1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
use std::{
    iter::repeat_with,
    ops::{Bound, RangeBounds},
};

/// Base trait for implementing a PRNG. Only one method must be
/// implemented: [`TurboCore::fill_bytes`], which provides the basis
/// for any PRNG, to fill a buffer of bytes with random data.
///
/// This trait is object-safe.
///
/// # General Notes
///
/// When implementing on top of [`TurboCore`], the following considerations
/// should be made:
///
/// * [`Default`] - should be implemented, but defaults should be
///   non-deterministic. It should initialise with a randomised seed as
///   a default, with the intent being quick and simple but random
///   number generation.
/// * [`std::fmt::Debug`] - should be implemented, but with care so to not leak
///   the internal state of the PRNG.
/// * [`PartialEq`] - should be implemented along with [`Eq`], so that
///   easy comparisons can be made with PRNGs to see if they are in the
///   same or different internal state.
/// * [`Clone`] - should be implemented, but with deterministically derived
///   new internal states for the cloned instances. The cloned instance
///   should not equal the original, but given a set seed on the original,
///   the cloned instance should derive a new state in a deterministic fashion.
/// * [`Copy`] - Do **not** implement [`Copy`], as it makes it too implicit
///   when handling references and passing around the instance. When a
///   copy is made, this modifies the state of the original in
///   producing the new state of the copied instance, which is not
///   something you want to happen implicitly.
pub trait TurboCore {
    /// Fills a mutable buffer with random bytes.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rand = Rng::with_seed(Default::default());
    ///
    /// let mut bytes = [0u8; 10];
    ///
    /// rand.fill_bytes(&mut bytes);
    ///
    /// assert_ne!(&bytes, &[0u8; 10], "output should not match a zeroed array");
    /// ```
    fn fill_bytes(&self, buffer: &mut [u8]);
}

/// This trait provides the means to easily generate all integer types, provided
/// the main method underpinning this is implemented: [`GenCore::gen`].
/// Once implemented, the rest of the trait provides default
/// implementations for generating all integer types, though it is not
/// recommended to override these.
///
/// The underlying implementation of [`GenCore::gen`] does not have to rely on
/// [`TurboCore::fill_bytes`] if the PRNG implementation provides a means to
/// output directly an array of const size.
pub trait GenCore: TurboCore {
    /// Returns an array of constant `SIZE` containing random `u8` values.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rand = Rng::with_seed(Default::default());
    ///
    /// let bytes = rand.gen::<10>();
    ///
    /// assert_ne!(&bytes, &[0u8; 10], "output should not match a zeroed array");
    /// ```
    fn gen<const SIZE: usize>(&self) -> [u8; SIZE];

    gen_int_const!(gen_u128, u128, "Returns a random `u128` value.");
    gen_int_const!(gen_i128, i128, "Returns a random `i128` value.");
    gen_int_const!(gen_u64, u64, "Returns a random `u64` value.");
    gen_int_const!(gen_i64, i64, "Returns a random `i64` value.");
    gen_int_const!(gen_u32, u32, "Returns a random `u32` value.");
    gen_int_const!(gen_i32, i32, "Returns a random `i32` value.");
    gen_int_const!(gen_u16, u16, "Returns a random `u16` value.");
    gen_int_const!(gen_i16, i16, "Returns a random `i16` value.");
    gen_int_const!(gen_u8, u8, "Returns a random `u8` value.");
    gen_int_const!(gen_i8, i8, "Returns a random `i8` value.");
    gen_int_const!(gen_usize, usize, "Returns a random `usize` value.");
    gen_int_const!(gen_isize, isize, "Returns a random `isize` value.");
}

/// Trait for implementing Seedable PRNGs, requiring that the PRNG
/// implements [`TurboCore`] as a baseline. Seeds must be `Sized` in
/// order to be used as the internal state of a PRNG.
pub trait SeededCore: TurboCore {
    /// Associated type for accepting valid Seed values. Must be `Sized`.
    type Seed: Sized;

    /// Creates a new [`SeededCore`] with a specific seed value.
    fn with_seed(seed: Self::Seed) -> Self;

    /// Reseeds the [`SeededCore`] with a new seed/state.
    fn reseed(&self, seed: Self::Seed);
}

