1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
use std::marker::PhantomData;

use super::mmr_accumulator::MmrAccumulator;
use super::mmr_membership_proof::MmrMembershipProof;
use super::mmr_trait::Mmr;
use super::{shared_advanced, shared_basic};
use crate::shared_math::digest::Digest;
use crate::storage::storage_vec::{traits::*, RustyLevelDbVec};
use crate::util_types::algebraic_hasher::AlgebraicHasher;
use crate::util_types::shared::bag_peaks;
use crate::utils::has_unique_elements;
use leveldb::batch::WriteBatch;

/// A Merkle Mountain Range is a datastructure for storing a list of hashes.
///
/// Merkle Mountain Ranges only know about hashes. When values are to be associated with
/// MMRs, these values must be stored by the caller, or in a wrapper to this data structure.
pub struct ArchivalMmr<H: AlgebraicHasher, Storage: StorageVec<Digest>> {
    digests: Storage,
    _hasher: PhantomData<H>,
}

impl<H, Storage> Mmr<H> for ArchivalMmr<H, Storage>
where
    H: AlgebraicHasher + Send + Sync,
    Storage: StorageVec<Digest>,
{
    /// Calculate the root for the entire MMR
    fn bag_peaks(&self) -> Digest {
        let peaks: Vec<Digest> = self.get_peaks();
        bag_peaks::<H>(&peaks)
    }

    /// Return the digests of the peaks of the MMR
    fn get_peaks(&self) -> Vec<Digest> {
        let peaks_and_heights = self.get_peaks_with_heights();
        peaks_and_heights.into_iter().map(|x| x.0).collect()
    }

    /// Whether the MMR is empty. Note that since indexing starts at
    /// 1, the `digests` contain must always contain at least one
    /// element: a dummy digest.
    fn is_empty(&self) -> bool {
        self.digests.len() == 1
    }

    /// Return the number of leaves in the tree
    fn count_leaves(&self) -> u64 {
        let peaks_and_heights: Vec<(_, u32)> = self.get_peaks_with_heights();
        let mut acc = 0;
        for (_, height) in peaks_and_heights {
            acc += 1 << height
        }

        acc
    }

    /// Append an element to the archival MMR, return the membership proof of the newly added leaf.
    /// The membership proof is returned here since the accumulater MMR has no other way of
    /// retrieving a membership proof for a leaf. And the archival and accumulator MMR share
    /// this interface.
    fn append(&mut self, new_leaf: Digest) -> MmrMembershipProof<H> {
        let node_index = self.digests.len();
        let leaf_index = shared_advanced::node_index_to_leaf_index(node_index).unwrap();
        self.append_raw(new_leaf);
        self.prove_membership(leaf_index).0
    }

    /// Mutate an existing leaf. It is the caller's responsibility that the
    /// membership proof is valid. If the membership proof is wrong, the MMR
    /// will end up in a broken state.
    fn mutate_leaf(&mut self, old_membership_proof: &MmrMembershipProof<H>, new_leaf: Digest) {
        // Sanity check
        let real_membership_proof: MmrMembershipProof<H> =
            self.prove_membership(old_membership_proof.leaf_index).0;
        assert_eq!(
            real_membership_proof.authentication_path, old_membership_proof.authentication_path,
            "membership proof argument list must match internally calculated"
        );

        self.mutate_leaf_raw(real_membership_proof.leaf_index, new_leaf.to_owned())
    }

    fn batch_mutate_leaf_and_update_mps(
        &mut self,
        membership_proofs: &mut [&mut MmrMembershipProof<H>],
        mutation_data: Vec<(MmrMembershipProof<H>, Digest)>,
    ) -> Vec<usize> {
        assert!(
            has_unique_elements(mutation_data.iter().map(|md| md.0.leaf_index)),
            "Duplicated leaves are not allowed in membership proof updater"
        );

        for (mp, digest) in mutation_data.iter() {
            self.mutate_leaf_raw(mp.leaf_index, *digest);
        }

        let mut modified_mps: Vec<usize> = vec![];
        for (i, mp) in membership_proofs.iter_mut().enumerate() {
            let new_mp = self.prove_membership(mp.leaf_index).0;
            if new_mp != **mp {
                modified_mps.push(i);
            }

            **mp = new_mp
        }

        modified_mps
    }

    fn verify_batch_update(
        &self,
        new_peaks: &[Digest],
        appended_leafs: &[Digest],
        leaf_mutations: &[(Digest, MmrMembershipProof<H>)],
    ) -> bool {
        let accumulator: MmrAccumulator<H> = self.to_accumulator();
        accumulator.verify_batch_update(new_peaks, appended_leafs, leaf_mutations)
    }

    fn to_accumulator(&self) -> MmrAccumulator<H> {
        MmrAccumulator::init(self.get_peaks(), self.count_leaves())
    }
}

impl<H: AlgebraicHasher, Storage: StorageVec<Digest>> ArchivalMmr<H, Storage> {
    /// Create a new archival MMR, or restore one from a database.
    pub fn new(pv: Storage) -> Self {
        let mut ret = Self {
            digests: pv,
            _hasher: PhantomData,
        };
        ret.fix_dummy();
        ret
    }

    /// Inserts a dummy digest into the `digests` container. Due to
    /// 1-indexation, this structure must always contain one element
    /// (even if it is never used). Due to the persistence layer,
    /// this data structure can be set to the default vector, which
    /// is the empty vector. This method fixes that.
    pub fn fix_dummy(&mut self) {
        if self.digests.len() == 0 {
            self.digests.push(Digest::default());
        }
    }

