1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
// Copyright (c) 2024 Ken Barker
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//! # unit-sphere
//!
//! [](https://crates.io/crates/unit-sphere)
//! [](https://docs.rs/unit-sphere/)
//! [](https://opensource.org/license/mit/)
//! [](https://github.com/kenba/unit-sphere-rs/actions)
//! [](https://codecov.io/gh/kenba/unit-sphere-rs)
//!
//! A library for performing geometric calculations on the surface of a sphere.
//!
//! The library uses a combination of spherical trigonometry and vector geometry
//! to perform [great-circle navigation](https://en.wikipedia.org/wiki/Great-circle_navigation)
//! on the surface of a unit sphere, see *Figure 1*.
//!
//! 
//! *Figure 1 A Great Circle Path*
//!
//! A [great circle](https://en.wikipedia.org/wiki/Great_circle) is the
//! shortest path between positions on the surface of a sphere.
//! It is the spherical equivalent of a straight line in planar geometry.
//!
//! ## Spherical trigonometry
//!
//! A great circle path between positions may be found using
//! [spherical trigonometry](https://en.wikipedia.org/wiki/Spherical_trigonometry).
//!
//! The [course](https://en.wikipedia.org/wiki/Great-circle_navigation#Course)
//! (initial azimuth) of a great circle can be calculated from the
//! latitudes and longitudes of the start and end points.
//! While great circle distance can also be calculated from the latitudes and
//! longitudes of the start and end points using the
//! [haversine formula](https://en.wikipedia.org/wiki/Haversine_formula).
//! The resulting distance in `Radians` can be converted to the required units by
//! multiplying the distance by the Earth radius measured in the required units.
//!
//! ## Vector geometry
//!
//! Points on the surface of a sphere and great circle poles may be represented
//! by 3D [vectors](https://www.movable-type.co.uk/scripts/latlong-vectors.html).
//! Many calculations are simpler using vectors than spherical trigonometry.
//!
//! For example, the across track distance of a point from a great circle can
//! be calculated from the [dot product](https://en.wikipedia.org/wiki/Dot_product)
//! of the point and the great circle pole vectors.
//! While intersection points of great circles can simply be calculated from
//! the [cross product](https://en.wikipedia.org/wiki/Cross_product) of their
//! pole vectors.
//!
//! ## Design
//!
//! The `great_circle` module performs spherical trigonometric calculations
//! and the `vector` module performs vector geometry calculations.
//!
//! The library is declared [no_std](https://docs.rust-embedded.org/book/intro/no-std.html)
//! so it can be used in embedded applications.
#![cfg_attr(not(test), no_std)]
extern crate angle_sc;
extern crate nalgebra as na;
pub mod great_circle;
pub mod vector;
use angle_sc::trig;
pub use angle_sc::{Angle, Degrees, Radians, Validate};
/// Test whether a latitude in degrees is a valid latitude.
/// I.e. whether it lies in the range: -90.0 <= degrees <= 90.0
#[must_use]
pub fn is_valid_latitude(degrees: f64) -> bool {
(-90.0..=90.0).contains(°rees)
}
/// Test whether a longitude in degrees is a valid longitude.
/// I.e. whether it lies in the range: -180.0 <= degrees <= 180.0
#[must_use]
pub fn is_valid_longitude(degrees: f64) -> bool {
(-180.0..=180.0).contains(°rees)
}
/// A position as a latitude and longitude pair of `Degrees`.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct LatLong {
lat: Degrees,
lon: Degrees,
}
impl Validate for LatLong {
/// Test whether a `LatLong` is valid.
/// I.e. whether the latitude lies in the range: -90.0 <= lat <= 90.0
/// and the longitude lies in the range: -90.0 <= lon <= 90.0
#[must_use]
fn is_valid(&self) -> bool {
is_valid_latitude(self.lat.0) && is_valid_longitude(self.lon.0)
}
}
impl LatLong {
#[must_use]
pub const fn new(lat: Degrees, lon: Degrees) -> Self {
Self { lat, lon }
}
#[must_use]
pub const fn lat(&self) -> Degrees {
self.lat
}
#[must_use]
pub const fn lon(&self) -> Degrees {
self.lon
}
}
impl TryFrom<(f64, f64)> for LatLong {
type Error = &'static str;
/// Attempt to convert a pair of f64 values in latitude, longitude order.
