1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/// A trait that defines a mapping between an input type and an output type.
///
/// This trait is used to map specialization types to other wrapped or
/// associated specialization types. If generic types `T1` and `T2` are proven
/// to be equivalent, then types `<Mapper as TypeFn<T1>>::Output` and
/// `<Mapper as TypeFn<T2>>::Output` are also equivalent.
///
/// This trait can also be used to specialize
/// generics of the third-party library types that do not implement
/// [`LifetimeFree`].
///
/// [`LifetimeFree`]: crate::LifetimeFree
///
/// # Examples
///
/// Custom data encoders and decoders with customizable per-type encoding
/// and decoding errors and optimized byte array encoding and decoding.
/// Full example code is available at
/// [`examples/encode.rs`](https://github.com/zheland/try-specialize/blob/v0.1.2/examples/encode.rs).
/// ```rust
/// # use core::convert::Infallible;
/// # use core::{array, slice};
/// # use std::io::{self, Read, Write};
/// #
/// # use try_specialize::{Specialization, TypeFn};
/// #
/// # pub trait Encode {
/// # type EncodeError;
/// # fn encode_to<W>(&self, writer: &mut W) -> Result<(), Self::EncodeError>
/// # where
/// # W: ?Sized + Write;
/// # }
/// #
/// # pub trait Decode: Sized {
/// # type DecodeError;
/// # fn decode_from<R>(reader: &mut R) -> Result<Self, Self::DecodeError>
/// # where
/// # R: ?Sized + Read;
/// # }
/// #
/// # impl Encode for () {
/// # type EncodeError = Infallible;
/// #
/// # #[inline]
/// # fn encode_to<W>(&self, _writer: &mut W) -> Result<(), Self::EncodeError>
/// # where
/// # W: ?Sized + Write,
/// # {
/// # Ok(())
/// # }
/// # }
/// #
/// # impl Decode for () {
/// # type DecodeError = Infallible;
/// #
/// # #[inline]
/// # fn decode_from<R>(_reader: &mut R) -> Result<Self, Self::DecodeError>
/// # where
/// # R: ?Sized + Read,
/// # {
/// # Ok(())
/// # }
/// # }
/// #
/// # impl<T> Encode for Box<T>
/// # where
/// # T: Encode,
/// # {
/// # type EncodeError = T::EncodeError;
/// #
/// # #[inline]
/// # fn encode_to<W>(&self, writer: &mut W) -> Result<(), Self::EncodeError>
/// # where
/// # W: ?Sized + Write,
/// # {
/// # T::encode_to(self, writer)
/// # }
/// # }
/// #
/// # impl<T> Decode for Box<T>
/// # where
/// # T: Decode,
/// # {
/// # type DecodeError = T::DecodeError;
/// #
/// # #[inline]
/// # fn decode_from<R>(reader: &mut R) -> Result<Self, Self::DecodeError>
/// # where
/// # R: ?Sized + Read,
/// # {
/// # Ok(Self::new(T::decode_from(reader)?))
/// # }
/// # }
/// #
/// # impl Encode for u8 {
/// # type EncodeError = io::Error;
/// #
/// # #[inline]
/// # fn encode_to<W>(&self, writer: &mut W) -> Result<(), Self::EncodeError>
/// # where
/// # W: ?Sized + Write,
/// # {
/// # writer.write_all(&[*self])?;
/// # Ok(())
/// # }
/// # }
/// #
/// # impl Decode for u8 {
/// # type DecodeError = io::Error;
/// #
/// # #[inline]
/// # fn decode_from<R>(reader: &mut R) -> Result<Self, Self::DecodeError>
/// # where
/// # R: ?Sized + Read,
/// # {
/// # let mut byte: Self = 0;
/// # reader.read_exact(slice::from_mut(&mut byte))?;
/// # Ok(byte)
/// # }
/// # }
/// // ...
///
/// impl<T> Encode for [T]
/// where
/// T: Encode,
/// {
/// type EncodeError = T::EncodeError;
///
/// #[inline]
/// fn encode_to<W>(&self, writer: &mut W) -> Result<(), Self::EncodeError>
/// where
/// W: ?Sized + Write,
/// {
/// if let Some(spec) = Specialization::<[T], [u8]>::try_new() {
/// // Specialize self from `[T; N]` to `[u32; N]`
/// let bytes: &[u8] = spec.specialize_ref(self);
/// // Map type specialization to its associated error specialization.
/// let spec_err = spec.rev().map::<MapToEncodeError>();
/// writer
/// .write_all(bytes)
/// // Specialize error from `io::Error` to `Self::EncodeError`.
/// .map_err(|err| spec_err.specialize(err))?;
/// } else {
/// for item in self {
/// item.encode_to(writer)?;
/// }
/// }
/// Ok(())
/// }
/// }
///
/// // ...
/// # impl<T, const N: usize> Encode for [T; N]
/// # where
/// # T: Encode,
/// # {
/// # type EncodeError = T::EncodeError;
/// #
/// # #[inline]
/// # fn encode_to<W>(&self, writer: &mut W) -> Result<(), Self::EncodeError>
/// # where
/// # W: ?Sized + Write,
/// # {
/// # self.as_slice().encode_to(writer)
/// # }
/// # }
/// #
/// # impl<T, const N: usize> Decode for [T; N]
/// # where
/// # T: Decode + Default,
/// # {
/// # type DecodeError = T::DecodeError;
/// #
/// # #[inline]
/// # fn decode_from<R>(reader: &mut R) -> Result<Self, Self::DecodeError>
/// # where
/// # R: ?Sized + Read,
/// # {
/// # let spec = Specialization::<[T; N], [u8; N]>::try_new();
/// #
/// # if let Some(spec) = spec {
/// # let mut array = [0; N];
/// # reader
/// # .read_exact(&mut array)
/// # // Specialize `<[u8; N]>::Error` to `<[T; N]>::Error`
/// # .map_err(|err| spec.rev().map::<MapToDecodeError>().specialize(err))?;
/// # // Specialize `[u8; N]` to `[T; N]`
/// # let array = spec.rev().specialize(array);
/// # Ok(array)
/// # } else {
/// # // In real code it can be done without `Default` bound.