    /// Get a leaf from the MMR, will panic if index is out of range
    pub fn get_leaf(&self, leaf_index: u64) -> Digest {
        let node_index = shared_advanced::leaf_index_to_node_index(leaf_index);
        self.digests.get(node_index)
    }

    /// Update a hash in the existing archival MMR
    pub fn mutate_leaf_raw(&mut self, leaf_index: u64, new_leaf: Digest) {
        // 1. change the leaf value
        let mut node_index = shared_advanced::leaf_index_to_node_index(leaf_index);
        self.digests.set(node_index, new_leaf);

        // 2. Calculate hash changes for all parents
        let mut parent_index = shared_advanced::parent(node_index);
        let mut acc_hash = new_leaf;

        // While parent exists in MMR, update parent
        while parent_index < self.digests.len() {
            let (right_lineage_count, height) =
                shared_advanced::right_lineage_length_and_own_height(node_index);
            acc_hash = if right_lineage_count != 0 {
                // node is right child
                H::hash_pair(
                    self.digests
                        .get(shared_advanced::left_sibling(node_index, height)),
                    acc_hash,
                )
            } else {
                // node is left child
                H::hash_pair(
                    acc_hash,
                    self.digests
                        .get(shared_advanced::right_sibling(node_index, height)),
                )
            };
            self.digests.set(parent_index, acc_hash);
            node_index = parent_index;
            parent_index = shared_advanced::parent(parent_index);
        }
    }

    /// Return (membership_proof, peaks)
    pub fn prove_membership(&self, leaf_index: u64) -> (MmrMembershipProof<H>, Vec<Digest>) {
        // A proof consists of an authentication path
        // and a list of peaks
        assert!(
            leaf_index < self.count_leaves(),
            "Cannot prove membership of leaf outside of range. Got leaf_index {leaf_index}. Leaf count is {}", self.count_leaves()
        );

        // Find out how long the authentication path is
        let node_index = shared_advanced::leaf_index_to_node_index(leaf_index);
        let mut top_height: i32 = -1;
        let mut parent_index = node_index;
        while parent_index < self.digests.len() {
            parent_index = shared_advanced::parent(parent_index);
            top_height += 1;
        }

        // Build the authentication path
        let mut authentication_path: Vec<Digest> = vec![];
        let mut index = node_index;
        let (mut right_ancestor_count, mut index_height): (u32, u32) =
            shared_advanced::right_lineage_length_and_own_height(index);
        while index_height < top_height as u32 {
            if right_ancestor_count != 0 {
                // index is right child
                let left_sibling_index = shared_advanced::left_sibling(index, index_height);
                authentication_path.push(self.digests.get(left_sibling_index));

                // parent of right child is index + 1
                index += 1;
            } else {
                // index is left child
                let right_sibling_index = shared_advanced::right_sibling(index, index_height);
                authentication_path.push(self.digests.get(right_sibling_index));

                // parent of left child:
                index += 1 << (index_height + 1);
            }
            let next_index_info = shared_advanced::right_lineage_length_and_own_height(index);
            right_ancestor_count = next_index_info.0;
            index_height = next_index_info.1;
        }

        let peaks: Vec<Digest> = self.get_peaks_with_heights().iter().map(|x| x.0).collect();

        let membership_proof = MmrMembershipProof::new(leaf_index, authentication_path);

        (membership_proof, peaks)
    }

    /// Return a list of tuples (peaks, height)
    pub fn get_peaks_with_heights(&self) -> Vec<(Digest, u32)> {
        if self.is_empty() {
            return vec![];
        }

        // 1. Find top peak
        // 2. Jump to right sibling (will not be included)
        // 3. Take left child of sibling, continue until a node in tree is found
        // 4. Once new node is found, jump to right sibling (will not be included)
        // 5. Take left child of sibling, continue until a node in tree is found
        let mut peaks_and_heights: Vec<(Digest, u32)> = vec![];
        let (mut top_peak, mut top_height) =
            shared_advanced::leftmost_ancestor(self.digests.len() - 1);
        if top_peak > self.digests.len() - 1 {
            top_peak = shared_basic::left_child(top_peak, top_height);
            top_height -= 1;
        }

        peaks_and_heights.push((self.digests.get(top_peak), top_height));
        let mut height = top_height;
        let mut candidate = shared_advanced::right_sibling(top_peak, height);
        'outer: while height > 0 {
            '_inner: while candidate > self.digests.len() && height > 0 {
                candidate = shared_basic::left_child(candidate, height);
                height -= 1;
                if candidate < self.digests.len() {
                    peaks_and_heights.push((self.digests.get(candidate), height));
                    candidate = shared_advanced::right_sibling(candidate, height);
                    continue 'outer;
                }
            }
        }

        peaks_and_heights
    }

    /// Append an element to the archival MMR
    pub fn append_raw(&mut self, new_leaf: Digest) {
        let node_index = self.digests.len();
        self.digests.push(new_leaf);
        let (right_parent_count, own_height) =
            shared_advanced::right_lineage_length_and_own_height(node_index);

        // This function could be rewritten with a while-loop instead of being recursive.
        if right_parent_count != 0 {
            let left_sibling_hash = self
                .digests
                .get(shared_advanced::left_sibling(node_index, own_height));
            let parent_hash: Digest = H::hash_pair(left_sibling_hash, new_leaf);
            self.append_raw(parent_hash);
        }
    }

