1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
//! Triton Virtual Machine is a Zero-Knowledge Proof System (ZKPS) for proving correct execution
//! of programs written in Triton assembly. The proof system is a zk-STARK, which is a
//! state-of-the-art ZKPS.
//!
//! Generally, all arithmetic performed by Triton VM happens in the prime field with
//! 2^64 - 2^32 + 1 elements. Instructions for u32 operations are provided.
//!
//! For a full overview over all available instructions and their effects, see the
//! [specification](https://triton-vm.org/spec/instructions.html).
//!
//! # Examples
//!
//! Convenience function [`prove_program()`] as well as the [`prove()`] and [`verify()`] methods
//! natively operate on [`BFieldElement`]s, _i.e_, elements of the prime field with 2^64 - 2^32 + 1
//! elements.
//!
//! ## Factorial
//!
//! Compute the factorial of the given public input.
//!
//! The execution of the factorial program is already fully determined by the public input.
//! Hence, in this case, there is no need for specifying non-determinism.
//! Keep reading for an example that does use non-determinism.
//!
//! The [`triton_program!`] macro is used to conveniently write Triton assembly. In below example,
//! the state of the operational stack is shown as a comment after most instructions.
//!
//! ```
//! # use triton_vm::*;
//! # use triton_vm::prelude::*;
//! let factorial_program = triton_program!(
//! read_io 1 // n
//! push 1 // n 1
//! call factorial // 0 n!
//! write_io 1 // 0
//! halt
//!
//! factorial: // n acc
//! // if n == 0: return
//! dup 1 // n acc n
//! push 0 eq // n acc n==0
//! skiz // n acc
//! return // 0 acc
//! // else: multiply accumulator with n and recurse
//! dup 1 // n acc n
//! mul // n acc·n
//! swap 1 // acc·n n
//! push -1 add // acc·n n-1
//! swap 1 // n-1 acc·n
//! recurse
//! );
//! let public_input = PublicInput::from([bfe!(10)]);
//! let non_determinism = NonDeterminism::default();
//!
//! let (stark, claim, proof) =
//! prove_program(&factorial_program, public_input, non_determinism).unwrap();
//!
//! let verdict = verify(stark, &claim, &proof);
//! assert!(verdict);
//!
//! assert_eq!(1, claim.output.len());
//! assert_eq!(3_628_800, claim.output[0].value());
//! ```
//!
//! ## Non-Determinism
//!
//! In the following example, a public field elements equality to the sum of some squared secret
//! elements is proven. For demonstration purposes, some of the secret elements come from secret in,
//! and some are read from RAM, which can be initialized arbitrarily.
//!
//! Note that the non-determinism is not required for proof verification, and does not appear in
//! the claim or the proof. It is only used for proof generation. This way, the verifier can be
//! convinced that the prover did indeed know some input that satisfies the claim, but learns
//! nothing beyond that fact.
//!
//! The third potential source of non-determinism is intended for verifying Merkle authentication
//! paths. It is not used in this example. See [`NonDeterminism`] for more information.
//!
//! ```
//! # use triton_vm::*;
//! # use triton_vm::prelude::*;
//! let sum_of_squares_program = triton_program!(
//! read_io 1 // n
//! call sum_of_squares_secret_in // n sum_1
//! call sum_of_squares_ram // n sum_1 sum_2
//! add // n sum_1+sum_2
//! eq // n==(sum_1+sum_2)
//! assert // abort the VM if n!=(sum_1+sum_2)
//! halt
//!
//! sum_of_squares_secret_in:
//! divine 1 dup 0 mul // s₁²
//! divine 1 dup 0 mul add // s₁²+s₂²
//! divine 1 dup 0 mul add // s₁²+s₂²+s₃²
//! return
//!
//! sum_of_squares_ram:
//! push 17 // 18
//! read_mem 1 // s₄ 17
//! pop 1 // s₄
//! dup 0 mul // s₄²
//! push 42 // s₄² 43
//! read_mem 1 // s₄² s₅ 42
//! pop 1 // s₄² s₅
//! dup 0 mul // s₄² s₅²
//! add // s₄²+s₅²
//! return
//! );
//! let public_input = PublicInput::from([bfe!(597)]);
//! let secret_input = [5, 9, 11].map(|v| bfe!(v));
//! let initial_ram = [(17, 3), (42, 19)].map(|(address, v)| (bfe!(address), bfe!(v)));
//! let non_determinism = NonDeterminism::from(secret_input).with_ram(initial_ram);
//!