/// # // But then the code would be unnecessarily complex for the example.
/// # let mut array = array::from_fn(|_| T::default());
/// # for item in &mut array {
/// # *item = T::decode_from(reader)?;
/// # }
/// # Ok(array)
/// # }
/// # }
/// # }
/// #
/// # struct MapToEncodeError;
/// #
/// # impl<T> TypeFn<T> for MapToEncodeError
/// # where
/// # T: ?Sized + Encode,
/// # {
/// # type Output = T::EncodeError;
/// # }
/// #
/// # struct MapToDecodeError;
/// # impl<T> TypeFn<T> for MapToDecodeError
/// # where
/// # T: Decode,
/// # {
/// # type Output = T::DecodeError;
/// # }
/// #
/// # let mut array_buf = [0; 8];
/// # let mut buf = &mut array_buf[..];
/// # [1_u8, 2, 3].encode_to(&mut buf).unwrap();
/// # 4_u8.encode_to(&mut buf).unwrap();
/// # [(), (), (), ()].encode_to(&mut buf).unwrap();
/// # [5_u8, 6, 7, 8].map(Box::new).encode_to(&mut buf).unwrap();
/// # assert!(9_u8.encode_to(&mut buf).is_err());
/// # assert!([9_u8, 10].encode_to(&mut buf).is_err());
/// # ().encode_to(&mut buf).unwrap();
/// # [(), (), ()].encode_to(&mut buf).unwrap();
/// # assert!([9_u8, 10].map(Box::new).encode_to(&mut buf).is_err());
/// # assert_eq!(array_buf, [1, 2, 3, 4, 5, 6, 7, 8]);
/// #
/// # let buf = &mut array_buf.as_slice();
/// # assert_eq!(u8::decode_from(buf).unwrap(), 1);
/// # assert_eq!(<[u8; 4]>::decode_from(buf).unwrap(), [2, 3, 4, 5]);
/// # assert_eq!(<[(); 16]>::decode_from(buf).unwrap(), [(); 16]);
/// # assert_eq!(<[u8; 1]>::decode_from(buf).unwrap(), [6]);
/// # assert_eq!(
/// # <[Box<u8>; 2]>::decode_from(buf).unwrap(),
/// # [Box::new(7), Box::new(8)]
/// # );
/// # assert!(u8::decode_from(buf).is_err());
/// # assert!(<[u8; 1]>::decode_from(buf).is_err());
/// # assert_eq!(<[(); 2]>::decode_from(buf).unwrap(), [(); 2]);
/// # assert!(<[Box<u8>; 2]>::decode_from(buf).is_err());
/// ```
///
/// We can't use `reader.read_exact(&mut array)?;` in the example above because
/// its error variant is `io::Error` while the function error variant is
/// `T::Error`. But we can use the same specialization, but reversed and mapped:
/// - `[T; N] => [u8; N]`,
/// - with `.rev()`: `[u8; N] => [T; N]`,
/// - with `.map::<MapError>()`: `<[u8; N] as Decode>::Error => <[T; N] as
/// Decode>::Error`,
/// - and for the compiler `<[u8; N] as Decode>::Error` and `io::Error` are
/// equal types, so we can specialize the error as well: `io::Error => <[T; N]
/// as Decode>::Error`.
///
/// Truncated synthetic example with multiple generics specialization for a
/// third-party type:
/// ```rust
/// # #[cfg(feature = "std")] {
/// use try_specialize::{Specialization, TypeFn};
///
/// fn some_generic_fn<K, V>(value: hashbrown::HashMap<K, V>) -> &'static str {
/// struct MapIntoHashMap;
/// impl<K, V> TypeFn<(K, V)> for MapIntoHashMap {
/// type Output = hashbrown::HashMap<K, V>;
/// }
///
/// if let Some(spec) = Specialization::<(K, V), (u32, char)>::try_new() {
/// let spec = spec.map::<MapIntoHashMap>();
/// let value = spec.specialize(value);
/// specialized_impl(value)
/// } else {
/// default_impl(value)
/// }
/// }
///
/// fn default_impl<K, V>(value: hashbrown::HashMap<K, V>) -> &'static str {
/// // ...
/// # "default impl"
/// }
///
/// fn specialized_impl(value: hashbrown::HashMap<u32, char>) -> &'static str {
/// // ...
/// # "specialized impl"
/// }
/// #
/// # assert_eq!(
/// # some_generic_fn([(0_i32, 'a'), (1, 'b'), (2, 'c')].into_iter().collect()),
/// # "default impl"
/// # );
/// #
/// # assert_eq!(
/// # some_generic_fn(
/// # [(0_u32, "zero"), (1, "one"), (2, "two")]
/// # .into_iter()
/// # .collect()
/// # ),
/// # "default impl"
/// # );
/// #
/// # assert_eq!(
/// # some_generic_fn([(0_u32, 'a'), (1, 'b'), (2, 'c')].into_iter().collect()),
/// # "specialized impl"
/// # );
/// # }
/// ```