/// A marker trait to be applied to anything that implements [`TurboCore`]
/// in order to indicate that a PRNG source is cryptographically secure, so
/// being a CSPRNG.
///
/// This trait is provided as guidance only, and it is for the implementor to
/// ensure that their PRNG source qualifies as cryptographically secure. Must
/// be manually applied and is not an auto-trait.
pub trait SecureCore: TurboCore {}

/// Extension trait for automatically implementing all [`TurboRand`] methods,
/// as long as the struct implements [`TurboCore`] & [`GenCore`]. All methods
/// are provided as default implementations that build on top of [`TurboCore`]
/// and [`GenCore`], and thus are not recommended to be overridden, lest you
/// potentially change the expected outcome of the methods.
pub trait TurboRand: TurboCore + GenCore {
    /// Returns a random `u128` within a given range bound.
    ///
    /// # Panics
    ///
    /// Panics if the range is empty or invalid.
    #[inline]
    fn u128(&self, bounds: impl RangeBounds<u128>) -> u128 {
        let lower = match bounds.start_bound() {
            Bound::Included(lower) => *lower,
            Bound::Excluded(lower) => lower.saturating_add(1),
            Bound::Unbounded => u128::MIN,
        };
        let upper = match bounds.end_bound() {
            Bound::Included(upper) => *upper,
            Bound::Excluded(upper) => upper.saturating_sub(1),
            Bound::Unbounded => u128::MAX,
        };

        assert!(lower <= upper, "Range should not be zero sized or invalid");

        match (lower, upper) {
            (u128::MIN, u128::MAX) => self.gen_u128(),
            (_, _) => {
                let range = upper.wrapping_sub(lower).wrapping_add(1);
                let mut value = self.gen_u128();
                let mut high = multiply_high_u128(value, range);
                let mut low = value.wrapping_mul(range);
                if low < range {
                    let t = range.wrapping_neg() % range;
                    while low < t {
                        value = self.gen_u128();
                        high = multiply_high_u128(value, range);
                        low = value.wrapping_mul(range);
                    }
                }
                lower.wrapping_add(high)
            }
        }
    }

    /// Returns a random `i128` within a given range bound.
    ///
    /// # Panics
    ///
    /// Panics if the range is empty or invalid.
    #[inline]
    fn i128(&self, bounds: impl RangeBounds<i128>) -> i128 {
        let lower = match bounds.start_bound() {
            Bound::Included(lower) => *lower,
            Bound::Excluded(lower) => lower.saturating_add(1),
            Bound::Unbounded => i128::MIN,
        };
        let upper = match bounds.end_bound() {
            Bound::Included(upper) => *upper,
            Bound::Excluded(upper) => upper.saturating_sub(1),
            Bound::Unbounded => i128::MAX,
        };

        assert!(lower <= upper, "Range should not be zero sized or invalid");

        match (lower, upper) {
            (i128::MIN, i128::MAX) => self.gen_i128(),
            (_, _) => {
                let range = upper.wrapping_sub(lower).wrapping_add(1) as u128;
                let mut value = self.gen_u128();
                let mut high = multiply_high_u128(value, range);
                let mut low = value.wrapping_mul(range);
                if low < range {
                    let t = range.wrapping_neg() % range;
                    while low < t {
                        value = self.gen_u128();
                        high = multiply_high_u128(value, range);
                        low = value.wrapping_mul(range);
                    }
                }
                lower.wrapping_add(high as i128)
            }
        }
    }