//! let (stark, claim, proof) =
//! prove_program(&sum_of_squares_program, public_input, non_determinism).unwrap();
//!
//! let verdict = verify(stark, &claim, &proof);
//! assert!(verdict);
//! ```
//!
//! ## Crashing Triton VM
//!
//! Successful termination of a program is not guaranteed. For example, a program must execute
//! `halt` as its last instruction. Certain instructions, such as `assert`, `invert`, or the u32
//! instructions, can also cause the VM to crash. Upon crashing Triton VM, methods like
//! [`run`](Program::run) and [`trace_execution`][trace_execution] will return a
//! [`VMError`][vm_error]. This can be helpful for debugging.
//!
//! ```
//! # use triton_vm::*;
//! # use triton_vm::prelude::*;
//! let crashing_program = triton_program!(push 2 assert halt);
//! let vm_error = crashing_program.run([].into(), [].into()).unwrap_err();
//! assert!(matches!(vm_error.source, InstructionError::AssertionFailed));
//! // inspect the VM state
//! eprintln!("{vm_error}");
//! ```
//!
//! [vm_error]: error::VMError
//! [trace_execution]: Program::trace_execution
#![recursion_limit = "4096"]
pub use twenty_first;
use crate::error::ProvingError;
use crate::prelude::*;
pub mod aet;
pub mod arithmetic_domain;
pub mod error;
pub mod example_programs;
pub mod fri;
pub mod instruction;
pub mod op_stack;
pub mod parser;
pub mod prelude;
pub mod profiler;
pub mod program;
pub mod proof;
pub mod proof_item;
pub mod proof_stream;
pub mod stark;
pub mod table;
pub mod vm;
#[cfg(test)]
mod shared_tests;
/// Compile an entire program written in [Triton assembly][tasm].
/// The resulting [`Program`](Program) can be [run](Program::run).
///
/// It is possible to use string-like interpolation to insert instructions, arguments, labels,
/// or other substrings into the program.
///
/// # Examples
///
/// ```
/// # use triton_vm::prelude::*;
/// let program = triton_program!(
/// read_io 1 push 5 mul
/// call check_eq_15
/// push 17 write_io 1
/// halt
/// // assert that the top of the stack is 15
/// check_eq_15:
/// push 15 eq assert
/// return
/// );
/// let public_input = PublicInput::from([bfe!(3)]);
/// let secret_input = NonDeterminism::default();
/// let output = program.run(public_input, secret_input).unwrap();
/// assert_eq!(17, output[0].value());
/// ```
///
/// Any type with an appropriate [`Display`](std::fmt::Display) implementation can be
/// interpolated. This includes, for example, primitive types like `u64` and `&str`, but also
/// [`Instruction`](instruction::Instruction)s,
/// [`BFieldElement`](BFieldElement)s, and
/// [`Label`](instruction::LabelledInstruction)s, among others.
///
/// ```
/// # use triton_vm::prelude::*;
/// # use triton_vm::instruction::Instruction;
/// let element_0 = BFieldElement::new(0);
/// let label = "my_label";
/// let instruction_push = Instruction::Push(bfe!(42));
/// let dup_arg = 1;
/// let program = triton_program!(
/// push {element_0}
/// call {label} halt
/// {label}:
/// {instruction_push}
/// dup {dup_arg}
/// skiz recurse return
/// );
/// ```
///
/// # Panics
///
/// **Panics** if the program cannot be parsed.
/// Examples for parsing errors are:
/// - unknown (_e.g._ misspelled) instructions
/// - invalid instruction arguments, _e.g._, `push 1.5` or `swap 42`
/// - missing or duplicate labels
/// - invalid labels, _e.g._, using a reserved keyword or starting a label with a digit
///
/// For a version that returns a `Result`, see [`Program::from_code()`][from_code].