    /// Remove the last leaf from the archival MMR
    pub fn remove_last_leaf(&mut self) -> Option<Digest> {
        if self.is_empty() {
            return None;
        }

        let node_index = self.digests.len() - 1;
        let mut ret = self.digests.pop().unwrap();
        let (_, mut height) = shared_advanced::right_lineage_length_and_own_height(node_index);
        while height > 0 {
            ret = self.digests.pop().unwrap();
            height -= 1;
        }

        Some(ret)
    }
}

impl<H: AlgebraicHasher> ArchivalMmr<H, RustyLevelDbVec<Digest>> {
    /// Add write queue to referenced write batch. Leaves cache and write queue empty.
    pub fn persist(&mut self, write_batch: &mut WriteBatch) {
        self.digests.pull_queue(write_batch);
    }
}

#[cfg(test)]
mod mmr_test {
    use std::sync::Arc;

    use super::*;
    use crate::shared_math::other::random_elements;
    use crate::shared_math::tip5::Tip5;
    use crate::test_shared::mmr::{
        get_empty_rustyleveldb_ammr, get_rustyleveldb_ammr_from_digests,
    };
    use crate::util_types::merkle_tree::merkle_tree_test;
    use crate::util_types::storage_schema::{SimpleRustyStorage, StorageWriter};
    use crate::{
        shared_math::b_field_element::BFieldElement,
        storage::level_db::DB,
        util_types::mmr::{
            archival_mmr::ArchivalMmr, mmr_accumulator::MmrAccumulator,
            shared_advanced::get_peak_heights_and_peak_node_indices,
        },
    };
    use itertools::izip;
    use leveldb::iterator::Iterable;
    use leveldb::options::ReadOptions;
    use rand::random;

    impl<H: AlgebraicHasher, Storage: StorageVec<Digest>> ArchivalMmr<H, Storage> {
        /// Return the number of nodes in all the trees in the MMR
        fn count_nodes(&mut self) -> u64 {
            self.digests.len() - 1
        }
    }

    #[test]
    fn empty_mmr_behavior_test() {
        type H = blake3::Hasher;
        type Storage = RustyLevelDbVec<Digest>;

        let mut archival_mmr: ArchivalMmr<H, Storage> = get_empty_rustyleveldb_ammr();
        let mut accumulator_mmr: MmrAccumulator<H> = MmrAccumulator::<H>::new(vec![]);

        assert_eq!(0, archival_mmr.count_leaves());
        assert_eq!(0, accumulator_mmr.count_leaves());
        assert_eq!(archival_mmr.get_peaks(), accumulator_mmr.get_peaks());
        assert_eq!(Vec::<Digest>::new(), accumulator_mmr.get_peaks());
        assert_eq!(archival_mmr.bag_peaks(), accumulator_mmr.bag_peaks());
        assert_eq!(
            archival_mmr.bag_peaks(),
            merkle_tree_test::root_from_arbitrary_number_of_digests::<H>(&[]),
            "Bagged peaks for empty MMR must agree with MT root finder"
        );
        assert_eq!(0, archival_mmr.count_nodes());
        assert!(accumulator_mmr.is_empty());
        assert!(archival_mmr.is_empty());

        // Test behavior of appending to an empty MMR
        let new_leaf = random();

        let mut archival_mmr_appended = get_empty_rustyleveldb_ammr();
        {
            let archival_membership_proof = archival_mmr_appended.append(new_leaf);

            // Verify that the MMR update can be validated
            assert!(archival_mmr.verify_batch_update(
                &archival_mmr_appended.get_peaks(),
                &[new_leaf],
                &[]
            ));

            // Verify that failing MMR update for empty MMR fails gracefully
            assert!(!archival_mmr.verify_batch_update(
                &archival_mmr_appended.get_peaks(),
                &[],
                &[(new_leaf, archival_membership_proof)]
            ));
        }

        // Make the append and verify that the new peaks match the one from the proofs
        let archival_membership_proof = archival_mmr.append(new_leaf);
        let accumulator_membership_proof = accumulator_mmr.append(new_leaf);
        assert_eq!(archival_mmr.get_peaks(), archival_mmr_appended.get_peaks());
        assert_eq!(
            accumulator_mmr.get_peaks(),
            archival_mmr_appended.get_peaks()
        );

        // Verify that the appended value matches the one stored in the archival MMR
        assert_eq!(new_leaf, archival_mmr.get_leaf(0));

        // Verify that the membership proofs for the inserted leafs are valid and that they agree
        assert_eq!(
            archival_membership_proof, accumulator_membership_proof,
            "accumulator and archival membership proofs must agree"
        );
        assert!(
            archival_membership_proof
                .verify(
                    &archival_mmr.get_peaks(),
                    new_leaf,
                    archival_mmr.count_leaves()
                )
                .0,
            "membership proof from arhival MMR must validate"
        );
    }

    #[test]
    fn verify_against_correct_peak_test() {
        type H = blake3::Hasher;

        // This test addresses a bug that was discovered late in the development process
        // where it was possible to fake a verification proof by providing a valid leaf
        // and authentication path but lying about the data index. This error occurred
        // because the derived hash was compared against all of the peaks to find a match
        // and it wasn't verified that the accumulated hash matched the *correct* peak.
        // This error was fixed and this test fails without that fix.
        let leaf_hashes: Vec<Digest> = random_elements(3);

