate the right hand pole vector of a Great Circle from an initial
/// position and an azimuth.
/// See: <http://www.movable-type.co.uk/scripts/latlong-vectors.html#distance>
/// * `lat` - start point Latitude.
/// * `lon` - start point Longitude.
/// * `azi` - start point azimuth.
///
/// returns the right hand pole vector of the great circle.
#[must_use]
pub fn calculate_pole(lat: Angle, lon: Angle, azi: Angle) -> Vector3d {
let x = trig::UnitNegRange::clamp(
lon.sin().0 * azi.cos().0 - lat.sin().0 * lon.cos().0 * azi.sin().0,
);
let y = trig::UnitNegRange::clamp(
0.0 - lon.cos().0 * azi.cos().0 - lat.sin().0 * lon.sin().0 * azi.sin().0,
);
let z = trig::UnitNegRange(lat.cos().0 * azi.sin().0);
Vector3d::new(x.0, y.0, z.0)
}
/// Calculate the azimuth at a point on the Great Circle defined by pole.
/// * `point` - the point.
/// * `pole` - the right hand pole of the Great Circle.
///
/// returns the azimuth at the point on the great circle.
#[must_use]
pub fn calculate_azimuth(point: &Vector3d, pole: &Vector3d) -> Angle {
const MAX_LAT: f64 = 1.0 - great_circle::MIN_VALUE;
let sin_lat = point.z;
// if the point is close to the North or South poles, azimuth is 180 or 0.
if MAX_LAT <= libm::fabs(sin_lat) {
return if 0.0 < sin_lat {
Angle::default().opposite()
} else {
Angle::default()
};
}
Angle::from_y_x(pole.z, pole.xy().perp(&point.xy()))
}
/// Calculate the direction vector along a Great Circle from an initial
/// position and an azimuth.
/// See: Panou and Korakitis equations: 30, 31, & 32a
/// <https://arxiv.org/abs/1811.03513>
/// * `lat` - start point Latitude.
/// * `lon` - start point Longitude.
/// * `azi` - start point azimuth.
///
/// returns the direction vector at the point on the great circle.
#[must_use]
pub fn calculate_direction(lat: Angle, lon: Angle, azi: Angle) -> Vector3d {
let x = trig::UnitNegRange::clamp(
0.0 - lat.sin().0 * lon.cos().0 * azi.cos().0 - lon.sin().0 * azi.sin().0,
);
let y = trig::UnitNegRange::clamp(
0.0 - lat.sin().0 * lon.sin().0 * azi.cos().0 + lon.cos().0 * azi.sin().0,
);
let z = trig::UnitNegRange(lat.cos().0 * azi.cos().0);
Vector3d::new(x.0, y.0, z.0)
}
/// Calculate the direction vector of a Great Circle arc.
/// * `a` - the start point.
/// * `pole` - the pole of a Great Circle.
///
/// returns the direction vector at the point on the great circle.
#[must_use]
pub fn direction(a: &Vector3d, pole: &Vector3d) -> Vector3d {
pole.cross(a)
}
/// Calculate the position of a point along a Great Circle arc.
/// * `a` - the start point.
/// * `dir` - the direction vector of a Great Circle at a.
/// * `distance` - the a Great Circle as an Angle.
///
/// returns the position vector at the point on the great circle.
#[must_use]
pub fn position(a: &Vector3d, dir: &Vector3d, distance: Angle) -> Vector3d {
distance.cos().0 * a + distance.sin().0 * dir
}
/// Calculate the direction vector of a Great Circle rotated by angle.
/// * `dir` - the direction vector of a Great Circle arc.
/// * `pole` - the pole of a Great Circle.
/// * `angle` - the angle to rotate the direction vector by.
///
/// returns the direction vector at the point on the great circle
/// rotated by angle.
#[must_use]
pub fn rotate(dir: &Vector3d, pole: &Vector3d, angle: Angle) -> Vector3d {
position(dir, pole, angle)
}
/// Calculate the position of a point rotated by angle at radius.