    trait_range_int!(u64, u64, u128, gen_u64, "Returns a random `u64` value.");
    trait_range_int!(i64, u64, u128, gen_i64, "Returns a random `i64` value.");
    trait_range_int!(u32, u32, u64, gen_u32, "Returns a random `u32` value.");
    trait_range_int!(i32, u32, u64, gen_i32, "Returns a random `i32` value.");
    trait_range_int!(u16, u16, u32, gen_u16, "Returns a random `u16` value.");
    trait_range_int!(i16, u16, u32, gen_i16, "Returns a random `i16` value.");
    trait_range_int!(u8, u8, u16, gen_u8, "Returns a random `u8` value.");
    trait_range_int!(i8, u8, u16, gen_i8, "Returns a random `i8` value.");
    #[cfg(target_pointer_width = "16")]
    trait_range_int!(
        usize,
        u16,
        u32,
        gen_usize,
        "Returns a random `usize` within a given range bound."
    );
    #[cfg(target_pointer_width = "32")]
    trait_range_int!(
        usize,
        u32,
        u64,
        gen_usize,
        "Returns a random `usize` within a given range bound."
    );
    #[cfg(target_pointer_width = "64")]
    trait_range_int!(
        usize,
        u64,
        u128,
        gen_usize,
        "Returns a random `usize` within a given range bound."
    );
    #[cfg(target_pointer_width = "16")]
    trait_range_int!(
        isize,
        u16,
        u32,
        gen_isize,
        "Returns a random `isize` within a given range bound."
    );
    #[cfg(target_pointer_width = "32")]
    trait_range_int!(
        isize,
        u32,
        u64,
        gen_isize,
        "Returns a random `isize` within a given range bound."
    );
    #[cfg(target_pointer_width = "64")]
    trait_range_int!(
        isize,
        u64,
        u128,
        gen_isize,
        "Returns a random `isize` within a given range bound."
    );

    trait_float_gen!(
        f32,
        f32,
        u32,
        1.0,
        gen_u32,
        "Returns a random `f32` value between `0.0` and `1.0`."
    );
    trait_float_gen!(
        f32_normalized,
        f32,
        i32,
        2.0,
        gen_i32,
        "Returns a random `f32` value between `-1.0` and `1.0`."
    );
    trait_float_gen!(
        f64,
        f64,
        u64,
        1.0,
        gen_u64,
        "Returns a random `f32` value between `0.0` and `1.0`."
    );
    trait_float_gen!(
        f64_normalized,
        f64,
        i64,
        2.0,
        gen_i64,
        "Returns a random `f32` value between `-1.0` and `1.0`."
    );

    /// Returns a random boolean value.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng = Rng::with_seed(Default::default());
    ///
    /// assert_eq!(rng.bool(), true);
    /// ```
    #[inline]
    fn bool(&self) -> bool {
        self.gen_u8() % 2 == 0
    }

    /// Returns a boolean value based on a rate. `rate` represents
    /// the chance to return a `true` value, with `0.0` being no
    /// chance and `1.0` will always return true.
    ///
    /// # Panics
    ///
    /// Will panic if `rate` is *not* a value between 0.0 and 1.0.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng = Rng::with_seed(Default::default());
    ///
    /// assert_eq!(rng.chance(1.0), true);
    /// ```
    #[inline]
    fn chance(&self, rate: f64) -> bool {
        const SCALE: f64 = 2.0 * (1u64 << 63) as f64;

        assert!(
            (0.0..=1.0).contains(&rate),
            "rate value is not between 0.0 and 1.0, received {}",
            rate
        );

        let rate_int = (rate * SCALE) as u64;

        match rate_int {
            u64::MAX => true,
            0 => false,
            _ => self.gen_u64() < rate_int,
        }
    }

    /// Samples a random item from a slice of values.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng = Rng::with_seed(Default::default());
    ///
    /// let values = [1, 2, 3, 4, 5, 6];
    ///
    /// assert_eq!(rng.sample(&values), Some(&5));
    /// ```
    #[inline]
    fn sample<'a, T>(&self, list: &'a [T]) -> Option<&'a T> {
        match list.len() {
            0 => None,
            // SAFETY: Length already known to be 1, therefore index 0 will yield an item
            1 => unsafe { Some(list.get_unchecked(0)) },
            // SAFETY: Range is exclusive, so yielded random values will always be a valid index and within bounds
            _ => unsafe { Some(list.get_unchecked(self.usize(..list.len()))) },
        }
    }

    /// Samples a random `&mut` item from a slice of values.
    ///
    /// **NOTE**: Mutable references must be dropped before more can be
    /// sampled from the source slice. If a sampling tries to yield a mutable
    /// reference that already exists, the compiler will complain.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng = Rng::with_seed(Default::default());
    ///
    /// let mut values = [1, 2, 3, 4, 5, 6];
    ///
    /// let result1 = rng.sample_mut(&mut values);
    ///
    /// assert_eq!(result1, Some(&mut 5));
    ///
    /// let result2 = rng.sample_mut(&mut values);
    ///
    /// assert_eq!(result2, Some(&mut 3));
    /// ```
    #[inline]
    fn sample_mut<'a, T>(&self, list: &'a mut [T]) -> Option<&'a mut T> {
        match list.len() {
            0 => None,
            // SAFETY: Length already known to be 1, therefore index 0 will yield an item
            1 => unsafe { Some(list.get_unchecked_mut(0)) },
            // SAFETY: Range is exclusive, so yielded random values will always be a valid index and within bounds
            _ => unsafe { Some(list.get_unchecked_mut(self.usize(..list.len()))) },
        }
    }