        // let archival_mmr = ArchivalMmr::<Hasher>::new(leaf_hashes.clone());
        let archival_mmr = get_rustyleveldb_ammr_from_digests(leaf_hashes.clone());
        let (mut membership_proof, peaks): (MmrMembershipProof<H>, Vec<Digest>) =
            archival_mmr.prove_membership(0);

        // Verify that the accumulated hash in the verifier is compared against the **correct** hash,
        // not just **any** hash in the peaks list.
        assert!(membership_proof.verify(&peaks, leaf_hashes[0], 3,).0);
        membership_proof.leaf_index = 2;
        assert!(!membership_proof.verify(&peaks, leaf_hashes[0], 3,).0);
        membership_proof.leaf_index = 0;

        // verify the same behavior in the accumulator MMR
        let accumulator_mmr = MmrAccumulator::<H>::new(leaf_hashes.clone());
        assert!(
            membership_proof
                .verify(
                    &accumulator_mmr.get_peaks(),
                    leaf_hashes[0],
                    accumulator_mmr.count_leaves()
                )
                .0
        );
        membership_proof.leaf_index = 2;
        assert!(
            !membership_proof
                .verify(
                    &accumulator_mmr.get_peaks(),
                    leaf_hashes[0],
                    accumulator_mmr.count_leaves()
                )
                .0
        );
    }

    #[test]
    fn mutate_leaf_archival_test() {
        type H = Tip5;

        // Create ArchivalMmr

        let leaf_count = 3;
        let leaf_hashes: Vec<Digest> = random_elements(leaf_count);
        let mut archival_mmr = get_rustyleveldb_ammr_from_digests(leaf_hashes.clone());

        let leaf_index: usize = 2;
        let (mp1, old_peaks): (MmrMembershipProof<H>, Vec<Digest>) =
            archival_mmr.prove_membership(leaf_index as u64);

        // Verify single leaf

        let (mp1_verifies, _acc_hash_1) =
            mp1.verify(&old_peaks, leaf_hashes[leaf_index], leaf_count as u64);
        assert!(mp1_verifies);

        // Create copy of ArchivalMmr, recreate membership proof

        let mut other_archival_mmr: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(leaf_hashes.clone());

        let (mp2, _acc_hash_2) = other_archival_mmr.prove_membership(leaf_index as u64);

        // Mutate leaf + mutate leaf raw, assert that they're equivalent

        let mutated_leaf = H::hash(&BFieldElement::new(10000));
        other_archival_mmr.mutate_leaf(&mp2, mutated_leaf);

        let new_peaks_one = other_archival_mmr.get_peaks();
        archival_mmr.mutate_leaf_raw(leaf_index as u64, mutated_leaf);

        let new_peaks_two = archival_mmr.get_peaks();
        assert_eq!(
            new_peaks_two, new_peaks_one,
            "peaks for two update leaf method calls must agree"
        );

        // Verify that peaks have changed as expected

        let expected_num_peaks = 2;
        assert_ne!(old_peaks[1], new_peaks_two[1]);
        assert_eq!(old_peaks[0], new_peaks_two[0]);
        assert_eq!(expected_num_peaks, new_peaks_two.len());
        assert_eq!(expected_num_peaks, old_peaks.len());

        let (mp2_verifies_non_mutated_leaf, _acc_hash_3) =
            mp2.verify(&new_peaks_two, leaf_hashes[leaf_index], leaf_count as u64);
        assert!(!mp2_verifies_non_mutated_leaf);

        let (mp2_verifies_mutated_leaf, _acc_hash_4) =
            mp2.verify(&new_peaks_two, mutated_leaf, leaf_count as u64);
        assert!(mp2_verifies_mutated_leaf);

        // Create a new archival MMR with the same leaf hashes as in the
        // modified MMR, and verify that the two MMRs are equivalent

        let archival_mmr_new: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(leaf_hashes);
        assert_eq!(archival_mmr.digests.len(), archival_mmr_new.digests.len());

        for i in 0..leaf_count {
            assert_eq!(
                archival_mmr.digests.get(i as u64),
                archival_mmr_new.digests.get(i as u64)
            );
        }
    }

    fn bag_peaks_gen<H: AlgebraicHasher>() {
        // Verify that archival and accumulator MMR produce the same root
        let leaf_hashes_blake3: Vec<Digest> = random_elements(3);
        let archival_mmr_small: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(leaf_hashes_blake3.clone());
        let accumulator_mmr_small = MmrAccumulator::<H>::new(leaf_hashes_blake3);
        assert_eq!(
            archival_mmr_small.bag_peaks(),
            accumulator_mmr_small.bag_peaks()
        );
        assert_eq!(
            archival_mmr_small.bag_peaks(),
            bag_peaks::<H>(&accumulator_mmr_small.get_peaks())
        );
        assert!(!accumulator_mmr_small
            .get_peaks()
            .iter()
            .any(|peak| *peak == accumulator_mmr_small.bag_peaks()));
    }

    #[test]
    fn bag_peaks_blake3_test() {
        bag_peaks_gen::<blake3::Hasher>();
        bag_peaks_gen::<Tip5>();
    }

    #[test]
    fn accumulator_mmr_mutate_leaf_test() {
        type H = blake3::Hasher;