/// * `a` - the start point.
/// * `pole` - the pole of a Great Circle.
/// * `angle` - the angle to rotate the direction vector by.
/// * `radius` - the radius from the start point.
///
/// returns the position vector at angle and radius from the start point.
#[must_use]
pub fn rotate_position(a: &Vector3d, pole: &Vector3d, angle: Angle, radius: Angle) -> Vector3d {
position(a, &rotate(&direction(a, pole), pole, angle), radius)
}
/// The sine of the across track distance of a point relative to a Great Circle pole.
/// It is simply the dot product of the pole and the point: pole . point
/// * `pole` - the Great Circle pole.
/// * `point` - the point.
///
/// returns the sine of the across track distance of point relative to the pole.
#[must_use]
fn sin_xtd(pole: &Vector3d, point: &Vector3d) -> trig::UnitNegRange {
trig::UnitNegRange::clamp(pole.dot(point))
}
/// The across track distance of a point relative to a Great Circle pole.
/// * `pole` - the Great Circle pole.
/// * `point` - the point.
///
/// returns the across track distance of point relative to pole, in `Radians`.
#[must_use]
pub fn cross_track_distance(pole: &Vector3d, point: &Vector3d) -> Radians {
let sin_d = sin_xtd(pole, point);
if libm::fabs(sin_d.0) < f64::EPSILON {
Radians(0.0)
} else {
Radians(libm::asin(sin_d.0))
}
}
/// The square of the Euclidean cross track distance of a point relative to a
/// Great Circle pole.
/// * `pole` - the Great Circle pole.
/// * `point` - the point.
///
/// returns the square of the euclidean distance of point relative to pole.
#[must_use]
pub fn sq_cross_track_distance(pole: &Vector3d, point: &Vector3d) -> f64 {
let sin_d = sin_xtd(pole, point);
if libm::fabs(sin_d.0) < f64::EPSILON {
0.0
} else {
2.0 * (1.0 - trig::swap_sin_cos(sin_d).0)
}
}
/// Calculate the closest point on a plane to the given point.
/// See: [Closest Point on Plane](https://gdbooks.gitbooks.io/3dcollisions/content/Chapter1/closest_point_on_plane.html)
/// * `pole` - the Great Circle pole (aka normal) of the plane.
/// * `point` - the point.
///
/// returns the closest point on a plane to the given point.
#[must_use]
fn calculate_point_on_plane(pole: &Vector3d, point: &Vector3d) -> Vector3d {
let t = sin_xtd(pole, point);
point - pole * t.0
}
/// The sine of the along track distance of a point along a Great Circle arc.
/// It is the triple product of the pole, a and the point:
/// (pole X a) . point = pole . (a X point)
/// * `a` - the start point of the Great Circle arc.
/// * `pole` - the pole of the Great Circle arc.
/// * `point` - the point.
///
/// returns the sine of the along track distance of point relative to the start
/// of a great circle arc.
#[must_use]
pub fn sin_atd(a: &Vector3d, pole: &Vector3d, point: &Vector3d) -> trig::UnitNegRange {
trig::UnitNegRange::clamp(pole.cross(a).dot(point))
}
/// Calculate the relative distance of two points on a Great Circle arc.
/// @pre both points must be on the Great Circle defined by `pole`.
/// * `a` - the start point of the Great Circle arc.
/// * `pole` - the pole of the Great Circle arc.
/// * `point` - a point in the Great Circle.
/// returns the Great Circle along track distance in `Radians`.
#[must_use]
pub fn calculate_great_circle_atd(a: &Vector3d, pole: &Vector3d, point: &Vector3d) -> Radians {
let sq_atd = sq_distance(a, point);
if sq_atd < MIN_SQ_DISTANCE {
Radians(0.0)
} else {
Radians(libm::copysign(
great_circle::e2gc_distance(libm::sqrt(sq_atd)).0,
sin_atd(a, pole, point).0,
))
}
}
/// The Great Circle distance of a point along the arc relative to a,
/// (+ve) ahead of a, (-ve) behind a.
