trust-dns-client 0.22.0

Trust-DNS is a safe and secure DNS library. This is the Client library with DNSec support. DNSSec with NSEC validation for negative records, is complete. The client supports dynamic DNS with SIG0 authenticated requests, implementing easy to use high level funtions. Trust-DNS is based on the Tokio and Futures libraries, which means it should be easily integrated into other software that also use those libraries.
Documentation
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

#[cfg(not(feature = "openssl"))]
use std::marker::PhantomData;

#[cfg(feature = "openssl")]
use openssl::bn::BigNumContext;
#[cfg(feature = "openssl")]
use openssl::ec::{EcGroup, EcKey, PointConversionForm};
#[cfg(feature = "openssl")]
use openssl::nid::Nid;
#[cfg(feature = "openssl")]
use openssl::pkey::PKey;
#[cfg(feature = "openssl")]
use openssl::rsa::Rsa as OpenSslRsa;
#[cfg(feature = "openssl")]
use openssl::sign::Signer;

#[cfg(feature = "ring")]
use ring::{
    rand,
    signature::{
        EcdsaKeyPair, Ed25519KeyPair, KeyPair as RingKeyPair, ECDSA_P256_SHA256_FIXED_SIGNING,
        ECDSA_P384_SHA384_FIXED_SIGNING,
    },
};
#[allow(deprecated)]
use trust_dns_proto::rr::dnssec::rdata::key::{KeyTrust, Protocol, UpdateScope};

use crate::error::*;
#[cfg(any(feature = "openssl", feature = "ring"))]
use crate::rr::dnssec::DigestType;
use crate::rr::dnssec::{Algorithm, PublicKeyBuf};
use crate::rr::dnssec::{HasPrivate, HasPublic, Private, TBS};
use crate::rr::rdata::key::KeyUsage;
#[cfg(any(feature = "openssl", feature = "ring"))]
use crate::rr::rdata::DS;
use crate::rr::rdata::{DNSKEY, KEY};
#[cfg(any(feature = "openssl", feature = "ring"))]
use crate::rr::Name;

/// A public and private key pair, the private portion is not required.
///
/// This supports all the various public/private keys which Trust-DNS is capable of using. Given
///  differing features, some key types may not be available. The `openssl` feature will enable RSA and EC
///  (P256 and P384). The `ring` feature enables ED25519, in the future, Ring will also be used for other keys.
#[allow(clippy::large_enum_variant)]
pub enum KeyPair<K> {
    /// RSA keypair, supported by OpenSSL
    #[cfg(feature = "openssl")]
    #[cfg_attr(docsrs, doc(cfg(feature = "openssl")))]
    RSA(PKey<K>),
    /// Elliptic curve keypair, supported by OpenSSL
    #[cfg(feature = "openssl")]
    #[cfg_attr(docsrs, doc(cfg(feature = "openssl")))]
    EC(PKey<K>),
    #[cfg(not(feature = "openssl"))]
    #[doc(hidden)]
    Phantom(PhantomData<K>),
    /// *ring* ECDSA keypair
    #[cfg(feature = "ring")]
    #[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
    ECDSA(EcdsaKeyPair),
    /// ED25519 encryption and hash defined keypair
    #[cfg(feature = "ring")]
    #[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
    ED25519(Ed25519KeyPair),
}

impl<K> KeyPair<K> {
    /// Creates an RSA type keypair.
    #[cfg(feature = "openssl")]
    #[cfg_attr(docsrs, doc(cfg(feature = "openssl")))]
    pub fn from_rsa(rsa: OpenSslRsa<K>) -> DnsSecResult<Self> {
        PKey::from_rsa(rsa).map(Self::RSA).map_err(Into::into)
    }

    /// Given a known pkey of an RSA key, return the wrapped keypair
    #[cfg(feature = "openssl")]
    #[cfg_attr(docsrs, doc(cfg(feature = "openssl")))]
    pub fn from_rsa_pkey(pkey: PKey<K>) -> Self {
        Self::RSA(pkey)
    }

    /// Creates an EC, elliptic curve, type keypair, only P256 or P384 are supported.
    #[cfg(feature = "openssl")]
    #[cfg_attr(docsrs, doc(cfg(feature = "openssl")))]
    pub fn from_ec_key(ec_key: EcKey<K>) -> DnsSecResult<Self> {
        PKey::from_ec_key(ec_key).map(Self::EC).map_err(Into::into)
    }