///
/// return a valid `LatLong`.
fn try_from(lat_long: (f64, f64)) -> Result<Self, Self::Error> {
if !is_valid_latitude(lat_long.0) {
Err("invalid latitude")
} else if !is_valid_longitude(lat_long.1) {
Err("invalid longitude")
} else {
Ok(Self::new(Degrees(lat_long.0), Degrees(lat_long.1)))
}
}
}
/// Calculate the azimuth and distance along the great circle of point b from
/// point a.
/// * `a`, `b` - the start and end positions
///
/// returns the Great Circle azimuth relative to North and distance of point b
/// from point a.
#[must_use]
pub fn calculate_azimuth_and_distance(a: &LatLong, b: &LatLong) -> (Angle, Radians) {
let a_lat = Angle::from(a.lat);
let b_lat = Angle::from(b.lat);
let delta_long = Angle::from(b.lon - a.lon);
(
great_circle::calculate_gc_azimuth(a_lat, b_lat, delta_long),
great_circle::calculate_gc_distance(a_lat, b_lat, delta_long),
)
}
/// A `Vector3d` is a nalgebra Vector3.
#[allow(clippy::module_name_repetitions)]
pub type Vector3d = na::Vector3<f64>;
impl From<&LatLong> for Vector3d {
/// Convert a `LatLong` to a point on the unit sphere
/// @pre |lat| <= 90.0 degrees.
/// * `lat` - the latitude.
/// * `lon` - the longitude.
///
/// returns a `Vector3d` of the point on the unit sphere.
#[must_use]
fn from(a: &LatLong) -> Self {
vector::to_point(Angle::from(a.lat), Angle::from(a.lon))
}
}
/// Calculate the latitude of a Point.
#[must_use]
pub fn latitude(a: &Vector3d) -> Angle {
let sin_a = trig::UnitNegRange(a.z);
Angle::new(sin_a, trig::swap_sin_cos(sin_a))
}
/// Calculate the longitude of a Point.
#[must_use]
pub fn longitude(a: &Vector3d) -> Angle {
Angle::from_y_x(a.y, a.x)
}
impl From<&Vector3d> for LatLong {
/// Convert a Point to a `LatLong`
#[must_use]
fn from(value: &Vector3d) -> Self {
Self::new(
Degrees::from(latitude(value)),
Degrees::from(longitude(value)),
)
}
}
/// An arc of a Great Circle on a unit sphere.
pub struct Arc {
/// The start point of the arc.
a: Vector3d,
/// The right hand pole of the Great Circle of the arc.
pole: Vector3d,
/// The length of the arc.
length: Radians,
/// The half width of the arc.
half_width: Radians,
}
impl Validate for Arc {
/// Test whether an Arc is valid.
/// I.e. both a and pole are on the unit sphere and are orthogonal and
/// both length and `half_width` are >= 0.0.
fn is_valid(&self) -> bool {
vector::is_unit(&self.a)
&& vector::is_unit(&self.pole)
&& vector::are_orthogonal(&self.a, &self.pole)
&& (0.0 <= self.length.0)
&& (0.0 <= self.half_width.0)
}
}
impl Arc {
/// Construct an Arc
/// * `a` - the start point of the arc.
/// * `pole` - the right hand pole of the Great Circle of the arc.
/// * `length` - the length of the arc.
/// * `half_width` - the half width of the arc.
#[must_use]
pub const fn new(a: Vector3d, pole: Vector3d, length: Radians, half_width: Radians) -> Self {
Self {
a,
pole,
length,
half_width,
}
}
/// Construct an Arc
/// * `a` - the start position
/// * `azimuth` - the azimuth at a.
/// * `length` - the length of the arc.
#[must_use]
pub fn from_lat_lon_azi_length(a: &LatLong, azimuth: Angle, length: Radians) -> Self {
Self::new(
Vector3d::from(a),
vector::calculate_pole(Angle::from(a.lat()), Angle::from(a.lon()), azimuth),
length,
Radians(0.0),
)
}
/// Construct an Arc from the start and end positions.
/// Note: if the points are the same or antipodal, the pole will be invalid.