///
/// [tasm]: https://triton-vm.org/spec/instructions.html
/// [from_code]: Program::from_code
#[macro_export]
macro_rules! triton_program {
{$($source_code:tt)*} => {{
let labelled_instructions = $crate::triton_asm!($($source_code)*);
$crate::program::Program::new(&labelled_instructions)
}};
}
/// Compile [Triton assembly][tasm] into a list of labelled
/// [`Instruction`](instruction::LabelledInstruction)s.
/// Similar to [`triton_program!`](triton_program), it is possible to use string-like
/// interpolation to insert instructions, arguments, labels, or other expressions.
///
/// Similar to [`vec!`], a single instruction can be repeated a specified number of times.
///
/// Furthermore, a list of [`LabelledInstruction`](instruction::LabelledInstruction)s
/// can be inserted like so: `{&list}`.
///
/// The labels for instruction `call`, if any, are also parsed. Instruction `call` can refer to
/// a label defined later in the program, _i.e.,_ labels are not checked for existence or
/// uniqueness by this parser.
///
/// # Examples
///
/// ```
/// # use triton_vm::triton_asm;
/// let push_argument = 42;
/// let instructions = triton_asm!(
/// push 1 call some_label
/// push {push_argument}
/// some_other_label: skiz halt return
/// );
/// assert_eq!(7, instructions.len());
/// ```
///
/// One instruction repeated several times:
///
/// ```
/// # use triton_vm::triton_asm;
/// # use triton_vm::instruction::LabelledInstruction;
/// # use triton_vm::instruction::AnInstruction::SpongeAbsorb;
/// let instructions = triton_asm![sponge_absorb; 3];
/// assert_eq!(3, instructions.len());
/// assert_eq!(LabelledInstruction::Instruction(SpongeAbsorb), instructions[0]);
/// assert_eq!(LabelledInstruction::Instruction(SpongeAbsorb), instructions[1]);
/// assert_eq!(LabelledInstruction::Instruction(SpongeAbsorb), instructions[2]);
/// ```
///
/// Inserting substring of labelled instructions:
///
/// ```
/// # use triton_vm::prelude::*;
/// # use triton_vm::instruction::AnInstruction::Push;
/// # use triton_vm::instruction::AnInstruction::Pop;
/// # use triton_vm::op_stack::NumberOfWords::N1;
/// let insert_me = triton_asm!(
/// pop 1
/// nop
/// pop 1
/// );
/// let surrounding_code = triton_asm!(
/// push 0
/// {&insert_me}
/// push 1
/// );
/// # let zero = bfe!(0);
/// # assert_eq!(LabelledInstruction::Instruction(Push(zero)), surrounding_code[0]);
/// assert_eq!(LabelledInstruction::Instruction(Pop(N1)), surrounding_code[1]);
/// assert_eq!(LabelledInstruction::Instruction(Pop(N1)), surrounding_code[3]);
/// # let one = bfe!(1);
/// # assert_eq!(LabelledInstruction::Instruction(Push(one)), surrounding_code[4]);
///```
///
/// # Panics
///
/// **Panics** if the instructions cannot be parsed.
/// For examples, see [`triton_program!`](triton_program), with the exception that
/// labels are not checked for existence or uniqueness.