    /// Given a known pkey of an EC key, return the wrapped keypair
    #[cfg(feature = "openssl")]
    #[cfg_attr(docsrs, doc(cfg(feature = "openssl")))]
    pub fn from_ec_pkey(pkey: PKey<K>) -> Self {
        Self::EC(pkey)
    }

    /// Creates an ECDSA keypair with ring.
    #[cfg(feature = "ring")]
    #[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
    pub fn from_ecdsa(ec_key: EcdsaKeyPair) -> Self {
        Self::ECDSA(ec_key)
    }

    /// Creates an ED25519 keypair.
    #[cfg(feature = "ring")]
    #[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
    pub fn from_ed25519(ed_key: Ed25519KeyPair) -> Self {
        Self::ED25519(ed_key)
    }
}

impl<K: HasPublic> KeyPair<K> {
    /// Converts this keypair to the DNS binary form of the public_key.
    ///
    /// If there is a private key associated with this keypair, it will not be included in this
    ///  format. Only the public key material will be included.
    pub fn to_public_bytes(&self) -> DnsSecResult<Vec<u8>> {
        #[allow(unreachable_patterns)]
        match *self {
            // see from_vec() RSA sections for reference
            #[cfg(feature = "openssl")]
            Self::RSA(ref pkey) => {
                let mut bytes: Vec<u8> = Vec::new();
                // TODO: make these expects a try! and Err()
                let rsa: OpenSslRsa<K> = pkey
                    .rsa()
                    .expect("pkey should have been initialized with RSA");

                // this is to get us access to the exponent and the modulus
                let e: Vec<u8> = rsa.e().to_vec();
                let n: Vec<u8> = rsa.n().to_vec();

                if e.len() > 255 {
                    bytes.push(0);
                    bytes.push((e.len() >> 8) as u8);
                }

                bytes.push(e.len() as u8);
                bytes.extend_from_slice(&e);
                bytes.extend_from_slice(&n);

                Ok(bytes)
            }
            // see from_vec() ECDSA sections for reference
            #[cfg(feature = "openssl")]
            Self::EC(ref pkey) => {
                // TODO: make these expects a try! and Err()
                let ec_key: EcKey<K> = pkey
                    .ec_key()
                    .expect("pkey should have been initialized with EC");
                let group = ec_key.group();
                let point = ec_key.public_key();

                let mut bytes = BigNumContext::new()
                    .and_then(|mut ctx| {
                        point.to_bytes(group, PointConversionForm::UNCOMPRESSED, &mut ctx)
                    })
                    .map_err(DnsSecError::from)?;

                // Remove OpenSSL header byte
                bytes.remove(0);
                Ok(bytes)
            }
            #[cfg(feature = "ring")]
            Self::ECDSA(ref ec_key) => {
                let mut bytes: Vec<u8> = ec_key.public_key().as_ref().to_vec();
                bytes.remove(0);
                Ok(bytes)
            }
            #[cfg(feature = "ring")]
            Self::ED25519(ref ed_key) => Ok(ed_key.public_key().as_ref().to_vec()),
            #[cfg(not(feature = "openssl"))]
            Self::Phantom(..) => panic!("Phantom disallowed"),
            #[cfg(not(any(feature = "openssl", feature = "ring")))]
            _ => Err(DnsSecErrorKind::Message("openssl or ring feature(s) not enabled").into()),
        }
    }

    /// Returns a PublicKeyBuf of the KeyPair
    pub fn to_public_key(&self) -> DnsSecResult<PublicKeyBuf> {
        Ok(PublicKeyBuf::new(self.to_public_bytes()?))
    }

