1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
pub use crate::internal::capsule::{CFrag, Capsule};
pub use crate::internal::keys::{KeyPair, Signer};
pub use crate::internal::kfrag::{KFrag, KFragMode};
use crate::internal::curve::Params;
use crate::internal::curve::{CurveBN, CurvePoint};
use crate::internal::errors::PreErrors;
use crate::internal::schemes::{dem_decrypt, dem_encrypt, hash_to_curve_blake, kdf, DEM_MIN_SIZE};
use crate::internal::utils::{lambda_coeff, new_constant_sorrow, poly_eval};
use std::rc::Rc;
use openssl::{
bn::{BigNum, MsbOption},
nid::Nid,
};
/// Creates the standard parameters needed to operate with this crate, i.e.
/// the SECP256K1 curve
pub fn new_standard_params() -> Rc<Params> {
Rc::new(Params::new(Nid::SECP256K1)) //Curve
}
/// Performs an encryption using the DEM schema and encapsulates a key
/// for the sender using the public key provided.
///
/// Returns the ciphertext and the KEM Capsule.
pub fn encrypt(
from_public_key: &CurvePoint,
plaintext: &Vec<u8>,
) -> Result<(Vec<u8>, Capsule), PreErrors> {
let (key, capsule) = match _encapsulate(&from_public_key) {
Ok(kc) => kc,
Err(err) => return Err(err),
};
match dem_encrypt(&key, plaintext, Some(&capsule.to_bytes())) {
Ok(ciphertext) => return Ok((ciphertext, capsule)),
Err(err) => return Err(err),
};
}
/// Creates a re-encryption key from the delegating public key to the
/// receiving public key, and splits it in KFrags, using Shamir's Secret Sharing.
///
/// Requires a threshold number of KFrags out of N (`n` here).
///
/// Returns a list of N KFrags
/// Note: the name of this function in the paper is ReKeyGen
pub fn generate_kfrags(
delegating_keypair: &KeyPair,
receiving_pk: &CurvePoint,
threshold: usize,
n: usize,
signer: &Signer,
mode: KFragMode,
) -> (Result<Vec<KFrag>, PreErrors>, CurvePoint) {
// a fake point to return in case of error
let fake_point = CurvePoint::from_ec_point(
delegating_keypair.public_key().params().u_point(),
delegating_keypair.public_key().params(),
);
if threshold <= 0 || threshold > n {
return (Err(PreErrors::InvalidKFragThreshold), fake_point);
}
if !(delegating_keypair
.public_key()
.params()
.eq(receiving_pk.params()))
{
return (Err(PreErrors::KeysParametersNotEq), fake_point);
}
let params = delegating_keypair.public_key().params();
/* The precursor point is used as an ephemeral public key in a DH key exchange,
and the resulting shared secret 'dh_point' is used to derive other secret values
*/
let precursor = KeyPair::new(params);
// Multiply precursor with receiving_pk to obtain DH point
let dh_point = receiving_pk * precursor.private_key();
let mut to_hash = precursor.public_key().to_bytes();
to_hash.append(&mut receiving_pk.to_bytes());
to_hash.append(&mut dh_point.to_bytes());
let to_hash2 = to_hash.clone();
to_hash.append(&mut new_constant_sorrow("NON_INTERACTIVE"));
// Secret value 'd' allows to make Umbral non-interactive
let d = hash_to_curve_blake(&to_hash, params);
/////////////////
// Secret sharing
// Coefficients of the generating polynomial
let mut coefficients: Vec<CurveBN> = Vec::with_capacity(threshold);
// Coefficient zero
let coef_zero = delegating_keypair.private_key() / &d;
coefficients.push(coef_zero);
for _ in 1..threshold {
coefficients.push(CurveBN::rand_curve_bn(params));
}
// Kfrags generation
let mut kfrags: Vec<KFrag> = Vec::new();
let order_bits_size = params.order().num_bits();
for _ in 0..n {
let mut kfrag_id = BigNum::new().unwrap();
match kfrag_id.rand(order_bits_size, MsbOption::MAYBE_ZERO, false) {
Ok(_) => (),
Err(_) => {