    /// Samples multiple unique items from a slice of values.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng = Rng::with_seed(Default::default());
    ///
    /// let values = [1, 2, 3, 4, 5, 6];
    ///
    /// assert_eq!(rng.sample_multiple(&values, 2), vec![&6, &4]);
    /// ```
    #[inline]
    fn sample_multiple<'a, T>(&self, list: &'a [T], amount: usize) -> Vec<&'a T> {
        let draining = list.len().min(amount);

        let mut shuffled: Vec<&'a T> = list.iter().collect();

        self.shuffle(&mut shuffled);

        shuffled.drain(0..draining).collect()
    }

    /// Samples multiple unique items from a mutable slice of values.
    ///
    /// **NOTE**: Mutable references must be dropped before more can be
    /// sampled from the source slice. If a sampling tries to yield a mutable
    /// reference that already exists, the compiler will complain.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng = Rng::with_seed(Default::default());
    ///
    /// let mut values = [1, 2, 3, 4, 5, 6];
    ///
    /// assert_eq!(rng.sample_multiple_mut(&mut values, 2), vec![&mut 6, &mut 4]);
    /// ```
    #[inline]
    fn sample_multiple_mut<'a, T>(&self, list: &'a mut [T], amount: usize) -> Vec<&'a mut T> {
        let draining = list.len().min(amount);

        let mut shuffled: Vec<&'a mut T> = list.iter_mut().collect();

        self.shuffle(&mut shuffled);

        shuffled.drain(0..draining).collect()
    }

    /// [Stochastic Acceptance](https://arxiv.org/abs/1109.3627) implementation of Roulette Wheel
    /// weighted selection. Uses a closure to return a `rate` value for each randomly sampled item
    /// to decide whether to return it or not. The returned `f64` value must be between `0.0` and `1.0`.
    ///
    /// Returns `None` if given an empty list to sample from. For a list containing 1 item, it'll always
    /// return that item regardless.
    ///
    /// # Panics
    ///
    /// If the returned value of the `weight_sampler` closure is not between `0.0` and `1.0`.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng = Rng::with_seed(Default::default());
    ///
    /// let values = [1, 2, 3, 4, 5, 6];
    ///
    /// let total = f64::from(values.iter().sum::<i32>());
    ///
    /// assert_eq!(rng.weighted_sample(&values, |&item| item as f64 / total), Some(&4));
    /// ```
    #[inline]
    fn weighted_sample<'a, T, F>(&self, list: &'a [T], weight_sampler: F) -> Option<&'a T>
    where
        F: Fn(&'a T) -> f64,
    {
        // Check how many items are in the list
        match list.len() {
            // No values in list, therefore return None.
            0 => None,
            // Only a single value in list, therefore sampling will always yield that value.
            // SAFETY: Length already known to be 1, therefore index 0 will yield an item
            1 => unsafe { Some(list.get_unchecked(0)) },
            // Sample the list, flatten the `Option<&T>` and then check if it passes the
            // weighted chance. Keep repeating until `.find` yields a value.
            _ => repeat_with(|| self.sample(list))
                .flatten()
                .find(|&item| self.chance(weight_sampler(item))),
        }
    }