/// * `a`, `b` - the start and end positions
#[must_use]
pub fn between_positions(a: &LatLong, b: &LatLong) -> Self {
let (azimuth, length) = calculate_azimuth_and_distance(a, b);
Self::from_lat_lon_azi_length(a, azimuth, length)
}
/// Set the `half_width` of an Arc
/// * `half_width` - the half width of the arc.
#[must_use]
pub fn set_half_width(&mut self, half_width: Radians) -> &mut Self {
self.half_width = half_width;
self
}
/// The start point of the arc.
#[must_use]
pub const fn a(&self) -> Vector3d {
self.a
}
/// The right hand pole of the Great Circle at the start point of the arc.
#[must_use]
pub const fn pole(&self) -> Vector3d {
self.pole
}
/// The length of the arc.
#[must_use]
pub const fn length(&self) -> Radians {
self.length
}
/// The half width of the arc.
#[must_use]
pub const fn half_width(&self) -> Radians {
self.half_width
}
/// The azimuth at the start point.
#[must_use]
pub fn azimuth(&self) -> Angle {
vector::calculate_azimuth(&self.a, &self.pole)
}
/// The direction vector of the arc at the start point.
#[must_use]
pub fn direction(&self) -> Vector3d {
vector::direction(&self.a, &self.pole)
}
#[must_use]
pub fn position(&self, distance: Radians) -> Vector3d {
vector::position(&self.a, &self.direction(), Angle::from(distance))
}
/// The end point of the arc.
#[must_use]
pub fn b(&self) -> Vector3d {
self.position(self.length)
}
/// The position of a perpendicular point at distance from the arc.
/// * `point` a point on the arc's great circle.
/// * `distance` the perpendicular distance from the arc's great circle.
///
/// returns the point at perpendicular distance from point.
#[must_use]
pub fn perp_position(&self, point: &Vector3d, distance: Radians) -> Vector3d {
vector::position(point, &self.pole, Angle::from(distance))
}
/// The position of a point at angle from the arc start, at arc length.
/// * `angle` the angle from the arc start.
///
/// returns the point at angle from the arc start, at arc length.
#[must_use]
pub fn angle_position(&self, angle: Angle) -> Vector3d {
vector::rotate_position(&self.a, &self.pole, angle, Angle::from(self.length))
}
/// The Arc at the end of an Arc, just the point if `half_width` is zero.
/// @param `at_b` if true the arc at b, else the arc at a.
///
/// @return the end arc at a or b.
#[must_use]
pub fn end_arc(&self, at_b: bool) -> Self {
let p = if at_b { self.b() } else { self.a };
let pole = vector::direction(&p, &self.pole);
if core::f64::EPSILON < self.half_width.0 {
let a = self.perp_position(&p, self.half_width);
Self::new(a, pole, self.half_width + self.half_width, Radians(0.0))
} else {
Self::new(p, pole, Radians(0.0), Radians(0.0))
}
}
/// Calculate Great Circle along and across track distances of point from
/// the Arc.
/// * `point` - the point.
///
/// returns the along and across track distances of the point in Radians.
#[must_use]
pub fn calculate_atd_and_xtd(&self, point: &Vector3d) -> (Radians, Radians) {
vector::calculate_atd_and_xtd(&self.a, &self.pole(), point)
}
}
/// Calculate the distances along a pair of Arcs on the same (or reciprocal)
/// Great Circles to their closest intersection or reference points.
/// * `arc1`, `arc2` the arcs.
///
/// returns the distances along the first arc and second arc to the intersection
/// point or to their closest (reference) points if the arcs do not intersect.
#[must_use]
pub fn calculate_intersection_distances(arc1: &Arc, arc2: &Arc) -> (Radians, Radians) {
vector::intersection::calculate_intersection_point_distances(
&arc1.a,
&arc1.pole,
arc1.length(),
&arc2.a,
&arc2.pole,
arc2.length(),
)
}
/// Calculate whether a pair of Arcs intersect and (if so) where.
/// * `arc1`, `arc2` the arcs.
///
/// returns the distance along the first arc to the second arc or None if they
/// don't intersect.