return (Err(PreErrors::GenericError), fake_point);
}
}
let mut to_hash_it = to_hash2.clone();
to_hash_it.append(&mut new_constant_sorrow("X_COORDINATE"));
to_hash_it.append(&mut kfrag_id.to_vec());
/*
The index of the re-encryption key share (which in Shamir's Secret
Sharing corresponds to x in the tuple (x, f(x)), with f being the
generating polynomial), is used to prevent reconstruction of the
re-encryption key without Bob's intervention
*/
let share_index = hash_to_curve_blake(&to_hash_it, params);
/*
The re-encryption key share is the result of evaluating the generating
polynomial for the index value
*/
let rk = poly_eval(&coefficients, &share_index);
let u = CurvePoint::from_ec_point(params.u_point(), params);
let commitment_point = &u * &rk;
// Signing for receiver
let mut to_hash_it2 = kfrag_id.to_vec();
to_hash_it2.append(&mut delegating_keypair.public_key().to_bytes());
to_hash_it2.append(&mut receiving_pk.to_bytes());
to_hash_it2.append(&mut commitment_point.to_bytes());
to_hash_it2.append(&mut precursor.public_key().to_bytes());
let signature_for_receiver = signer.sign_sha2(&to_hash_it2);
// Signing for proxy
let mut to_hash_it3 = kfrag_id.to_vec();
to_hash_it3.append(&mut commitment_point.to_bytes());
to_hash_it3.append(&mut precursor.public_key().to_bytes());
match mode {
KFragMode::DelegatingAndReceiving => {
to_hash_it3.append(
&mut (KFragMode::DelegatingAndReceiving as u8)
.to_ne_bytes()
.to_vec(),
);
to_hash_it3.append(&mut delegating_keypair.public_key().to_bytes());
to_hash_it3.append(&mut receiving_pk.to_bytes());
}
KFragMode::DelegatingOnly => {
to_hash_it3.append(&mut (KFragMode::DelegatingOnly as u8).to_ne_bytes().to_vec());
to_hash_it3.append(&mut delegating_keypair.public_key().to_bytes());
}
KFragMode::ReceivingOnly => {
to_hash_it3.append(&mut (KFragMode::ReceivingOnly as u8).to_ne_bytes().to_vec());
to_hash_it3.append(&mut receiving_pk.to_bytes());
}
KFragMode::NoKey => {
to_hash_it3.append(&mut (KFragMode::NoKey as u8).to_ne_bytes().to_vec());
}
}
let signature_for_proxy = signer.sign_sha2(&to_hash_it3);
kfrags.push(KFrag::new(
&kfrag_id,
&rk,
&commitment_point,
&precursor.public_key(),
&signature_for_proxy,
&signature_for_receiver,
mode,
));
}
(Ok(kfrags), dh_point)
}
/// Performs the re-encryption operation of proxies and produces a capsule
/// fragment, i.e. a CFrag, from a KFrag given in input.
pub fn reencrypt(
kfrag: &KFrag,
capsule: &Capsule,
provide_proof: bool,
metadata: Option<Vec<u8>>,
verify_kfrag: bool,
) -> Result<CFrag, PreErrors> {
if !capsule.verify() {
return Err(PreErrors::InvalidCapsule);
}
if verify_kfrag {
match kfrag.verify_for_capsule(capsule) {
Ok(res) => {
if !res {
return Err(PreErrors::InvalidKFrag);
}
}
Err(err) => return Err(err),
}
}
let rk = kfrag.re_key_share();
let e_i = capsule.e() * rk;
let v_i = capsule.v() * rk;
let mut cfrag = CFrag::new(&e_i, &v_i, kfrag.id(), kfrag.precursor());
if provide_proof {
match cfrag.prove_correctness(capsule, kfrag, metadata) {
Ok(_) => (),
Err(err) => return Err(err),
}
}
return Ok(cfrag);
}
/// Opens the capsule and gets what's inside. If it is a symmetric key, then
/// it is used to decrypt the ciphertext and return the resulting cleartext.
pub fn decrypt(
ciphertext: Vec<u8>,
capsule: &Capsule,
decrypting_keypair: &KeyPair,
check_proof: bool,
) -> Result<Vec<u8>, PreErrors> {
if ciphertext.len() < DEM_MIN_SIZE {
return Err(PreErrors::CiphertextError);
}
let encapsulated_key = match !capsule.attached_cfrags().is_empty() {
//Since there are cfrags attached, we assume this is the receiver opening the Capsule.