        // Verify that upating leafs in archival and in accumulator MMR results in the same peaks
        // and verify that updating all leafs in an MMR results in the expected MMR
        for size in 1..150 {
            let new_leaf: Digest = random();
            let leaf_hashes_blake3: Vec<Digest> = random_elements(size);

            let mut acc = MmrAccumulator::<H>::new(leaf_hashes_blake3.clone());
            let mut archival: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
                get_rustyleveldb_ammr_from_digests(leaf_hashes_blake3.clone());
            let archival_end_state: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
                get_rustyleveldb_ammr_from_digests(vec![new_leaf; size]);
            for i in 0..size {
                let i = i as u64;
                let (mp, _archival_peaks) = archival.prove_membership(i);
                assert_eq!(i, mp.leaf_index);
                acc.mutate_leaf(&mp, new_leaf);
                archival.mutate_leaf_raw(i, new_leaf);
                let new_archival_peaks = archival.get_peaks();
                assert_eq!(new_archival_peaks, acc.get_peaks());
            }

            assert_eq!(archival_end_state.get_peaks(), acc.get_peaks());
        }
    }

    #[test]
    fn mmr_prove_verify_leaf_mutation_test() {
        type H = blake3::Hasher;

        for size in 1..150 {
            let new_leaf: Digest = random();
            let bad_leaf: Digest = random();
            let leaf_hashes_blake3: Vec<Digest> = random_elements(size);
            let mut acc = MmrAccumulator::<H>::new(leaf_hashes_blake3.clone());
            let mut archival: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
                get_rustyleveldb_ammr_from_digests(leaf_hashes_blake3.clone());
            let archival_end_state: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
                get_rustyleveldb_ammr_from_digests(vec![new_leaf; size]);
            for i in 0..size {
                let i = i as u64;
                let (mp, peaks_before_update) = archival.prove_membership(i);
                assert_eq!(archival.get_peaks(), peaks_before_update);

                // Verify the update operation using the batch verifier
                archival.mutate_leaf_raw(i, new_leaf);
                assert!(
                    acc.verify_batch_update(&archival.get_peaks(), &[], &[(new_leaf, mp.clone())]),
                    "Valid batch update parameters must succeed"
                );
                assert!(
                    !acc.verify_batch_update(&archival.get_peaks(), &[], &[(bad_leaf, mp.clone())]),
                    "Inalid batch update parameters must fail"
                );

                acc.mutate_leaf(&mp, new_leaf);
                let new_archival_peaks = archival.get_peaks();
                assert_eq!(new_archival_peaks, acc.get_peaks());
                assert_eq!(size as u64, archival.count_leaves());
                assert_eq!(size as u64, acc.count_leaves());
            }
            assert_eq!(archival_end_state.get_peaks(), acc.get_peaks());
        }
    }

    #[test]
    fn mmr_append_test() {
        type H = blake3::Hasher;

        // Verify that building an MMR iteratively or in *one* function call results in the same MMR
        for size in 1..260 {
            let leaf_hashes_blake3: Vec<Digest> = random_elements(size);
            let mut archival_iterative: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
                get_rustyleveldb_ammr_from_digests(vec![]);
            let archival_batch: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
                get_rustyleveldb_ammr_from_digests(leaf_hashes_blake3.clone());
            let mut accumulator_iterative = MmrAccumulator::<H>::new(vec![]);
            let accumulator_batch = MmrAccumulator::<H>::new(leaf_hashes_blake3.clone());
            for (leaf_index, leaf_hash) in leaf_hashes_blake3.clone().into_iter().enumerate() {
                let archival_membership_proof: MmrMembershipProof<H> =
                    archival_iterative.append(leaf_hash);
                let accumulator_membership_proof = accumulator_iterative.append(leaf_hash);

                // Verify membership proofs returned from the append operation
                assert_eq!(
                    accumulator_membership_proof, archival_membership_proof,
                    "membership proofs from append operation must agree"
                );
                assert!(
                    archival_membership_proof
                        .verify(
                            &archival_iterative.get_peaks(),
                            leaf_hash,
                            archival_iterative.count_leaves()
                        )
                        .0
                );

                // Verify that membership proofs are the same as generating them from an archival MMR
                let archival_membership_proof_direct =
                    archival_iterative.prove_membership(leaf_index as u64).0;
                assert_eq!(archival_membership_proof_direct, archival_membership_proof);
            }

            // Verify that the MMRs built iteratively from `append` and in *one* batch are the same
            assert_eq!(
                accumulator_batch.get_peaks(),
                accumulator_iterative.get_peaks()
            );
            assert_eq!(
                accumulator_batch.count_leaves(),
                accumulator_iterative.count_leaves()
            );
            assert_eq!(size as u64, accumulator_iterative.count_leaves());
            assert_eq!(
                archival_iterative.get_peaks(),
                accumulator_iterative.get_peaks()
            );

            // Run a batch-append verification on the entire mutation of the MMR and verify that it succeeds
            let empty_accumulator = MmrAccumulator::<H>::new(vec![]);
            assert!(empty_accumulator.verify_batch_update(
                &archival_batch.get_peaks(),
                &leaf_hashes_blake3,
                &[],
            ));
        }
    }

    #[test]
    fn one_input_mmr_test() {
        type H = Tip5;

        let input_hash = H::hash(&BFieldElement::new(14));
        let new_input_hash = H::hash(&BFieldElement::new(201));
        let mut mmr: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(vec![input_hash]);
        let original_mmr: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(vec![input_hash]);
        let mmr_after_append: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(vec![input_hash, new_input_hash]);
        assert_eq!(1, mmr.count_leaves());
        assert_eq!(1, mmr.count_nodes());

        let original_peaks_and_heights: Vec<(Digest, u32)> = mmr.get_peaks_with_heights();
        assert_eq!(1, original_peaks_and_heights.len());
        assert_eq!(0, original_peaks_and_heights[0].1);