/// * `a` - the start point of the Great Circle arc.
/// * `pole` - the pole of the Great Circle arc.
/// * `point` - the point.
///
/// returns the along track distance of point relative to the start of a great circle arc.
#[must_use]
pub fn along_track_distance(a: &Vector3d, pole: &Vector3d, point: &Vector3d) -> Radians {
let plane_point = calculate_point_on_plane(pole, point);
normalise(&plane_point).map_or_else(
|| Radians(0.0), // point is too close to a pole
|c| calculate_great_circle_atd(a, pole, &c),
)
}
/// Calculate the square of the Euclidean along track distance of a point
/// from the start of an Arc.
/// It is calculated using the closest point on the plane to the point.
/// * `a` - the start point of the Great Circle arc.
/// * `pole` - the pole of the Great Circle arc.
/// * `point` - the point.
/// returns the square of the Euclidean along track distance
#[must_use]
pub fn sq_along_track_distance(a: &Vector3d, pole: &Vector3d, point: &Vector3d) -> f64 {
let plane_point = calculate_point_on_plane(pole, point);
normalise(&plane_point).map_or_else(
|| 0.0, // point is too close to a pole
|c| {
let sq_d = sq_distance(a, &(c));
if sq_d < MIN_SQ_DISTANCE {
0.0
} else {
sq_d
}
},
)
}
/// Calculate Great Circle along and across track distances.
/// * `a` - the start point of the Great Circle arc.
/// * `pole` - the pole of the Great Circle arc.
/// * `p` - the point.
///
/// returns the along and across track distances of point relative to the
/// start of a great circle arc.
#[allow(clippy::similar_names)]
#[must_use]
pub fn calculate_atd_and_xtd(a: &Vector3d, pole: &Vector3d, p: &Vector3d) -> (Radians, Radians) {
let mut atd = Radians(0.0);
let mut xtd = Radians(0.0);
let sq_d = sq_distance(a, p);
if sq_d >= MIN_SQ_DISTANCE {
// point is not close to a
let sin_xtd = sin_xtd(pole, p).0;
if libm::fabs(sin_xtd) >= f64::EPSILON {
xtd = Radians(libm::asin(sin_xtd));
}
// the closest point on the plane of the pole to the point
let plane_point = p - pole * sin_xtd;
atd = normalise(&plane_point).map_or_else(
|| Radians(0.0), // point is too close to a pole
|c| calculate_great_circle_atd(a, pole, &c),
);
}
(atd, xtd)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::LatLong;
use angle_sc::{is_within_tolerance, Degrees, Radians};
#[test]
fn test_normalise() {
let zero = Vector3d::new(0.0, 0.0, 0.0);
assert!(normalise(&zero).is_none());
// Greenwich equator
let g_eq = Vector3d::new(1.0, 0.0, 0.0);
assert!(normalise(&g_eq).is_some());
// A vector just too small to normalize
let too_small = Vector3d::new(16383.0 * f64::EPSILON, 0.0, 0.0);
assert!(normalise(&too_small).is_none());
// A vector just large enough to normalize
let small = Vector3d::new(16384.0 * f64::EPSILON, 0.0, 0.0);
let result = normalise(&small);
assert!(result.is_some());
assert!(is_unit(&result.unwrap()));
assert_eq!(result.unwrap(), g_eq);
}
#[test]
fn test_point_lat_longs() {
// Test South pole
let lat_lon_south = LatLong::new(Degrees(-90.0), Degrees(180.0));
let point_south = Vector3d::from(&lat_lon_south);