//(i.e., this is a re-encrypted capsule)
true => _open_capsule(capsule, decrypting_keypair, check_proof),
//Since there aren't cfrags attached, we assume this is Alice opening the Capsule.
//(i.e., this is an original capsule)
false => _decapsulate(capsule, decrypting_keypair.private_key()),
};
match encapsulated_key {
Ok(key) => dem_decrypt(&key, &ciphertext, Some(&capsule.to_bytes())),
Err(err) => Err(err),
}
}
pub fn _encapsulate(from_public_key: &CurvePoint) -> Result<(Vec<u8>, Capsule), PreErrors> {
// BN context needed for the heap
let params = from_public_key.params();
// R point generation
let r = KeyPair::new(params);
let u = KeyPair::new(params);
// Get sign
let mut to_hash = r.public_key().to_bytes();
to_hash.append(&mut u.public_key().to_bytes());
let h = hash_to_curve_blake(&to_hash, params);
let s = u.private_key() + &(r.private_key() * &h);
let shared_key = from_public_key * &(r.private_key() + u.private_key());
match kdf(&shared_key.to_bytes()) {
Ok(key) => Ok((key, Capsule::new(r.public_key(), u.public_key(), &s))),
Err(err) => Err(err),
}
}
pub fn _decapsulate(capsule: &Capsule, receiving: &CurveBN) -> Result<Vec<u8>, PreErrors> {
if !capsule.verify() {
return Err(PreErrors::InvalidCapsule);
}
let shared_key = &(capsule.e() + capsule.v()) * receiving;
kdf(&shared_key.to_bytes())
}
fn _decapsulate_reencrypted(
capsule: &Capsule,
receiver_keypair: &KeyPair,
) -> Result<Vec<u8>, PreErrors> {
let params = capsule.e().params();
let pk = receiver_keypair.public_key();
let sk = receiver_keypair.private_key();
let precursor = capsule.attached_cfrags()[0].precursor();
let dh_point = precursor * sk;
// Combination of CFrags via Shamir's Secret Sharing reconstruction
let mut xs: Vec<CurveBN> = Vec::new();
for cfrag in capsule.attached_cfrags() {
let mut to_hash = precursor.to_bytes();
to_hash.append(&mut pk.to_bytes());
to_hash.append(&mut dh_point.to_bytes());
to_hash.append(&mut new_constant_sorrow("X_COORDINATE"));
to_hash.append(&mut cfrag.kfrag_id().to_vec());
xs.push(hash_to_curve_blake(&to_hash, params));
}
let mut e_summands: Vec<CurvePoint> = Vec::new();
let mut v_summands: Vec<CurvePoint> = Vec::new();
for i in 0..xs.len() {
let cfrag = &capsule.attached_cfrags()[i];
let x = &xs[i];
if !cfrag.precursor().eq(&precursor) {
return Err(PreErrors::InvalidCFrag);
}
let lambda_i = lambda_coeff(x, &xs);
e_summands.push(cfrag.e_i_point() * &lambda_i);
v_summands.push(cfrag.v_i_point() * &lambda_i);
}
let mut e_prime = e_summands[0].to_owned();
let mut v_prime = v_summands[0].to_owned();
for i in 1..e_summands.len() {
e_prime = &e_prime + &e_summands[i];
v_prime = &v_prime + &v_summands[i];
}
// Secret value 'd' allows to make Umbral non-interactive
let mut to_hash = precursor.to_bytes();
to_hash.append(&mut pk.to_bytes());
to_hash.append(&mut dh_point.to_bytes());
to_hash.append(&mut new_constant_sorrow("NON_INTERACTIVE"));
let d = hash_to_curve_blake(&to_hash, params);
let (e, v, s) = (capsule.e(), capsule.v(), capsule.sign());
let mut to_hash2 = e.to_bytes();
to_hash2.append(&mut v.to_bytes());
let h = hash_to_curve_blake(&to_hash2, params);
let orig_pk = match capsule.delegating_key() {
Some(d) => d,