        {
            let leaf_index = 0;
            let (membership_proof, peaks) = mmr.prove_membership(leaf_index);
            let valid_res = membership_proof.verify(&peaks, input_hash, 1);
            assert!(valid_res.0);
            assert!(valid_res.1.is_some());
        }

        mmr.append(new_input_hash);
        assert_eq!(2, mmr.count_leaves());
        assert_eq!(3, mmr.count_nodes());

        let new_peaks_and_heights = mmr.get_peaks_with_heights();
        assert_eq!(1, new_peaks_and_heights.len());
        assert_eq!(1, new_peaks_and_heights[0].1);

        let new_peaks: Vec<Digest> = new_peaks_and_heights.iter().map(|x| x.0).collect();
        assert!(
            original_mmr.verify_batch_update(&new_peaks, &[new_input_hash], &[]),
            "verify batch update must succeed for a single append"
        );

        // let mmr_after_append = mmr.clone();
        let new_leaf: Digest = H::hash(&BFieldElement::new(987223));

        // When verifying the batch update with two consequtive leaf mutations, we must get the
        // membership proofs prior to all mutations. This is because the `verify_batch_update` method
        // updates the membership proofs internally to account for the mutations.
        let leaf_mutations: Vec<(Digest, MmrMembershipProof<H>)> = (0..2)
            .map(|i| (new_leaf, mmr_after_append.prove_membership(i).0))
            .collect();
        for &leaf_index in &[0u64, 1] {
            let mp = mmr.prove_membership(leaf_index).0;
            mmr.mutate_leaf(&mp, new_leaf);
            assert_eq!(
                new_leaf,
                mmr.get_leaf(leaf_index),
                "fetched leaf must match what we put in"
            );
        }

        assert!(
            mmr_after_append.verify_batch_update(&mmr.get_peaks(), &[], &leaf_mutations),
            "The batch update of two leaf mutations must verify"
        );
    }

    #[test]
    fn two_input_mmr_test() {
        type H = Tip5;

        let num_leaves: u64 = 3;
        let input_digests: Vec<Digest> = random_elements(num_leaves as usize);

        let mut mmr: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(input_digests.clone());
        assert_eq!(num_leaves, mmr.count_leaves());
        assert_eq!(1 + num_leaves, mmr.count_nodes());

        let original_peaks_and_heights: Vec<(Digest, u32)> = mmr.get_peaks_with_heights();
        let expected_peaks = 2;
        assert_eq!(expected_peaks, original_peaks_and_heights.len());

        {
            let leaf_index = 0;
            let input_digest = input_digests[leaf_index];
            let (mut membership_proof, peaks) = mmr.prove_membership(leaf_index as u64);

            let (mp_verifies_1, acc_hash_1) =
                membership_proof.verify(&peaks, input_digest, num_leaves);
            assert!(mp_verifies_1);
            assert!(acc_hash_1.is_some());

            // Negative test for verify membership
            membership_proof.leaf_index += 1;

            let (mp_verifies_2, acc_hash_2) =
                membership_proof.verify(&peaks, input_digest, num_leaves);
            assert!(!mp_verifies_2);
            assert!(acc_hash_2.is_none());
        }

        let new_leaf_hash: Digest = H::hash(&BFieldElement::new(201));
        mmr.append(new_leaf_hash);

        let expected_num_leaves = 1 + num_leaves;
        assert_eq!(expected_num_leaves, mmr.count_leaves());

        let expected_node_count = 3 + expected_num_leaves;
        assert_eq!(expected_node_count, mmr.count_nodes());

        for leaf_index in 0..num_leaves {
            let new_leaf: Digest = H::hash(&BFieldElement::new(987223));
            let (mp, _acc_hash) = mmr.prove_membership(leaf_index);
            mmr.mutate_leaf(&mp, new_leaf);
            assert_eq!(new_leaf, mmr.get_leaf(leaf_index));
        }
    }

    #[test]
    fn variable_size_tip5_mmr_test() {
        type H = Tip5;

        let leaf_counts: Vec<u64> = (1..34).collect();
        let node_counts: Vec<u64> = vec![
            1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 26, 31, 32, 34, 35, 38, 39, 41, 42,
            46, 47, 49, 50, 53, 54, 56, 57, 63, 64,
        ];
        let peak_counts: Vec<u64> = vec![
            1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4,
            4, 5, 1, 2,
        ];

        for (leaf_count, node_count, peak_count) in izip!(leaf_counts, node_counts, peak_counts) {
            let input_hashes: Vec<Digest> = random_elements(leaf_count as usize);
            let mut mmr: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
                get_rustyleveldb_ammr_from_digests(input_hashes.clone());

            assert_eq!(leaf_count, mmr.count_leaves());
            assert_eq!(node_count, mmr.count_nodes());

            let original_peaks_and_heights = mmr.get_peaks_with_heights();
            let peak_heights_1: Vec<u32> = original_peaks_and_heights.iter().map(|x| x.1).collect();

            let (peak_heights_2, _) = get_peak_heights_and_peak_node_indices(leaf_count);
            assert_eq!(peak_heights_1, peak_heights_2);

            let actual_peak_count = original_peaks_and_heights.len() as u64;
            assert_eq!(peak_count, actual_peak_count);