assert_eq!(Degrees(-90.0), Degrees::from(latitude(&point_south)));
assert_eq!(Degrees(0.0), Degrees::from(longitude(&point_south)));
let result = LatLong::from(&point_south);
assert_eq!(-90.0, result.lat().0);
// Note: longitude is now zero, since the poles do not have a Longitude
assert_eq!(0.0, result.lon().0);
// Test Greenwich equator
let lat_lon_0_0 = LatLong::new(Degrees(0.0), Degrees(0.0));
let point_0 = Vector3d::from(&lat_lon_0_0);
assert!(is_unit(&point_0));
assert_eq!(lat_lon_0_0, LatLong::from(&point_0));
// Test IDL equator
let lat_lon_0_180 = LatLong::new(Degrees(0.0), Degrees(180.0));
let point_1 = Vector3d::from(&lat_lon_0_180);
assert!(is_unit(&point_1));
assert_eq!(false, is_west_of(&point_0, &point_1));
assert_eq!(
Radians(core::f64::consts::PI),
Radians::from(delta_longitude(&point_0, &point_1)).abs()
);
let lat_lon_0_m180 = LatLong::new(Degrees(0.0), Degrees(-180.0));
let point_2 = Vector3d::from(&lat_lon_0_m180);
assert!(is_unit(&point_2));
// Converts back to +ve longitude
assert_eq!(lat_lon_0_180, LatLong::from(&point_2));
assert_eq!(false, is_west_of(&point_0, &point_2));
assert_eq!(
-core::f64::consts::PI,
Radians::from(delta_longitude(&point_0, &point_2)).0
);
let lat_lon_0_r3 = LatLong::new(Degrees(0.0), Degrees(3.0_f64.to_degrees()));
let point_3 = Vector3d::from(&lat_lon_0_r3);
assert!(is_unit(&point_3));
let result = LatLong::from(&point_3);
assert_eq!(0.0, result.lat().0);
assert_eq!(
3.0_f64,
Radians::from(delta_longitude(&point_3, &point_0)).0
);
assert_eq!(3.0_f64.to_degrees(), result.lon().0);
assert!(is_west_of(&point_0, &point_3));
assert_eq!(-3.0, Radians::from(delta_longitude(&point_0, &point_3)).0);
assert_eq!(false, is_west_of(&point_1, &point_3));
assert_eq!(
core::f64::consts::PI - 3.0,
Radians::from(delta_longitude(&point_1, &point_3)).0
);
let lat_lon_0_mr3 = LatLong::new(Degrees(0.0), Degrees(-3.0_f64.to_degrees()));
let point_4 = Vector3d::from(&lat_lon_0_mr3);
assert!(is_unit(&point_4));
assert_eq!(3.0, Radians::from(delta_longitude(&point_0, &point_4)).0);
let result = LatLong::from(&point_4);
assert_eq!(0.0, result.lat().0);
assert_eq!(-3.0_f64.to_degrees(), result.lon().0);
assert!(is_west_of(&point_1, &point_4));
assert_eq!(
3.0 - core::f64::consts::PI,
Radians::from(delta_longitude(&point_1, &point_4)).0
);
}
#[test]
fn test_point_distance() {
let lat_lon_south = LatLong::new(Degrees(-90.0), Degrees(0.0));
let south_pole = Vector3d::from(&lat_lon_south);
let lat_lon_north = LatLong::new(Degrees(90.0), Degrees(0.0));
let north_pole = Vector3d::from(&lat_lon_north);
assert_eq!(0.0, sq_distance(&south_pole, &south_pole));
assert_eq!(0.0, sq_distance(&north_pole, &north_pole));
assert_eq!(4.0, sq_distance(&south_pole, &north_pole));
assert_eq!(0.0, distance(&south_pole, &south_pole));
assert_eq!(0.0, distance(&north_pole, &north_pole));
assert_eq!(2.0, distance(&south_pole, &north_pole));
// Greenwich equator
let g_eq = Vector3d::new(1.0, 0.0, 0.0);
// Test IDL equator
let idl_eq = Vector3d::new(-1.0, 0.0, 0.0);
assert_eq!(0.0, sq_distance(&g_eq, &g_eq));