None => return Err(PreErrors::CapsuleNoCorrectnessProvided),
};
let first = orig_pk * &(s / &d);
let second = &(&e_prime * &h) + &v_prime;
if !first.eq(&second) {
return Err(PreErrors::DecryptionError);
}
let shared_key = &(&e_prime + &v_prime) * &d;
kdf(&shared_key.to_bytes())
}
fn _open_capsule(
capsule: &Capsule,
receiver_keypair: &KeyPair,
check_proof: bool,
) -> Result<Vec<u8>, PreErrors> {
if !capsule.verify() {
return Err(PreErrors::InvalidCapsule);
}
if check_proof {
let mut offending = false;
for cfrag in capsule.attached_cfrags() {
match cfrag.verify_correctness(capsule) {
Ok(correct) => offending = offending && correct,
Err(err) => return Err(err),
}
}
if offending {
return Err(PreErrors::InvalidCFrag);
}
}
_decapsulate_reencrypted(&capsule, &receiver_keypair)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::internal::keys::Signature;
//use std::{thread, time};
#[test]
fn encrypt_simple() {
let params = new_standard_params();
let (alice, _, _) = _generate_credentials(¶ms);
// encrypt
let plaintext = b"Hello, umbral!".to_vec();
match encrypt(&alice.public_key(), &plaintext) {
Ok(_) => assert_eq!(true, true),
Err(err) => panic!("Error: {}", err),
};
}
#[test]
fn poly_eval_test() {
let params = new_standard_params();
let mut coefficients: Vec<CurveBN> = Vec::with_capacity(5);
for i in 0..5 {
coefficients.push(CurveBN::from_u32(i + 2, ¶ms));
}
let x = CurveBN::from_u32(2, ¶ms);
let res = poly_eval(&coefficients, &x);
let fin = res.eq(&CurveBN::from_u32(160, ¶ms));
assert_eq!(fin, true);
}
#[test]
fn kfrags() {
let params = new_standard_params();
let (alice, signer, bob) = _generate_credentials(¶ms);
// keyfrags
match generate_kfrags(
&alice,
&bob.public_key(),
2,
5,
&signer,
KFragMode::DelegatingAndReceiving,
) {
(Ok(_), _) => assert_eq!(true, true),
_ => panic!("Error in generate_kfrags"),
};
}
#[test]
fn false_verify_kfrag() {
let params = new_standard_params();
let (alice, signer, bob) = _generate_credentials(¶ms);
let carl = KeyPair::new(¶ms);
let carl_pk = carl.public_key();
// encrypt
let plaintext = b"Hello, umbral!".to_vec();
let (_, mut capsule) = match encrypt(&alice.public_key(), &plaintext) {
Ok(expr) => expr,
Err(err) => panic!("{}", err),
};
//set correctness keys
capsule.set_correctness_keys(&alice.public_key(), &carl_pk, &signer.public_key());
// keyfrags
let kfrags = match generate_kfrags(
&alice,
&bob.public_key(),
2,
5,
&signer,
KFragMode::DelegatingAndReceiving,
) {
(Ok(ks), _) => ks,
_ => panic!("Error in generate_kfrags"),
};
let mut res = false;
for kfrag in kfrags {
res = res
&& kfrag
.verify_for_capsule(&capsule)
.expect("Errors in KFrag verifying")
}
assert_eq!(res, false);
}
#[test]
fn reencrypt_simple() {
let params = new_standard_params();
let (alice, signer, bob) = _generate_credentials(¶ms);
let plaintext = b"Hello, umbral!".to_vec();
let (_, mut capsule) = match encrypt(&alice.public_key(), &plaintext) {
Ok(expr) => expr,
Err(err) => panic!("{}", err),
};
//set correctness keys
capsule.set_correctness_keys(&alice.public_key(), &bob.public_key(), &signer.public_key());
//kfrags
let kfrags = match generate_kfrags(
&alice,
&bob.public_key(),
2,
5,
&signer,
KFragMode::DelegatingAndReceiving,
) {