    /// The key tag is calculated as a hash to more quickly lookup a DNSKEY.
    ///
    /// [RFC 1035](https://tools.ietf.org/html/rfc1035), DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION, November 1987
    ///
    /// ```text
    /// RFC 2535                DNS Security Extensions               March 1999
    ///
    /// 4.1.6 Key Tag Field
    ///
    ///  The "key Tag" is a two octet quantity that is used to efficiently
    ///  select between multiple keys which may be applicable and thus check
    ///  that a public key about to be used for the computationally expensive
    ///  effort to check the signature is possibly valid.  For algorithm 1
    ///  (MD5/RSA) as defined in [RFC 2537], it is the next to the bottom two
    ///  octets of the public key modulus needed to decode the signature
    ///  field.  That is to say, the most significant 16 of the least
    ///  significant 24 bits of the modulus in network (big endian) order. For
    ///  all other algorithms, including private algorithms, it is calculated
    ///  as a simple checksum of the KEY RR as described in Appendix C.
    ///
    /// Appendix C: Key Tag Calculation
    ///
    ///  The key tag field in the SIG RR is just a means of more efficiently
    ///  selecting the correct KEY RR to use when there is more than one KEY
    ///  RR candidate available, for example, in verifying a signature.  It is
    ///  possible for more than one candidate key to have the same tag, in
    ///  which case each must be tried until one works or all fail.  The
    ///  following reference implementation of how to calculate the Key Tag,
    ///  for all algorithms other than algorithm 1, is in ANSI C.  It is coded
    ///  for clarity, not efficiency.  (See section 4.1.6 for how to determine
    ///  the Key Tag of an algorithm 1 key.)
    ///
    ///  /* assumes int is at least 16 bits
    ///     first byte of the key tag is the most significant byte of return
    ///     value
    ///     second byte of the key tag is the least significant byte of
    ///     return value
    ///     */
    ///
    ///  int keytag (
    ///
    ///          unsigned char key[],  /* the RDATA part of the KEY RR */
    ///          unsigned int keysize, /* the RDLENGTH */
    ///          )
    ///  {
    ///  long int    ac;    /* assumed to be 32 bits or larger */
    ///
    ///  for ( ac = 0, i = 0; i < keysize; ++i )
    ///      ac += (i&1) ? key[i] : key[i]<<8;
    ///  ac += (ac>>16) & 0xFFFF;
    ///  return ac & 0xFFFF;
    ///  }
    /// ```
    pub fn key_tag(&self) -> DnsSecResult<u16> {
        let mut ac: usize = 0;

        for (i, k) in self.to_public_bytes()?.iter().enumerate() {
            ac += if i & 0x0001 == 0x0001 {
                *k as usize
            } else {
                (*k as usize) << 8
            };
        }

        ac += (ac >> 16) & 0xFFFF;
        Ok((ac & 0xFFFF) as u16) // this is unnecessary, no?
    }

    /// Creates a Record that represents the public key for this Signer
    ///
    /// # Arguments
    ///
    /// * `algorithm` - algorithm of the DNSKEY
    ///
    /// # Return
    ///
    /// the DNSKEY record data
    pub fn to_dnskey(&self, algorithm: Algorithm) -> DnsSecResult<DNSKEY> {
        self.to_public_bytes()
            .map(|bytes| DNSKEY::new(true, true, false, algorithm, bytes))
    }

    /// Convert this keypair into a KEY record type for usage with SIG0
    /// with key type entity (`KeyUsage::Entity`).
    ///
    /// # Arguments
    ///
    /// * `algorithm` - algorithm of the KEY
    ///
    /// # Return
    ///
    /// the KEY record data
    pub fn to_sig0key(&self, algorithm: Algorithm) -> DnsSecResult<KEY> {
        self.to_sig0key_with_usage(algorithm, KeyUsage::default())
    }

    /// Convert this keypair into a KEY record type for usage with SIG0
    /// with a given key (usage) type.
    ///
    /// # Arguments
    ///
    /// * `algorithm` - algorithm of the KEY
    /// * `usage`     - the key type
    ///
    /// # Return
    ///
    /// the KEY record data
    pub fn to_sig0key_with_usage(
        &self,
        algorithm: Algorithm,
        usage: KeyUsage,
    ) -> DnsSecResult<KEY> {
        self.to_public_bytes().map(|bytes| {
            KEY::new(
                KeyTrust::default(),
                usage,
                #[allow(deprecated)]
                UpdateScope::default(),
                Protocol::default(),
                algorithm,
                bytes,
            )
        })
    }