assert_eq!(0.0, sq_distance(&idl_eq, &idl_eq));
assert_eq!(4.0, sq_distance(&g_eq, &idl_eq));
assert_eq!(0.0, distance(&g_eq, &g_eq));
assert_eq!(0.0, distance(&idl_eq, &idl_eq));
assert_eq!(2.0, distance(&g_eq, &idl_eq));
}
#[test]
fn test_calculate_azimuth_at_poles() {
// Greenwich equator
let g_eq = Vector3d::new(1.0, 0.0, 0.0);
let south_pole = Vector3d::new(0.0, 0.0, -1.0);
let result = calculate_azimuth(&south_pole, &g_eq);
assert_eq!(Angle::default(), result);
let north_pole = Vector3d::new(0.0, 0.0, 1.0);
let result = calculate_azimuth(&north_pole, &g_eq);
assert_eq!(Angle::default().opposite(), result);
}
#[test]
fn test_calculate_pole_azimuth_and_direction() {
// Greenwich equator
let g_eq = Vector3d::new(1.0, 0.0, 0.0);
// 90 degrees East on the equator
let e_eq = Vector3d::new(0.0, 1.0, 0.0);
// 90 degrees West on the equator
let w_eq = Vector3d::new(0.0, -1.0, 0.0);
let angle_90 = Angle::from(Degrees(90.0));
let pole_a = calculate_pole(
Angle::from(Degrees(0.0)),
Angle::from(Degrees(0.0)),
angle_90,
);
assert!(are_orthogonal(&g_eq, &pole_a));
let dir_a = calculate_direction(
Angle::from(Degrees(0.0)),
Angle::from(Degrees(0.0)),
angle_90,
);
assert!(are_orthogonal(&g_eq, &dir_a));
assert!(are_orthogonal(&pole_a, &dir_a));
assert_eq!(dir_a, direction(&g_eq, &pole_a));
let north_pole = Vector3d::new(0.0, 0.0, 1.0);
assert_eq!(north_pole, pole_a);
let result = g_eq.cross(&e_eq);
assert_eq!(north_pole, result);
let result = calculate_azimuth(&g_eq, &pole_a);
assert_eq!(angle_90, result);
let pole_b = calculate_pole(
Angle::from(Degrees(0.0)),
Angle::from(Degrees(0.0)),
-angle_90,
);
assert!(are_orthogonal(&g_eq, &pole_b));
let dir_b = calculate_direction(
Angle::from(Degrees(0.0)),
Angle::from(Degrees(0.0)),
-angle_90,
);
assert!(are_orthogonal(&g_eq, &dir_b));
assert!(are_orthogonal(&pole_b, &dir_b));
assert_eq!(dir_b, direction(&g_eq, &pole_b));
let south_pole = Vector3d::new(0.0, 0.0, -1.0);
assert_eq!(south_pole, pole_b);
let result = g_eq.cross(&w_eq);
assert_eq!(south_pole, result);
let result = calculate_azimuth(&g_eq, &pole_b);
assert_eq!(-angle_90, result);
}
#[test]
fn test_calculate_position() {
// Greenwich equator
let g_eq = Vector3d::new(1.0, 0.0, 0.0);
// 90 degrees East on the equator
let e_eq = Vector3d::new(0.0, 1.0, 0.0);
let pole_0 = g_eq.cross(&e_eq);
let angle_90 = Angle::from(Degrees(90.0));
let pos_1 = position(&g_eq, &direction(&g_eq, &pole_0), angle_90);
assert_eq!(e_eq, pos_1);
let pos_2 = rotate_position(&g_eq, &pole_0, Angle::default(), angle_90);
assert_eq!(e_eq, pos_2);
let pos_3 = rotate_position(&g_eq, &pole_0, angle_90, angle_90);
assert_eq!(pole_0, pos_3);
}
#[test]
fn test_calculate_cross_track_distance_and_square() {
// Greenwich equator
let g_eq = Vector3d::new(1.0, 0.0, 0.0);
// 90 degrees East on the equator
let e_eq = Vector3d::new(0.0, 1.0, 0.0);
let pole_0 = g_eq.cross(&e_eq);
let longitude = Degrees(1.0);
for lat in -89..90 {
let latitude = Degrees(lat as f64);
let latlong = LatLong::new(latitude, longitude);