(Ok(ks), _) => ks,
_ => panic!("Error in generate_kfrags"),
};
//reencrypt
let r = reencrypt(&kfrags[0], &capsule, true, None, true);
assert_eq!(r.is_ok(), true);
}
#[test]
fn attach_cfrag() {
let params = new_standard_params();
let (alice, signer, bob) = _generate_credentials(¶ms);
let plaintext = b"Hello, umbral!".to_vec();
let (_, mut capsule) = match encrypt(&alice.public_key(), &plaintext) {
Ok(expr) => expr,
Err(err) => panic!("{}", err),
};
//set correctness keys
capsule.set_correctness_keys(&alice.public_key(), &bob.public_key(), &signer.public_key());
//kfrags
let kfrags = match generate_kfrags(
&alice,
&bob.public_key(),
2,
5,
&signer,
KFragMode::DelegatingAndReceiving,
) {
(Ok(ks), _) => ks,
_ => panic!("Error in generate_kfrags"),
};
let mut res = true;
for kfrag in kfrags {
//reencrypt
let cfrag = match reencrypt(&kfrag, &capsule, true, None, true) {
Ok(expr) => expr,
Err(err) => panic!("{}", err),
};
//attach cfrag
res = res && capsule.attach_cfrag(&cfrag).is_ok();
}
assert_eq!(res, true);
}
#[test]
fn decrypt_frags() {
let params = new_standard_params();
let (alice, signer, bob) = _generate_credentials(¶ms);
let plaintext = b"Hello, umbral!".to_vec();
let (ciphertext, mut capsule) = match encrypt(&alice.public_key(), &plaintext) {
Ok(expr) => expr,
Err(err) => panic!("{}", err),
};
//set correctness keys
capsule.set_correctness_keys(&alice.public_key(), &bob.public_key(), &signer.public_key());
//kfrags
let kfrags = match generate_kfrags(
&alice,
&bob.public_key(),
2,
5,
&signer,
KFragMode::DelegatingAndReceiving,
) {
(Ok(ks), _) => ks,
_ => panic!("Error in generate_kfrags"),
};
for kfrag in kfrags {
//reencrypt
let cfrag = match reencrypt(&kfrag, &capsule, true, None, true) {
Ok(expr) => expr,
Err(err) => panic!("{}", err),
};
//attach cfrag
match capsule.attach_cfrag(&cfrag) {
Ok(_) => (),
Err(err) => panic!("{}", err),
};
}
let res = decrypt(ciphertext, &capsule, &bob, true);
let plaintext_bob = match res {
Ok(p) => p,
Err(err) => panic!("Error {}", err),
};
println!("{:?}", String::from_utf8(plaintext_bob.to_owned()).unwrap());
assert_eq!(plaintext, plaintext_bob);
}
#[test]
fn decrypt_simple() {
let params = new_standard_params();
let (alice, _, _) = _generate_credentials(¶ms);
let plaintext = b"Hello, umbral!".to_vec();
let (ciphertext, capsule) = match encrypt(&alice.public_key(), &plaintext) {
Ok(expr) => expr,
Err(err) => panic!("{}", err),
};
let res = decrypt(ciphertext, &capsule, &alice, true);
let plaintext_dec = res.expect("Error in Decryption");
println!("{:?}", String::from_utf8(plaintext_dec.to_owned()).unwrap());
assert_eq!(plaintext, plaintext_dec);
}
#[test]
fn hash_to_bn() {
let params = new_standard_params();
hash_to_curve_blake(&b"gadhj".to_vec(), ¶ms);
}
#[test]
fn curve_bn() {
let params = new_standard_params();
let one = &CurveBN::from_u32(1, ¶ms);
let two = &CurveBN::from_u32(2, ¶ms);
let ten = &CurveBN::from_u32(10, ¶ms);
let three = one + two;
assert_eq!(three.bn().to_vec(), vec![3; 1]);
let nine = ten - one;
assert_eq!(nine.bn().to_vec(), vec![9; 1]);
let three_again = &nine / &three;
assert_eq!(three_again.bn().to_vec(), vec![3; 1]);
let eighteen = &nine * two;