    /// Creates a DS record for this KeyPair associated to the given name
    ///
    /// # Arguments
    ///
    /// * `name` - name of the DNSKEY record covered by the new DS record
    /// * `algorithm` - the algorithm of the DNSKEY
    /// * `digest_type` - the digest_type used to
    #[cfg(any(feature = "openssl", feature = "ring"))]
    #[cfg_attr(docsrs, doc(cfg(any(feature = "openssl", feature = "ring"))))]
    pub fn to_ds(
        &self,
        name: &Name,
        algorithm: Algorithm,
        digest_type: DigestType,
    ) -> DnsSecResult<DS> {
        self.to_dnskey(algorithm)
            .and_then(|dnskey| self.key_tag().map(|key_tag| (key_tag, dnskey)))
            .and_then(|(key_tag, dnskey)| {
                dnskey
                    .to_digest(name, digest_type)
                    .map(|digest| (key_tag, digest))
                    .map_err(Into::into)
            })
            .map(|(key_tag, digest)| {
                DS::new(key_tag, algorithm, digest_type, digest.as_ref().to_owned())
            })
    }
}

impl<K: HasPrivate> KeyPair<K> {
    /// Signs a hash.
    ///
    /// This will panic if the `key` is not a private key and can be used for signing.
    ///
    /// # Arguments
    ///
    /// * `message` - the message bytes to be signed, see `rrset_tbs`.
    ///
    /// # Return value
    ///
    /// The signature, ready to be stored in an `RData::RRSIG`.
    #[allow(unused)]
    pub fn sign(&self, algorithm: Algorithm, tbs: &TBS) -> DnsSecResult<Vec<u8>> {
        use std::iter;

        match *self {
            #[cfg(feature = "openssl")]
            Self::RSA(ref pkey) | Self::EC(ref pkey) => {
                let digest_type = DigestType::from(algorithm).to_openssl_digest()?;
                let mut signer = Signer::new(digest_type, pkey)?;
                signer.update(tbs.as_ref())?;
                signer.sign_to_vec().map_err(Into::into).and_then(|bytes| {
                    if let Self::RSA(_) = *self {
                        return Ok(bytes);
                    }

                    // Convert DER signature to raw signature (see RFC 6605 Section 4)
                    if bytes.len() < 8 {
                        return Err("unexpected signature format (length too short)".into());
                    }
                    let expect = |pos: usize, expected: u8| -> DnsSecResult<()> {
                        if bytes[pos] != expected {
                            return Err(format!(
                                "unexpected signature format ({}, {}))",
                                pos, expected
                            )
                            .into());
                        }
                        Ok(())
                    };
                    // Sanity checks
                    expect(0, 0x30)?;
                    expect(1, (bytes.len() - 2) as u8)?;
                    expect(2, 0x02)?;
                    let p1_len = bytes[3] as usize;
                    let p2_pos = 4 + p1_len;
                    expect(p2_pos, 0x02)?;
                    let p2_len = bytes[p2_pos + 1] as usize;
                    if p2_pos + 2 + p2_len > bytes.len() {
                        return Err("unexpected signature format (invalid length)".into());
                    }

                    let p1 = &bytes[4..p2_pos];
                    let p2 = &bytes[p2_pos + 2..p2_pos + 2 + p2_len];

                    // For P-256, each integer MUST be encoded as 32 octets;
                    // for P-384, each integer MUST be encoded as 48 octets.
                    let part_len = match algorithm {
                        Algorithm::ECDSAP256SHA256 => 32,
                        Algorithm::ECDSAP384SHA384 => 48,
                        _ => return Err("unexpected algorithm".into()),
                    };
                    let mut ret = Vec::<u8>::new();
                    {
                        let mut write_part = |mut part: &[u8]| -> DnsSecResult<()> {
                            // We need to pad or trim the octet string to expected length
                            if part.len() > part_len + 1 {
                                return Err("invalid signature data".into());
                            }
                            if part.len() == part_len + 1 {
                                // Trim leading zero
                                if part[0] != 0x00 {
                                    return Err("invalid signature data".into());
                                }
                                part = &part[1..];
                            }