    /// [Stochastic Acceptance](https://arxiv.org/abs/1109.3627) implementation of Roulette Wheel
    /// weighted selection. Uses a closure to return a `rate` value for each randomly sampled item
    /// to decide whether to return it or not. The returned `f64` value must be between `0.0` and `1.0`.
    ///
    /// Returns `None` if given an empty list to sample from. For a list containing 1 item, it'll always
    /// return that item regardless.
    ///
    /// **NOTE**: Mutable references must be dropped before more can be
    /// sampled from the source slice. If a sampling tries to yield a mutable
    /// reference that already exists, the compiler will complain.
    ///
    /// # Panics
    ///
    /// If the returned value of the `weight_sampler` closure is not between `0.0` and `1.0`.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng = Rng::with_seed(Default::default());
    ///
    /// let mut values = [1, 2, 3, 4, 5, 6];
    ///
    /// let total = f64::from(values.iter().sum::<i32>());
    ///
    /// let result1 = rng.weighted_sample_mut(&mut values, |&item| item as f64 / total);
    ///
    /// assert_eq!(result1, Some(&mut 4));
    ///
    /// let result2 = rng.weighted_sample_mut(&mut values, |&item| item as f64 / total);
    ///
    /// assert_eq!(result2, Some(&mut 5));
    ///
    /// // We have to drop `result2` because the next sample will try to return the same
    /// // value again. And rust won't allow two mutable references to exist at the same
    /// // time
    /// drop(result2);
    ///
    /// let result3 = rng.weighted_sample_mut(&mut values, |&item| item as f64 / total);
    ///
    /// // Weighted sample in this example will favour larger numbers, so 5 gets picked
    /// // again.
    /// assert_eq!(result3, Some(&mut 5));
    /// ```
    #[inline]
    fn weighted_sample_mut<'a, T, F>(
        &'a self,
        list: &'a mut [T],
        weight_sampler: F,
    ) -> Option<&'a mut T>
    where
        F: Fn(&T) -> f64,
    {
        // Check how many items are in the list
        match list.len() {
            // No values in list, therefore return None.
            0 => None,
            // Only a single value in list, therefore sampling will always yield that value.
            // SAFETY: Length already known to be 1, therefore index 0 will yield an item
            1 => unsafe { Some(list.get_unchecked_mut(0)) },
            // Sample the list, flatten the `Option<&T>` and then check if it passes the
            // weighted chance. Keep repeating until `.find` yields a value.
            _ => repeat_with(|| self.usize(..list.len()))
                // SAFETY: The resolved index will always be within bounds, since the list here
                // is not zero length and has more than 1 element available.
                .find(|&index| self.chance(weight_sampler(unsafe { list.get_unchecked(index) })))
                // SAFETY: The resolved index will always be within bounds, since the list here
                // is not zero length and has more than 1 element available.
                .map(|index| unsafe { list.get_unchecked_mut(index) }),
        }
    }

    /// Shuffles a slice randomly in O(n) time.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng = Rng::with_seed(Default::default());
    ///
    /// let values = [1, 2, 3, 4, 5];
    /// let mut shuffled = values.clone();
    ///
    /// rng.shuffle(&mut shuffled);
    ///
    /// assert_ne!(&shuffled, &values);
    /// ```
    #[inline]
    fn shuffle<T>(&self, slice: &mut [T]) {
        (1..slice.len())
            .rev()
            .for_each(|index| slice.swap(index, self.usize(..=index)));
    }

    trait_rand_chars!(
        alphabetic,
        b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
        "Generates a random `char` in ranges a-z and A-Z."
    );
    trait_rand_chars!(
        alphanumeric,
        b"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
        "Generates a random `char` in ranges a-z, A-Z and 0-9."
    );
    trait_rand_chars!(
        lowercase,
        b"abcdefghijklmnopqrstuvwxyz",
        "Generates a random `char` in the range a-z."
    );
    trait_rand_chars!(
        uppercase,
        b"ABCDEFGHIJKLMNOPQRSTUVWXYZ",
        "Generates a random `char` in the range A-Z."
    );

    /// Generate a random digit in the given `radix`.
    ///
    /// Digits are represented by `char`s in ranges 0-9 and a-z.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rand = Rng::with_seed(Default::default());
    ///
    /// let digit = rand.digit(16);
    ///
    /// assert_eq!(&digit, &'2');
    /// ```
    /// # Panics
    ///
    /// Panics if the `radix` is zero or greater than 36.
    #[inline]
    fn digit(&self, radix: u8) -> char {
        match radix {
            0 => panic!("radix cannot be zero"),
            1..=36 => {
                let num = self.u8(..radix);

                if num < 10 {
                    (b'0' + num) as char
                } else {
                    (b'a' + num - 10) as char
                }
            }
            _ => panic!("radix cannot be greater than 36"),
        }
    }