assert_eq!(eighteen.bn().to_vec(), vec![18; 1]);
}
#[test]
fn bytes_conv() {
let params = new_standard_params();
let (alice, signer, bob) = _generate_credentials(¶ms);
// CurveBN and CurvePoint
let r = CurveBN::rand_curve_bn(¶ms);
let p = CurvePoint::mul_gen(&r, ¶ms);
let r_bytes = r.to_bytes();
let p_bytes = p.to_bytes();
let p_new = CurvePoint::from_bytes(&p_bytes, ¶ms).expect("Point");
assert_eq!(p.eq(&p_new), true);
let r_new = CurveBN::from_bytes(&r_bytes, ¶ms).expect("BN");
assert_eq!(r.eq(&r_new), true);
let p_new2 = CurvePoint::mul_gen(&r_new, ¶ms);
assert_eq!(p.eq(&p_new2), true);
// Signature
let s = signer.sign_sha2(&p_bytes);
let s_bytes = s.to_bytes();
let s_new = Signature::from_bytes(&s_bytes, ¶ms).expect("Signature");
assert_eq!(s.eq(&s_new), true);
//KFrags
let kfs = match generate_kfrags(
&alice,
&bob.public_key(),
1,
1,
&signer,
KFragMode::DelegatingAndReceiving,
) {
(Ok(ks), _) => ks,
_ => panic!("Error in generate_kfrags"),
};
let kf_bytes = kfs[0].to_bytes();
let kf_new = KFrag::from_bytes(&kf_bytes, ¶ms).expect("KFrag");
assert_eq!(kfs[0].eq(&kf_new), true);
// Capsule
let (_, mut capsule) = match encrypt(&alice.public_key(), &b"Hello, umbral!".to_vec()) {
Ok(expr) => expr,
Err(err) => panic!("{}", err),
};
let capsule_bytes = capsule.to_bytes();
let capsule_new = Capsule::from_bytes(&capsule_bytes, ¶ms).expect("Capsule");
assert_eq!(capsule.eq(&capsule_new), true);
//CFrags
capsule.set_correctness_keys(&alice.public_key(), &bob.public_key(), &signer.public_key());
let cfrag = match reencrypt(&kf_new, &capsule, true, None, true) {
Ok(expr) => expr,
Err(err) => panic!("{}", err),
};
let cfrag_bytes = cfrag.to_bytes();
let cfrag_new = CFrag::from_bytes(&cfrag_bytes, ¶ms).expect("CFrag");
assert_eq!(cfrag.eq(&cfrag_new), true);
}
fn _generate_credentials(params: &Rc<Params>) -> (KeyPair, Signer, KeyPair) {
let alice = KeyPair::new(params);
let signer = Signer::new(params);
let bob = KeyPair::new(params);
(alice, signer, bob)
}
/*
#[test]
fn new_test_mule_1() {
let params = new_standard_params();
let (alice, signer, bob) = _generate_credentials(¶ms);
//////////// Generate key x
// BN context needed for the heap
let params = alice.public_key().params();
// R point generation
let r = KeyPair::new(params);
let u = KeyPair::new(params);
let shared_key = alice.public_key() * &(r.private_key() + u.private_key());
let key_x = match kdf(&shared_key.to_bytes()) {
Ok(key) => key,
Err(err) => panic!("{}", err),
};
////////////
let sizes: [usize; 7] = [10485, 52428, 104857, 524288, 1048576, 5242880, 10485760];
for outer in 0..7 {
let mut slice_payload = vec![0u8; sizes[outer]].into_boxed_slice();
getrandom::getrandom(&mut slice_payload).expect("Error in payload generation");
let plaintext = slice_payload.to_vec(); //b"Hello, umbral!".to_vec();
let ciphertext = match dem_encrypt(&key_x, &plaintext, None) {
Ok(ciphertext) => ciphertext,
Err(err) => panic!("{}", err),
};
let tries = 10;
let mut duration_enc = 0;
let mut duration_dec = 0;
for _ in 0..10 {
//////////// Encrypt
let now_enc = time::Instant::now();
// Tender
let mut slice_tender = vec![0u8; 150].into_boxed_slice();
getrandom::getrandom(&mut slice_tender).expect("Error in tender generation");