let point = Vector3d::from(&latlong);
let expected = (lat as f64).to_radians();
let xtd = cross_track_distance(&pole_0, &point);
// Accuracy reduces outside of this range
let tolerance = if (-83..84).contains(&lat) {
2.0 * f64::EPSILON
} else {
32.0 * f64::EPSILON
};
assert!(is_within_tolerance(expected, xtd.0, tolerance));
let expected = great_circle::gc2e_distance(Radians(expected));
let expected = expected * expected;
let xtd2 = sq_cross_track_distance(&pole_0, &point);
// Accuracy reduces outside of this range
let tolerance = if (-83..84).contains(&lat) {
4.0 * f64::EPSILON
} else {
64.0 * f64::EPSILON
};
assert!(is_within_tolerance(expected, xtd2, tolerance));
}
}
#[test]
fn test_calculate_along_track_distance_and_square() {
// Greenwich equator
let g_eq = Vector3d::new(1.0, 0.0, 0.0);
// 90 degrees East on the equator
let e_eq = Vector3d::new(0.0, 1.0, 0.0);
let pole_0 = g_eq.cross(&e_eq);
// North of Equator
let latitude = Degrees(1.0);
for lon in -179..180 {
let longitude = Degrees(lon as f64);
let latlong = LatLong::new(latitude, longitude);
let point = Vector3d::from(&latlong);
let expected = (lon as f64).to_radians();
let atd = along_track_distance(&g_eq, &pole_0, &point);
// Accuracy reduces outside of this range
let tolerance = if (-153..154).contains(&lon) {
2.0 * f64::EPSILON
} else {
32.0 * f64::EPSILON
};
assert!(is_within_tolerance(expected, atd.0, tolerance));
let (atd, xtd) = calculate_atd_and_xtd(&g_eq, &pole_0, &point);
assert!(is_within_tolerance(expected, atd.0, tolerance));
assert!(is_within_tolerance(1_f64.to_radians(), xtd.0, f64::EPSILON));
let expected = great_circle::gc2e_distance(Radians(expected));
let expected = expected * expected;
let atd2 = sq_along_track_distance(&g_eq, &pole_0, &point);
// Accuracy reduces outside of this range
let tolerance = if (-86..87).contains(&lon) {
2.0 * f64::EPSILON
} else {
32.0 * f64::EPSILON
};
assert!(is_within_tolerance(expected, atd2, tolerance));
}
}
#[test]
fn test_special_cases() {
// Greenwich equator
let g_eq = Vector3d::new(1.0, 0.0, 0.0);
// 90 degrees East on the equator
let e_eq = Vector3d::new(0.0, 1.0, 0.0);
let pole_0 = g_eq.cross(&e_eq);
// points are at the poles, so atc and sq_atd are zero
assert_eq!(0.0, along_track_distance(&g_eq, &pole_0, &pole_0).0);
assert_eq!(0.0, sq_along_track_distance(&g_eq, &pole_0, &pole_0));
let (atd, xtd) = calculate_atd_and_xtd(&g_eq, &pole_0, &g_eq);
assert_eq!(0.0, atd.0);
assert_eq!(0.0, xtd.0);
let (atd, xtd) = calculate_atd_and_xtd(&g_eq, &pole_0, &pole_0);
assert_eq!(0.0, atd.0);
assert_eq!(core::f64::consts::FRAC_PI_2, xtd.0);
let (atd, xtd) = calculate_atd_and_xtd(&g_eq, &pole_0, &-pole_0);
assert_eq!(0.0, atd.0);
assert_eq!(-core::f64::consts::FRAC_PI_2, xtd.0);
// Test for 100% code coverage
let near_north_pole = LatLong::new(Degrees(89.99999), Degrees(0.0));
let p = Vector3d::from(&near_north_pole);
let (atd, xtd) = calculate_atd_and_xtd(&g_eq, &pole_0, &p);
assert_eq!(0.0, atd.0);
assert!(is_within_tolerance(
core::f64::consts::FRAC_PI_2,
xtd.0,
0.000001
));
}
}