    /// Generates a random `char` in the given range.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rand = Rng::with_seed(Default::default());
    ///
    /// let character = rand.char('a'..'Ç');
    ///
    /// assert_eq!(character, '»');
    /// ```
    /// # Panics
    ///
    /// Panics if the range is empty.
    #[inline]
    fn char(&self, bounds: impl RangeBounds<char>) -> char {
        const SURROGATE_START: u32 = 0xd800u32;
        const SURROGATE_LENGTH: u32 = 0x800u32;

        let lower = match bounds.start_bound() {
            Bound::Unbounded => 0u8 as char,
            Bound::Included(&x) => x,
            Bound::Excluded(&x) => {
                let scalar = if x as u32 == SURROGATE_START - 1 {
                    SURROGATE_START + SURROGATE_LENGTH
                } else {
                    x as u32 + 1
                };
                char::try_from(scalar)
                    .unwrap_or_else(|_| panic!("Invalid exclusive lower character bound"))
            }
        };

        let upper = match bounds.end_bound() {
            Bound::Unbounded => char::MAX,
            Bound::Included(&x) => x,
            Bound::Excluded(&x) => {
                let scalar = if x as u32 == SURROGATE_START + SURROGATE_LENGTH {
                    SURROGATE_START - 1
                } else {
                    (x as u32).wrapping_sub(1)
                };
                char::try_from(scalar)
                    .unwrap_or_else(|_| panic!("Invalid exclusive upper character bound"))
            }
        };

        assert!(upper >= lower, "Invalid character range");

        let lower_scalar = lower as u32;
        let upper_scalar = upper as u32;

        let gap = if lower_scalar < SURROGATE_START && upper_scalar >= SURROGATE_START {
            SURROGATE_LENGTH
        } else {
            0
        };

        let range = upper_scalar - lower_scalar - gap;
        let mut val = self.u32(0..=range) + lower_scalar;

        if val >= SURROGATE_START {
            val += gap;
        }

        val.try_into().unwrap()
    }
}

/// Trait for enabling creating new [`TurboCore`] instances from an original instance.
/// Similar to cloning, except forking modifies the state of the original instance in order
/// to provide a new, random state for the forked instance. This allows for creating many randomised
/// instances from a single seed in a deterministic manner.
pub trait ForkableCore: TurboCore {
    /// Forks a [`TurboCore`] instance by deterministically deriving a new instance based on the initial
    /// seed.
    ///
    /// # Example
    /// ```
    /// use turborand::prelude::*;
    ///
    /// let rng1 = Rng::with_seed(Default::default());
    /// let rng2 = Rng::with_seed(Default::default());
    ///
    /// // Use the RNGs once each.
    /// rng1.bool();
    /// rng2.bool();
    ///
    /// let forked1 = rng1.fork();
    /// let forked2 = rng2.fork();
    ///
    /// // Forked instances should not be equal to the originals
    /// assert_ne!(forked1, rng1);
    /// assert_ne!(forked2, rng2);
    /// // If they derived from the same initial seed, forked instances
    /// // should be equal to each other...
    /// assert_eq!(forked1, forked2);
    /// // ...and thus yield the same outputs.
    /// assert_eq!(forked1.u64(..), forked2.u64(..));
    /// ```
    fn fork(&self) -> Self;
}

impl<T: TurboCore + GenCore + ?Sized> TurboRand for T {}

impl<T: TurboCore + ?Sized> TurboCore for Box<T> {
    #[inline(always)]
    fn fill_bytes(&self, buffer: &mut [u8]) {
        (**self).fill_bytes(buffer);
    }
}

impl<T: GenCore + ?Sized> GenCore for Box<T> {
    #[inline(always)]
    fn gen<const SIZE: usize>(&self) -> [u8; SIZE] {
        (**self).gen()
    }
}

impl<'a, T: TurboCore + ?Sized> TurboCore for &'a T {
    #[inline(always)]
    fn fill_bytes(&self, buffer: &mut [u8]) {
        (**self).fill_bytes(buffer);
    }
}

impl<'a, T: GenCore + ?Sized> GenCore for &'a T {
    #[inline(always)]
    fn gen<const SIZE: usize>(&self) -> [u8; SIZE] {
        (**self).gen()
    }
}