let tender = slice_tender.to_vec();
let tender_signature = signer.sign_sha2(&tender);
// Balance
let mut slice_balance = vec![0u8; 110].into_boxed_slice();
getrandom::getrandom(&mut slice_balance).expect("Error in balance generation");
let balance = slice_balance.to_vec();
let balance_signature = signer.sign_sha2(&balance);
// Address
let mut slice_address = vec![0u8; 42].into_boxed_slice();
getrandom::getrandom(&mut slice_address).expect("Error in address generation");
let address = slice_address.to_vec();
let address_signature = signer.sign_sha2(&address);
// Shared key
let shared_key_alice = bob.public_key() * alice.private_key();
let key_alice = match kdf(&shared_key_alice.to_bytes()) {
Ok(key) => key,
Err(err) => panic!("{}", err),
};
let other_data = {
let mut r = tender.clone();
r.extend_from_slice(&tender_signature.to_bytes());
r.extend_from_slice(&balance);
r.extend_from_slice(&balance_signature.to_bytes());
r.extend_from_slice(&address_signature.to_bytes());
r
};
let other_data_ciphertext = match dem_encrypt(&key_alice, &other_data, None) {
Ok(ciphertext) => ciphertext,
Err(err) => panic!("{}", err),
};
duration_enc += now_enc.elapsed().as_millis();
//////////// Decrypt
let now_dec = time::Instant::now();
let shared_key_bob = alice.public_key() * bob.private_key();
let key_bob = match kdf(&shared_key_bob.to_bytes()) {
Ok(key) => key,
Err(err) => panic!("{}", err),
};
let other_data_dec = match dem_decrypt(&key_bob, &other_data_ciphertext, None) {
Ok(p) => p,
Err(err) => panic!("{}", err),
};
let tender_verification = tender_signature.verify_sha2(&tender, &signer.public_key());
assert_eq!(tender_verification, true);
let balance_verification = balance_signature.verify_sha2(&balance, &signer.public_key());
assert_eq!(balance_verification, true);
let address_verification = address_signature.verify_sha2(&address, &signer.public_key());
assert_eq!(address_verification, true);
duration_dec += now_dec.elapsed().as_millis();
assert_eq!(other_data, other_data_dec);
}
println!(
"Enc {:?}, Dec {:?}",
duration_enc / tries,
duration_dec / tries
);
}
}
#[test]
fn new_test_mule_2() {
let params = new_standard_params();
let (alice, signerb, bob) = _generate_credentials(¶ms);
let (_, signera, _) = _generate_credentials(¶ms);
//////////// Public key encryption
// BN context needed for the heap
let params = alice.public_key().params();
// R point generation
let r = KeyPair::new(params);
let u = KeyPair::new(params);
let shared_key = alice.public_key() * &(r.private_key() + u.private_key());
let key_x = match kdf(&shared_key.to_bytes()) {
Ok(key) => key,
Err(err) => panic!("{}", err),
};
////////////
let sizes: [usize; 7] = [10485, 52428, 104857, 524288, 1048576, 5242880, 10485760];
for outer in 0..7 {
let mut slice_payload = vec![0u8; sizes[outer]].into_boxed_slice();
getrandom::getrandom(&mut slice_payload).expect("Error in payload generation");
let plaintext = slice_payload.to_vec();
//////////// R Public key encryption 2
let ciphertext = match dem_encrypt(&key_x, &plaintext, None) {
Ok(ciphertext) => ciphertext,
Err(err) => panic!("{}", err),
};
//////////// Bob encryption
// Tender
let mut slice_tender = vec![0u8; 96].into_boxed_slice();