#[must_use]
pub fn calculate_intersection_point_distance(arc1: &Arc, arc2: &Arc) -> Option<Radians> {
let (distance1, distance2) = calculate_intersection_distances(arc1, arc2);
// Determine whether both distances are within both arcs
if (Radians(0.0)..=arc1.length()).contains(&distance1)
&& (Radians(0.0)..=arc2.length()).contains(&distance2)
{
Some(distance1)
} else {
None
}
}
#[cfg(test)]
mod tests {
use super::*;
use angle_sc::{is_within_tolerance, Degrees};
#[test]
fn test_is_valid_latitude() {
// value < -90
assert!(!is_valid_latitude(-90.0001));
// value = -90
assert!(is_valid_latitude(-90.0));
// value = 90
assert!(is_valid_latitude(90.0));
// value > 90
assert!(!is_valid_latitude(90.0001));
}
#[test]
fn test_is_valid_longitude() {
// value < -180
assert!(!is_valid_longitude(-180.0001));
// value = -180
assert!(is_valid_longitude(-180.0));
// value = 180
assert!(is_valid_longitude(180.0));
// value > 180
assert!(!is_valid_longitude(180.0001));
}
#[test]
fn test_latlong_traits() {
let a = LatLong::try_from((0.0, 90.0)).unwrap();
assert!(a.is_valid());
let a_clone = a.clone();
assert!(a_clone == a);
assert_eq!(Degrees(0.0), a.lat());
assert_eq!(Degrees(90.0), a.lon());
print!("LatLong: {:?}", a);
let invalid_lat = LatLong::try_from((91.0, 0.0));
assert_eq!(Err("invalid latitude"), invalid_lat);
let invalid_lon = LatLong::try_from((0.0, 181.0));
assert_eq!(Err("invalid longitude"), invalid_lon);
}
#[test]
fn test_vector3d_traits() {
let a = LatLong::try_from((0.0, 90.0)).unwrap();
let point = Vector3d::from(&a);
assert_eq!(0.0, point.x);
assert_eq!(1.0, point.y);
assert_eq!(0.0, point.z);
assert_eq!(Degrees(0.0), Degrees::from(latitude(&point)));
assert_eq!(Degrees(90.0), Degrees::from(longitude(&point)));
let result = LatLong::from(&point);
assert_eq!(a, result);
}
#[test]
fn test_great_circle_90n_0n_0e() {
let a = LatLong::new(Degrees(90.0), Degrees(0.0));
let b = LatLong::new(Degrees(0.0), Degrees(0.0));
let (azimuth, dist) = calculate_azimuth_and_distance(&a, &b);
assert!(is_within_tolerance(
core::f64::consts::FRAC_PI_2,
dist.0,
48.0 * core::f64::EPSILON
));
assert_eq!(180.0, Degrees::from(azimuth).0);
}
#[test]
fn test_great_circle_0n_60e_0n_60w() {
let a = LatLong::new(Degrees(0.0), Degrees(60.0));
let b = LatLong::new(Degrees(0.0), Degrees(-60.0));
let (azimuth, dist) = calculate_azimuth_and_distance(&a, &b);
assert!(is_within_tolerance(
2.0 * core::f64::consts::FRAC_PI_3,
dist.0,
2.0 * core::f64::EPSILON
));
assert_eq!(-90.0, Degrees::from(azimuth).0);
}
#[test]
fn test_arc() {
// Greenwich equator
let g_eq = LatLong::new(Degrees(0.0), Degrees(0.0));
// 90 degrees East on the equator
let e_eq = LatLong::new(Degrees(0.0), Degrees(90.0));
let mut arc = Arc::between_positions(&g_eq, &e_eq);
let arc = arc.set_half_width(Radians(0.01));
assert!(arc.is_valid());
assert_eq!(Radians(0.01), arc.half_width());
assert_eq!(Vector3d::from(&g_eq), arc.a());
assert_eq!(Vector3d::new(0.0, 0.0, 1.0), arc.pole());
assert!(is_within_tolerance(
core::f64::consts::FRAC_PI_2,
arc.length().0,
core::f64::EPSILON
));
assert_eq!(Angle::from(Degrees(90.0)), arc.azimuth());
let b = Vector3d::from(&e_eq);
assert!(is_within_tolerance(
0.0,
vector::distance(&b, &arc.b()),
core::f64::EPSILON
));
let start_arc = arc.end_arc(false);
assert_eq!(0.02, start_arc.length().0);
let start_arc_a = start_arc.a();