            // Verify that MMR root from odd number of digests and MMR bagged peaks agree
            let mmra_root = mmr.bag_peaks();
            let mt_root =
                merkle_tree_test::root_from_arbitrary_number_of_digests::<H>(&input_hashes);

            assert_eq!(
                mmra_root, mt_root,
                "MMRA bagged peaks and MT root must agree"
            );

            // Get an authentication path for **all** values in MMR,
            // verify that it is valid
            for index in 0..leaf_count {
                let (membership_proof, peaks) = mmr.prove_membership(index);
                let valid_res =
                    membership_proof.verify(&peaks, input_hashes[index as usize], leaf_count);

                assert!(valid_res.0);
                assert!(valid_res.1.is_some());
            }

            // // Make a new MMR where we append with a value and run the verify_append
            let new_leaf_hash = H::hash(&BFieldElement::new(201));
            let orignal_peaks = mmr.get_peaks();
            let mp = mmr.append(new_leaf_hash);
            assert!(
                mp.verify(&mmr.get_peaks(), new_leaf_hash, leaf_count + 1).0,
                "Returned membership proof from append must verify"
            );
            assert_ne!(
                orignal_peaks,
                mmr.get_peaks(),
                "peaks must change when appending"
            );
        }
    }

    #[test]
    fn remove_last_leaf_test() {
        type H = blake3::Hasher;

        let input_digests: Vec<Digest> = random_elements(12);
        let mut mmr: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(input_digests.clone());
        assert_eq!(22, mmr.count_nodes());
        assert_eq!(Some(input_digests[11]), mmr.remove_last_leaf());
        assert_eq!(19, mmr.count_nodes());
        assert_eq!(Some(input_digests[10]), mmr.remove_last_leaf());
        assert_eq!(18, mmr.count_nodes());
        assert_eq!(Some(input_digests[9]), mmr.remove_last_leaf());
        assert_eq!(16, mmr.count_nodes());
        assert_eq!(Some(input_digests[8]), mmr.remove_last_leaf());
        assert_eq!(15, mmr.count_nodes());
        assert_eq!(Some(input_digests[7]), mmr.remove_last_leaf());
        assert_eq!(11, mmr.count_nodes());
        assert_eq!(Some(input_digests[6]), mmr.remove_last_leaf());
        assert_eq!(10, mmr.count_nodes());
        assert_eq!(Some(input_digests[5]), mmr.remove_last_leaf());
        assert_eq!(8, mmr.count_nodes());
        assert_eq!(Some(input_digests[4]), mmr.remove_last_leaf());
        assert_eq!(7, mmr.count_nodes());
        assert_eq!(Some(input_digests[3]), mmr.remove_last_leaf());
        assert_eq!(4, mmr.count_nodes());
        assert_eq!(Some(input_digests[2]), mmr.remove_last_leaf());
        assert_eq!(3, mmr.count_nodes());
        assert_eq!(Some(input_digests[1]), mmr.remove_last_leaf());
        assert_eq!(1, mmr.count_nodes());
        assert_eq!(Some(input_digests[0]), mmr.remove_last_leaf());
        assert_eq!(0, mmr.count_nodes());
        assert!(mmr.is_empty());
        assert!(mmr.remove_last_leaf().is_none());
    }

    #[test]
    fn remove_last_leaf_pbt() {
        type H = blake3::Hasher;

        let small_size: usize = 100;
        let big_size: usize = 350;
        let input_digests_big: Vec<Digest> = random_elements(big_size);
        let input_digests_small: Vec<Digest> = input_digests_big[0..small_size].to_vec();

        let mut mmr_small: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(input_digests_small);
        let mut mmr_big: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
            get_rustyleveldb_ammr_from_digests(input_digests_big);

        for _ in 0..(big_size - small_size) {
            mmr_big.remove_last_leaf();
        }

        assert_eq!(mmr_big.get_peaks(), mmr_small.get_peaks());
        assert_eq!(mmr_big.bag_peaks(), mmr_small.bag_peaks());
        assert_eq!(mmr_big.count_leaves(), mmr_small.count_leaves());
        assert_eq!(mmr_big.count_nodes(), mmr_small.count_nodes());
    }

    #[test]
    fn variable_size_blake3_mmr_test() {
        type H = blake3::Hasher;

        let node_counts: Vec<u64> = vec![
            1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 26, 31, 32, 34, 35, 38, 39, 41, 42,
            46, 47, 49, 50, 53, 54, 56, 57, 63, 64,
        ];
        let peak_counts: Vec<u64> = vec![
            1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4,
            4, 5, 1, 2,
        ];
        let leaf_counts: Vec<usize> = (1..34).collect();
        for (leaf_count, node_count, peak_count) in izip!(leaf_counts, node_counts, peak_counts) {
            let size = leaf_count as u64;
            let input_digests: Vec<Digest> = random_elements(leaf_count);
            let mut mmr: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
                get_rustyleveldb_ammr_from_digests(input_digests.clone());
            let mmr_original: ArchivalMmr<H, RustyLevelDbVec<Digest>> =
                get_rustyleveldb_ammr_from_digests(input_digests.clone());
            assert_eq!(size, mmr.count_leaves());
            assert_eq!(node_count, mmr.count_nodes());
            let original_peaks_and_heights: Vec<(Digest, u32)> = mmr.get_peaks_with_heights();
            let peak_heights_1: Vec<u32> = original_peaks_and_heights.iter().map(|x| x.1).collect();
            let (peak_heights_2, _) = get_peak_heights_and_peak_node_indices(size);
            assert_eq!(peak_heights_1, peak_heights_2);
            assert_eq!(peak_count, original_peaks_and_heights.len() as u64);