impl<'a, T: TurboCore + ?Sized> TurboCore for &'a mut T {
    #[inline(always)]
    fn fill_bytes(&self, buffer: &mut [u8]) {
        (**self).fill_bytes(buffer);
    }
}

impl<'a, T: GenCore + ?Sized> GenCore for &'a mut T {
    #[inline(always)]
    fn gen<const SIZE: usize>(&self) -> [u8; SIZE] {
        (**self).gen()
    }
}

impl<T: TurboCore + SecureCore + ?Sized> SecureCore for Box<T> {}

/// Computes `(a * b) >> 128`. Adapted from: https://stackoverflow.com/a/28904636
#[inline]
fn multiply_high_u128(a: u128, b: u128) -> u128 {
    let a_low = a as u64 as u128;
    let a_high = (a >> 64) as u64 as u128;

    let b_low = b as u64 as u128;
    let b_high = (b >> 64) as u64 as u128;

    let carry = (a_low * b_low) >> 64;

    let a_high_x_b_low = a_high * b_low;
    let a_low_x_b_high = a_low * b_high;

    let carry = (a_high_x_b_low as u64 as u128 + a_low_x_b_high as u64 as u128 + carry) >> 64;

    a_high * b_high + (a_high_x_b_low >> 64) + (a_low_x_b_high >> 64) + carry
}

#[cfg(test)]
mod tests {
    use std::cell::Cell;

    use super::*;

    #[derive(Debug, Default)]
    struct TestRng(Cell<u8>);

    impl TestRng {
        fn new() -> Self {
            Self(Cell::new(0))
        }

        fn next(&self) -> u8 {
            let value = self.0.get();

            self.0.set(value.wrapping_add(1));

            value
        }
    }

    impl TurboCore for TestRng {
        fn fill_bytes(&self, buffer: &mut [u8]) {
            buffer.iter_mut().for_each(|slot| *slot = self.next());
        }
    }

    impl GenCore for TestRng {
        fn gen<const SIZE: usize>(&self) -> [u8; SIZE] {
            std::array::from_fn(|_| self.next())
        }
    }

    impl SeededCore for TestRng {
        type Seed = u8;

        fn with_seed(seed: Self::Seed) -> Self {
            Self(Cell::new(seed))
        }

        fn reseed(&self, seed: Self::Seed) {
            self.0.set(seed);
        }
    }

    #[test]
    fn auto_trait_application() {
        let rng = TestRng::new();

        fn use_rng<T: TurboRand>(source: &T) -> u8 {
            source.u8(..)
        }

        let value = use_rng(&rng);

        assert_eq!(value, 0);
    }

    #[test]
    fn seeded_methods() {
        let rng = TestRng::with_seed(5);

        fn test_seeded_methods<T: GenCore + SeededCore>(source: &T)
        where
            T: SeededCore<Seed = u8>,
        {
            let values = source.gen();

            assert_eq!(&values, &[5, 6, 7]);

            source.reseed(3);

            let values = source.gen();

            assert_eq!(&values, &[3, 4, 5]);
        }

        test_seeded_methods(&rng);
    }

    #[test]
    fn object_safe_core() {
        let rng = Box::new(TestRng::with_seed(1));

        fn test_dyn_rng(rng: Box<dyn TurboCore>) {
            let mut buffer = [0u8; 3];

            rng.fill_bytes(&mut buffer);

            assert_eq!(&buffer, &[1, 2, 3]);
        }

        test_dyn_rng(rng);
    }

    #[test]
    fn boxed_methods() {
        let rng = Box::new(TestRng::with_seed(1));

        assert_eq!(&rng.gen(), &[1, 2]);

        fn test_boxed_turborand<T: TurboRand>(boxed: T) {
            assert_eq!(boxed.u8(..), 3);
        }

        test_boxed_turborand(rng);
    }

    #[test]
    fn ref_methods() {
        let mut rng = TestRng::with_seed(1);

        fn test_ref_methods<T: GenCore>(reffed: T, expected: [u8; 3]) {
            assert_eq!(reffed.gen(), expected);
        }

        test_ref_methods(&rng, [1, 2, 3]);
        test_ref_methods(&mut rng, [4, 5, 6]);
    }
}