assert_eq!(start_arc_a, arc.perp_position(&arc.a(), Radians(0.01)));
let angle_90 = Angle::from(Degrees(90.0));
let pole_0 = Vector3d::new(0.0, 0.0, 1.0);
assert!(vector::distance(&pole_0, &arc.angle_position(angle_90)) <= core::f64::EPSILON);
let end_arc = arc.end_arc(true);
assert_eq!(0.02, end_arc.length().0);
let end_arc_a = end_arc.a();
assert_eq!(end_arc_a, arc.perp_position(&arc.b(), Radians(0.01)));
}
#[test]
fn test_arc_atd_and_xtd() {
// Greenwich equator
let g_eq = LatLong::new(Degrees(0.0), Degrees(0.0));
// 90 degrees East on the equator
let e_eq = LatLong::new(Degrees(0.0), Degrees(90.0));
let arc = Arc::between_positions(&g_eq, &e_eq);
assert!(arc.is_valid());
let start_arc = arc.end_arc(false);
assert_eq!(0.0, start_arc.length().0);
let start_arc_a = start_arc.a();
assert_eq!(arc.a(), start_arc_a);
let longitude = Degrees(1.0);
// Test across track distance
// Accuracy drops off outside of this range
for lat in -83..84 {
let latitude = Degrees(lat as f64);
let latlong = LatLong::new(latitude, longitude);
let point = Vector3d::from(&latlong);
let expected = (lat as f64).to_radians();
let (atd, xtd) = arc.calculate_atd_and_xtd(&point);
assert!(is_within_tolerance(
1_f64.to_radians(),
atd.0,
core::f64::EPSILON
));
assert!(is_within_tolerance(
expected,
xtd.0,
2.0 * core::f64::EPSILON
));
}
}
#[test]
fn test_arc_intersection_point_length() {
// Karney's example
// Istanbul, Washington, Reyjavik and Accra
let istanbul = LatLong::new(Degrees(42.0), Degrees(29.0));
let washington = LatLong::new(Degrees(39.0), Degrees(-77.0));
let reyjavik = LatLong::new(Degrees(64.0), Degrees(-22.0));
let accra = LatLong::new(Degrees(6.0), Degrees(0.0));
let arc1 = Arc::between_positions(&istanbul, &washington);
let arc2 = Arc::between_positions(&reyjavik, &accra);
let intersection_distance = calculate_intersection_point_distance(&arc1, &arc2).unwrap();
assert!(is_within_tolerance(
0.5406004765152588,
intersection_distance.0,
core::f64::EPSILON
));
let intersection_distance_other_arc =
calculate_intersection_point_distance(&arc2, &arc1).unwrap();
assert!(is_within_tolerance(
0.17553891720631054,
intersection_distance_other_arc.0,
core::f64::EPSILON
));
let intersection_pos = arc1.position(intersection_distance);
let lat_long = LatLong::from(&intersection_pos);
// Geodesic intersection latitude is 54.7170296111
assert!(is_within_tolerance(54.7, lat_long.lat().0, 0.4));
// Geodesic intersection longitude is -14.56385575
assert!(is_within_tolerance(-14.56, lat_long.lon().0, 0.02));
}
#[test]
fn test_arc_intersection_same_gerat_circles() {
let south_pole_1 = LatLong::new(Degrees(-88.0), Degrees(-180.0));
let south_pole_2 = LatLong::new(Degrees(-87.0), Degrees(0.0));
let arc1 = Arc::between_positions(&south_pole_1, &south_pole_2);
let intersection_lengths = calculate_intersection_distances(&arc1, &arc1);
assert_eq!(Radians(0.0), intersection_lengths.0);
assert_eq!(Radians(0.0), intersection_lengths.1);
let gc_length = calculate_intersection_point_distance(&arc1, &arc1).unwrap();
assert_eq!(Radians(0.0), gc_length);
let south_pole_3 = LatLong::new(Degrees(-85.0), Degrees(0.0));
let south_pole_4 = LatLong::new(Degrees(-86.0), Degrees(0.0));
let arc2 = Arc::between_positions(&south_pole_3, &south_pole_4);
let intersection_length = calculate_intersection_point_distance(&arc1, &arc2);
assert!(intersection_length.is_none());
}
}