            // Verify that MMR root from odd number of digests and MMR bagged peaks agree
            let mmra_root = mmr.bag_peaks();
            let mt_root =
                merkle_tree_test::root_from_arbitrary_number_of_digests::<H>(&input_digests);
            assert_eq!(
                mmra_root, mt_root,
                "MMRA bagged peaks and MT root must agree"
            );

            // Get an authentication path for **all** values in MMR,
            // verify that it is valid
            for leaf_index in 0..size {
                let (mut membership_proof, peaks) = mmr.prove_membership(leaf_index);
                let valid_res =
                    membership_proof.verify(&peaks, input_digests[leaf_index as usize], size);
                assert!(valid_res.0);
                assert!(valid_res.1.is_some());

                let new_leaf: Digest = random();

                // The below verify_modify tests should only fail if `wrong_leaf_index` is
                // different than `leaf_index`.
                let wrong_leaf_index = (leaf_index + 1) % mmr.count_leaves();
                membership_proof.leaf_index = wrong_leaf_index;
                assert!(
                    wrong_leaf_index == leaf_index
                        || !membership_proof.verify(&peaks, new_leaf, size).0
                );
                membership_proof.leaf_index = leaf_index;

                // Modify an element in the MMR and run prove/verify for membership
                let old_leaf = input_digests[leaf_index as usize];
                mmr.mutate_leaf_raw(leaf_index, new_leaf);

                let (new_mp, new_peaks) = mmr.prove_membership(leaf_index);
                assert!(new_mp.verify(&new_peaks, new_leaf, size).0);
                assert!(!new_mp.verify(&new_peaks, old_leaf, size).0);

                // Return the element to its former value and run prove/verify for membership
                mmr.mutate_leaf_raw(leaf_index, old_leaf);
                let (old_mp, old_peaks) = mmr.prove_membership(leaf_index);
                assert!(!old_mp.verify(&old_peaks, new_leaf, size).0);
                assert!(old_mp.verify(&old_peaks, old_leaf, size).0);
            }

            // Make a new MMR where we append with a value and run the verify_append
            let new_leaf_hash: Digest = random();
            mmr.append(new_leaf_hash);
            assert!(mmr_original.verify_batch_update(&mmr.get_peaks(), &[new_leaf_hash], &[]));
        }
    }

    #[test]
    fn rust_leveldb_persist_test() {
        type H = blake3::Hasher;

        let db = DB::open_new_test_database(true, None, None, None).unwrap();
        let db = Arc::new(db);
        let persistent_vec_0 = RustyLevelDbVec::new(db.clone(), 0, "archival MMR for unit tests");
        let mut ammr0: ArchivalMmr<H, RustyLevelDbVec<Digest>> = ArchivalMmr::new(persistent_vec_0);
        let persistent_vec_1 = RustyLevelDbVec::new(db.clone(), 1, "archival MMR for unit tests");
        let mut ammr1: ArchivalMmr<H, RustyLevelDbVec<Digest>> = ArchivalMmr::new(persistent_vec_1);

        let digest0: Digest = random();
        ammr0.append(digest0);

        let digest1: Digest = random();
        ammr1.append(digest1);
        // Verify that DB is still empty
        let mut db_iter = db.iter(&ReadOptions::new());
        assert!(db_iter.next().is_none());

        let mut write_batch = WriteBatch::new();
        ammr0.persist(&mut write_batch);

        // Verify that DB is still empty, as the write batch hasn't been applied yet
        let mut db_iter2 = db.iter(&ReadOptions::new());
        assert!(db_iter2.next().is_none());

        ammr1.persist(&mut write_batch);

        // Verify that DB is still empty, as the write batch hasn't been applied yet
        let mut db_iter3 = db.iter(&ReadOptions::new());
        assert!(db_iter3.next().is_none());

        db.write_auto(&write_batch).unwrap();

        // Verify that DB is not empty
        let mut db_iter4 = db.iter(&ReadOptions::new());
        assert!(db_iter4.next().is_some());

        assert_eq!(digest0, ammr0.get_leaf(0));
        assert_eq!(digest1, ammr1.get_leaf(0));
    }

    #[test]
    fn rust_leveldb_persist_storage_schema_test() {
        type H = blake3::Hasher;

        let db = DB::open_new_test_database(true, None, None, None).unwrap();
        let mut storage = SimpleRustyStorage::new(db);
        storage.restore_or_new();
        let ammr0 = storage.schema.new_vec::<Digest>("ammr-nodes-digests-0");
        let mut ammr0: ArchivalMmr<H, _> = ArchivalMmr::new(ammr0);
        let ammr1 = storage.schema.new_vec::<Digest>("ammr-nodes-digests-1");
        let mut ammr1: ArchivalMmr<H, _> = ArchivalMmr::new(ammr1);

        let digest0: Digest = random();
        ammr0.append(digest0);

        let digest1: Digest = random();
        ammr1.append(digest1);
        assert_eq!(digest0, ammr0.get_leaf(0));
        assert_eq!(digest1, ammr1.get_leaf(0));
        storage.persist();

        assert_eq!(digest0, ammr0.get_leaf(0));
        assert_eq!(digest1, ammr1.get_leaf(0));
    }
}