                            // Pad with zeros. All numbers are big-endian here.
                            ret.extend(iter::repeat(0x00).take(part_len - part.len()));
                            ret.extend(part);
                            Ok(())
                        };
                        write_part(p1)?;
                        write_part(p2)?;
                    }
                    assert_eq!(ret.len(), part_len * 2);
                    Ok(ret)
                })
            }
            #[cfg(feature = "ring")]
            Self::ECDSA(ref ec_key) => {
                let rng = rand::SystemRandom::new();
                Ok(ec_key.sign(&rng, tbs.as_ref())?.as_ref().to_vec())
            }
            #[cfg(feature = "ring")]
            Self::ED25519(ref ed_key) => Ok(ed_key.sign(tbs.as_ref()).as_ref().to_vec()),
            #[cfg(not(feature = "openssl"))]
            Self::Phantom(..) => panic!("Phantom disallowed"),
            #[cfg(not(any(feature = "openssl", feature = "ring")))]
            _ => Err(DnsSecErrorKind::Message("openssl nor ring feature(s) not enabled").into()),
        }
    }
}

impl KeyPair<Private> {
    /// Generates a new private and public key pair for the specified algorithm.
    ///
    /// RSA keys are hardcoded to 2048bits at the moment. Other keys have predefined sizes.
    pub fn generate(algorithm: Algorithm) -> DnsSecResult<Self> {
        #[allow(deprecated)]
        match algorithm {
            Algorithm::Unknown(_) => Err(DnsSecErrorKind::Message("unknown algorithm").into()),
            #[cfg(feature = "openssl")]
            Algorithm::RSASHA1
            | Algorithm::RSASHA1NSEC3SHA1
            | Algorithm::RSASHA256
            | Algorithm::RSASHA512 => {
                // TODO: the only keysize right now, would be better for people to use other algorithms...
                OpenSslRsa::generate(2048)
                    .map_err(Into::into)
                    .and_then(Self::from_rsa)
            }
            #[cfg(feature = "openssl")]
            Algorithm::ECDSAP256SHA256 => EcGroup::from_curve_name(Nid::X9_62_PRIME256V1)
                .and_then(|group| EcKey::generate(&group))
                .map_err(Into::into)
                .and_then(Self::from_ec_key),
            #[cfg(feature = "openssl")]
            Algorithm::ECDSAP384SHA384 => EcGroup::from_curve_name(Nid::SECP384R1)
                .and_then(|group| EcKey::generate(&group))
                .map_err(Into::into)
                .and_then(Self::from_ec_key),
            #[cfg(feature = "ring")]
            Algorithm::ED25519 => Err(DnsSecErrorKind::Message(
                "use generate_pkcs8 for generating private key and encoding",
            )
            .into()),
            _ => Err(DnsSecErrorKind::Message("openssl nor ring feature(s) not enabled").into()),
        }
    }

    /// Generates a key, securing it with pkcs8
    #[cfg(feature = "ring")]
    #[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
    pub fn generate_pkcs8(algorithm: Algorithm) -> DnsSecResult<Vec<u8>> {
        #[allow(deprecated)]
        match algorithm {
            Algorithm::Unknown(_) => Err(DnsSecErrorKind::Message("unknown algorithm").into()),
            #[cfg(feature = "openssl")]
            Algorithm::RSASHA1
            | Algorithm::RSASHA1NSEC3SHA1
            | Algorithm::RSASHA256
            | Algorithm::RSASHA512 => {
                Err(DnsSecErrorKind::Message("openssl does not yet support pkcs8").into())
            }
            #[cfg(feature = "ring")]
            Algorithm::ECDSAP256SHA256 => {
                let rng = rand::SystemRandom::new();
                EcdsaKeyPair::generate_pkcs8(&ECDSA_P256_SHA256_FIXED_SIGNING, &rng)
                    .map_err(Into::into)
                    .map(|pkcs8_bytes| pkcs8_bytes.as_ref().to_vec())
            }
            #[cfg(feature = "ring")]
            Algorithm::ECDSAP384SHA384 => {
                let rng = rand::SystemRandom::new();
                EcdsaKeyPair::generate_pkcs8(&ECDSA_P384_SHA384_FIXED_SIGNING, &rng)
                    .map_err(Into::into)
                    .map(|pkcs8_bytes| pkcs8_bytes.as_ref().to_vec())
            }
            #[cfg(feature = "ring")]
            Algorithm::ED25519 => {
                let rng = rand::SystemRandom::new();
                Ed25519KeyPair::generate_pkcs8(&rng)
                    .map_err(Into::into)
                    .map(|pkcs8_bytes| pkcs8_bytes.as_ref().to_vec())
            }
            _ => Err(DnsSecErrorKind::Message("openssl nor ring feature(s) not enabled").into()),
        }
    }
}