getrandom::getrandom(&mut slice_tender).expect("Error in tender generation");
let tender = slice_tender.to_vec();
let tender_signature = signerb.sign_sha2(&tender);
// Shared key
let shared_key_bob = alice.public_key() * bob.private_key();
let key_bob = match kdf(&shared_key_bob.to_bytes()) {
Ok(key) => key,
Err(err) => panic!("{}", err),
};
let other_data_tender = {
let mut r = tender.clone();
r.extend_from_slice(&tender_signature.to_bytes());
r
};
let other_data_tender_ciphertext = match dem_encrypt(&key_bob, &other_data_tender, None) {
Ok(ciphertext) => ciphertext,
Err(err) => panic!("{}", err),
};
let tries = 10;
let mut duration_dec_tender = 0;
let mut duration_enc_balance = 0;
let mut duration_dec_balance = 0;
let mut duration_dec_plaintext = 0;
for _ in 0..10 {
//////////// Tender Decrypt
let now_dec = time::Instant::now();
let shared_key_alice = bob.public_key() * alice.private_key();
let key_alice = match kdf(&shared_key_alice.to_bytes()) {
Ok(key) => key,
Err(err) => panic!("{}", err),
};
let other_data_tender_dec =
match dem_decrypt(&key_alice, &other_data_tender_ciphertext, None) {
Ok(p) => p,
Err(err) => panic!("{}", err),
};
let tender_verification = tender_signature.verify_sha2(&tender, &signerb.public_key());
assert_eq!(tender_verification, true);
duration_dec_tender += now_dec.elapsed().as_millis();
assert_eq!(other_data_tender, other_data_tender_dec);
//////////// Encrypt
let now_enc = time::Instant::now();
// Balance
let mut slice_balance = vec![0u8; 110].into_boxed_slice();
getrandom::getrandom(&mut slice_balance).expect("Error in balance generation");
let balance = slice_balance.to_vec();
let balance_signature = signera.sign_sha2(&balance);
let other_data_balance = {
let mut r = balance.clone();
r.extend_from_slice(&balance_signature.to_bytes());
r
};
let other_data_balance_ciphertext = match dem_encrypt(&key_alice, &other_data_balance, None)
{
Ok(ciphertext) => ciphertext,
Err(err) => panic!("{}", err),
};
duration_enc_balance += now_enc.elapsed().as_millis();
//////////// Bob Decrypt
let now_dec_2 = time::Instant::now();
let other_data_balance_dec =
match dem_decrypt(&key_bob, &other_data_balance_ciphertext, None) {
Ok(p) => p,
Err(err) => panic!("{}", err),
};
let balance_verification = balance_signature.verify_sha2(&balance, &signera.public_key());
assert_eq!(balance_verification, true);
duration_dec_balance += now_dec_2.elapsed().as_millis();
assert_eq!(other_data_balance, other_data_balance_dec);
//////////// Payload Decrypt
let now_dec_3 = time::Instant::now();
let shared_key_ecies = &(r.public_key() + u.public_key()) * alice.private_key();
let key_ecies = match kdf(&shared_key_ecies.to_bytes()) {
Ok(key) => key,
Err(err) => panic!("{}", err),
};
let plaintext_dec = match dem_decrypt(&key_ecies, &ciphertext, None) {
Ok(p) => p,
Err(err) => panic!("{}", err),
};
duration_dec_plaintext += now_dec_3.elapsed().as_millis();
assert_eq!(plaintext, plaintext_dec);
}
println!(
"Dec Tender {:?}, Enc Balance {:?}, Dec Balance {:?}, Dec Payload {:?}",
duration_dec_tender / tries,
duration_enc_balance / tries,
duration_dec_balance / tries,
duration_dec_plaintext / tries
);
}
}
*/
}