uniplate/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
#![doc = include_str!("intro.md")]
#![warn(missing_docs)]
#[doc(hidden)]
extern crate self as uniplate;
#[doc(hidden)]
pub mod impls;
pub mod zipper;
mod traits;
mod tree;
pub use traits::{Biplate, Uniplate};
#[doc(hidden)]
pub use tree::Tree;
#[doc(hidden)]
pub mod test_common;
/// The derive macro.
pub mod derive {
/// The Uniplate derive macro.
///
/// The macro supports `structs` (including [tuple
/// structs](https://doc.rust-lang.org/stable/reference/items/structs.html#r-items.struct.tuple))
/// and `enums`.
///
/// Enums with [struct-like
/// variants](https://doc.rust-lang.org/stable/reference/items/enumerations.html#r-items.enum.struct-expr)
/// are not yet supported.
///
/// **See the top level crate documentation for usage details.**
pub use uniplate_derive::Uniplate;
}
/// Generates [`Biplate`] and [`Uniplate`] instances for an unplateable type.
///
/// An unplateable type is one that you don't want Uniplate to traverse inside of.
///
/// The type must implement `Clone` and `Eq`.
///
/// Consider marking a type unplateable if it has no children (e.g. `String`) or does not support
/// the derive macro, but you still need a `Uniplate` or `Biplate` implementation for it.
///
/// # Example
///
/// For example, the target of a `Biplate` operation must implement `Uniplate`.
///
/// The below example uses `Biplate` to get all the `Names` in a binary tree.
///
/// ```
/// use uniplate::{derive_unplateable,Uniplate,Biplate,derive::Uniplate};
///
/// // If you don't care about the children of a type, use derive_unplateable!
/// #[derive(Clone,PartialEq,Eq)]
/// struct Name {
/// first: String,
/// last: String
/// }
///
/// derive_unplateable!(Name);
///
/// #[derive(Clone,PartialEq,Eq,Uniplate)]
/// #[uniplate()]
/// #[biplate(to=Name)]
/// enum MyTree {
/// Leaf(Name),
/// Branch(Name,Box<MyTree>,Box<MyTree>)
/// }
///
/// /// Gets all the names in the tree
/// fn names_in_tree(tree: &MyTree) -> Vec<Name> {
/// let names: Vec<Name> = tree.universe_bi().into_iter().collect();
/// names
/// }
/// ```
#[macro_export]
macro_rules! derive_unplateable {
($t:ty) => {
impl ::uniplate::Uniplate for $t {
fn uniplate(
&self,
) -> (
::uniplate::Tree<Self>,
Box<dyn Fn(::uniplate::Tree<Self>) -> Self>,
) {
let val = self.clone();
(::uniplate::Tree::Zero, Box::new(move |_| val.clone()))
}
}
impl ::uniplate::Biplate<$t> for $t {
fn biplate(
&self,
) -> (
::uniplate::Tree<$t>,
Box<dyn Fn(::uniplate::Tree<$t>) -> $t>,
) {
let val = self.clone();
(
::uniplate::Tree::One(val.clone()),
Box::new(move |_| val.clone()),
)
}
}
};
}
/// Generates [`Biplate`] and [`Uniplate`] instances for a collection using its [`Iterator`]
/// implementation.
///
/// Children will be visited in the order returned by `.iter()`.
#[macro_export]
macro_rules! derive_iter {
($iter_ty:ident) => {
impl<T, F> ::uniplate::Biplate<T> for $iter_ty<F>
where
T: Clone + Eq + ::uniplate::Uniplate + Sized + 'static,
F: Clone + Eq + ::uniplate::Uniplate + ::uniplate::Biplate<T> + Sized + 'static,
{
fn biplate(
&self,
) -> (
::uniplate::Tree<T>,
Box<(dyn Fn(::uniplate::Tree<T>) -> $iter_ty<F>)>,
) {
if (self.is_empty()) {
let val = self.clone();
return (::uniplate::Tree::Zero, Box::new(move |_| val.clone()));
}
// T == F: return all types F in the iterator.
if std::any::TypeId::of::<T>() == std::any::TypeId::of::<F>() {
unsafe {
// need to cast from F to T
let children: ::uniplate::Tree<T> = ::uniplate::Tree::Many(
self.clone()
.into_iter()
.map(|x: F| {
// possibly unsafe, definitely stupid, but seems to be the only way here?
let x: T = std::mem::transmute::<&F, &T>(&x).clone();
::uniplate::Tree::One(x)
})
.collect(),
);
let ctx: Box<dyn Fn(::uniplate::Tree<T>) -> $iter_ty<F>> =
Box::new(move |new_tree: ::uniplate::Tree<T>| {
let ::uniplate::Tree::Many(xs) = new_tree else {
todo!();
};
xs.into_iter()
.map(|x| {
let ::uniplate::Tree::One(x) = x else {
todo!();
};
let x: F = std::mem::transmute::<&T, &F>(&x).clone();
x
})
.collect()
});
return (children, ctx);
}
}
// Identity / same type case: Biplate<Iter<T>> for Iter<T>
else if std::any::TypeId::of::<T>() == std::any::TypeId::of::<$iter_ty<F>>() {
unsafe {
// need to cast from Iter<F> to T
let val: T = std::mem::transmute::<&$iter_ty<F>, &T>(&self).clone();
let children: ::uniplate::Tree<T> = ::uniplate::Tree::One(val);
let ctx: Box<dyn Fn(::uniplate::Tree<T>) -> $iter_ty<F>> =
Box::new(move |new_tree: ::uniplate::Tree<T>| {
let ::uniplate::Tree::One(x) = new_tree else {
todo!();
};
// need to cast from T to Iter<F>
let val: $iter_ty<F> =
std::mem::transmute::<&T, &$iter_ty<F>>(&x).clone();
val
});
return (children, ctx);
}
}
// T != F: return all type T's contained in the type F's in the vector
let mut child_trees: VecDeque<::uniplate::Tree<T>> = VecDeque::new();
let mut child_ctxs: Vec<Box<dyn Fn(::uniplate::Tree<T>) -> F>> = Vec::new();
for item in self {
let (tree, plate) = <F as ::uniplate::Biplate<T>>::biplate(item);
child_trees.push_back(tree);
child_ctxs.push(plate);
}
let tree = ::uniplate::Tree::Many(child_trees);
let ctx = Box::new(move |new_tree: ::uniplate::Tree<T>| {
let mut out = Vec::<F>::new();
let ::uniplate::Tree::Many(new_trees) = new_tree else {
todo!()
};
for (child_tree, child_ctx) in std::iter::zip(new_trees, &child_ctxs) {
out.push(child_ctx(child_tree));
}
out.into_iter().collect::<$iter_ty<F>>()
});
(tree, ctx)
}
}
// Traversal Biplate
impl<T> ::uniplate::Uniplate for $iter_ty<T>
where
T: Clone + Eq + ::uniplate::Uniplate + Sized + 'static,
{
fn uniplate(
&self,
) -> (
::uniplate::Tree<Self>,
Box<dyn Fn(::uniplate::Tree<Self>) -> Self>,
) {
let val = self.clone();
(Zero, Box::new(move |_| val.clone()))
}
}
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! unreachable {
($from:ident,$to:ident) => {
impl ::uniplate::Biplate<$to> for $from {
fn biplate(
&self,
) -> (
::uniplate::Tree<$to>,
Box<dyn Fn(::uniplate::Tree<$to>) -> $from>,
) {
let val = self.clone();
(::uniplate::Tree::Zero, Box::new(move |_| val.clone()))
}
}
};
}