#[cfg(any(feature = "openssl", feature = "ring"))]
#[cfg(test)]
mod tests {
    use crate::rr::dnssec::TBS;
    use crate::rr::dnssec::*;

    #[cfg(feature = "openssl")]
    #[test]
    fn test_rsa() {
        public_key_test(Algorithm::RSASHA256, KeyFormat::Der);
        hash_test(Algorithm::RSASHA256, KeyFormat::Der);
    }

    #[cfg(feature = "openssl")]
    #[test]
    fn test_ec_p256() {
        public_key_test(Algorithm::ECDSAP256SHA256, KeyFormat::Der);
        hash_test(Algorithm::ECDSAP256SHA256, KeyFormat::Der);
    }

    #[cfg(feature = "ring")]
    #[test]
    fn test_ec_p256_pkcs8() {
        public_key_test(Algorithm::ECDSAP256SHA256, KeyFormat::Pkcs8);
        hash_test(Algorithm::ECDSAP256SHA256, KeyFormat::Pkcs8);
    }

    #[cfg(feature = "openssl")]
    #[test]
    fn test_ec_p384() {
        public_key_test(Algorithm::ECDSAP384SHA384, KeyFormat::Der);
        hash_test(Algorithm::ECDSAP384SHA384, KeyFormat::Der);
    }

    #[cfg(feature = "ring")]
    #[test]
    fn test_ec_p384_pkcs8() {
        public_key_test(Algorithm::ECDSAP384SHA384, KeyFormat::Pkcs8);
        hash_test(Algorithm::ECDSAP384SHA384, KeyFormat::Pkcs8);
    }

    #[cfg(feature = "ring")]
    #[test]
    fn test_ed25519() {
        public_key_test(Algorithm::ED25519, KeyFormat::Pkcs8);
        hash_test(Algorithm::ED25519, KeyFormat::Pkcs8);
    }

    fn public_key_test(algorithm: Algorithm, key_format: KeyFormat) {
        let key = key_format
            .decode_key(
                &key_format.generate_and_encode(algorithm, None).unwrap(),
                None,
                algorithm,
            )
            .unwrap();
        let pk = key.to_public_key().unwrap();

        let tbs = TBS::from(&b"www.example.com"[..]);
        let mut sig = key.sign(algorithm, &tbs).unwrap();
        assert!(
            pk.verify(algorithm, tbs.as_ref(), &sig).is_ok(),
            "algorithm: {:?} (public key)",
            algorithm
        );
        sig[10] = !sig[10];
        assert!(
            pk.verify(algorithm, tbs.as_ref(), &sig).is_err(),
            "algorithm: {:?} (public key, neg)",
            algorithm
        );
    }

    fn hash_test(algorithm: Algorithm, key_format: KeyFormat) {
        let tbs = TBS::from(&b"www.example.com"[..]);

        // TODO: convert to stored keys...
        let key = key_format
            .decode_key(
                &key_format.generate_and_encode(algorithm, None).unwrap(),
                None,
                algorithm,
            )
            .unwrap();
        let pub_key = key.to_public_key().unwrap();

        let neg = key_format
            .decode_key(
                &key_format.generate_and_encode(algorithm, None).unwrap(),
                None,
                algorithm,
            )
            .unwrap();
        let neg_pub_key = neg.to_public_key().unwrap();

        let sig = key.sign(algorithm, &tbs).unwrap();
        assert!(
            pub_key.verify(algorithm, tbs.as_ref(), &sig).is_ok(),
            "algorithm: {:?}",
            algorithm
        );
        assert!(
            key.to_dnskey(algorithm)
                .unwrap()
                .verify(tbs.as_ref(), &sig)
                .is_ok(),
            "algorithm: {:?} (dnskey)",
            algorithm
        );
        assert!(
            neg_pub_key.verify(algorithm, tbs.as_ref(), &sig).is_err(),
            "algorithm: {:?} (neg)",
            algorithm
        );
        assert!(
            neg.to_dnskey(algorithm)
                .unwrap()
                .verify(tbs.as_ref(), &sig)
                .is_err(),
            "algorithm: {:?} (dnskey, neg)",
            algorithm
        );
    }
}