///
/// [tasm]: https://triton-vm.org/spec/instructions.html
#[macro_export]
macro_rules! triton_asm {
(@fmt $fmt:expr, $($args:expr,)*; ) => {
format_args!($fmt $(,$args)*).to_string()
};
(@fmt $fmt:expr, $($args:expr,)*;
hint $var:ident: $ty:ident = stack[$start:literal..$end:literal] $($tail:tt)*) => {
$crate::triton_asm!(@fmt
concat!($fmt, " hint {}: {} = stack[{}..{}] "),
$($args,)* stringify!($var), stringify!($ty), $start, $end,;
$($tail)*
)
};
(@fmt $fmt:expr, $($args:expr,)*;
hint $var:ident = stack[$start:literal..$end:literal] $($tail:tt)*) => {
$crate::triton_asm!(@fmt
concat!($fmt, " hint {} = stack[{}..{}] "),
$($args,)* stringify!($var), $start, $end,;
$($tail)*
)
};
(@fmt $fmt:expr, $($args:expr,)*;
hint $var:ident: $ty:ident = stack[$index:literal] $($tail:tt)*) => {
$crate::triton_asm!(@fmt
concat!($fmt, " hint {}: {} = stack[{}] "),
$($args,)* stringify!($var), stringify!($ty), $index,;
$($tail)*
)
};
(@fmt $fmt:expr, $($args:expr,)*;
hint $var:ident = stack[$index:literal] $($tail:tt)*) => {
$crate::triton_asm!(@fmt
concat!($fmt, " hint {} = stack[{}] "),
$($args,)* stringify!($var), $index,;
$($tail)*
)
};
(@fmt $fmt:expr, $($args:expr,)*; $label_declaration:ident: $($tail:tt)*) => {
$crate::triton_asm!(@fmt
concat!($fmt, " ", stringify!($label_declaration), ": "), $($args,)*; $($tail)*
)
};
(@fmt $fmt:expr, $($args:expr,)*; $instruction:ident $($tail:tt)*) => {
$crate::triton_asm!(@fmt
concat!($fmt, " ", stringify!($instruction), " "), $($args,)*; $($tail)*
)
};
(@fmt $fmt:expr, $($args:expr,)*; $instruction_argument:literal $($tail:tt)*) => {
$crate::triton_asm!(@fmt
concat!($fmt, " ", stringify!($instruction_argument), " "), $($args,)*; $($tail)*
)
};
(@fmt $fmt:expr, $($args:expr,)*; {$label_declaration:expr}: $($tail:tt)*) => {
$crate::triton_asm!(@fmt concat!($fmt, "{}: "), $($args,)* $label_declaration,; $($tail)*)
};
(@fmt $fmt:expr, $($args:expr,)*; {&$instruction_list:expr} $($tail:tt)*) => {
$crate::triton_asm!(@fmt
concat!($fmt, "{} "), $($args,)*
$instruction_list.iter().map(|instr| instr.to_string()).collect::<Vec<_>>().join(" "),;
$($tail)*
)
};
(@fmt $fmt:expr, $($args:expr,)*; {$expression:expr} $($tail:tt)*) => {
$crate::triton_asm!(@fmt concat!($fmt, "{} "), $($args,)* $expression,; $($tail)*)
};
// repeated instructions
[pop $arg:literal; $num:expr] => { vec![ $crate::triton_instr!(pop $arg); $num ] };
[push $arg:literal; $num:expr] => { vec![ $crate::triton_instr!(push $arg); $num ] };
[divine $arg:literal; $num:expr] => { vec![ $crate::triton_instr!(divine $arg); $num ] };
[dup $arg:literal; $num:expr] => { vec![ $crate::triton_instr!(dup $arg); $num ] };
[swap $arg:literal; $num:expr] => { vec![ $crate::triton_instr!(swap $arg); $num ] };
[call $arg:ident; $num:expr] => { vec![ $crate::triton_instr!(call $arg); $num ] };
[read_mem $arg:literal; $num:expr] => { vec![ $crate::triton_instr!(read_mem $arg); $num ] };
[write_mem $arg:literal; $num:expr] => { vec![ $crate::triton_instr!(write_mem $arg); $num ] };
[read_io $arg:literal; $num:expr] => { vec![ $crate::triton_instr!(read_io $arg); $num ] };
[write_io $arg:literal; $num:expr] => { vec![ $crate::triton_instr!(write_io $arg); $num ] };
[$instr:ident; $num:expr] => { vec![ $crate::triton_instr!($instr); $num ] };
// entry point
{$($source_code:tt)*} => {{
let source_code = $crate::triton_asm!(@fmt "",; $($source_code)*);
let (_, instructions) = $crate::parser::tokenize(&source_code).unwrap();
$crate::parser::to_labelled_instructions(&instructions)
}};
}
/// Compile a single [Triton assembly][tasm] instruction into a
/// [`LabelledInstruction`](instruction::LabelledInstruction).
///
/// # Examples
///
/// ```
/// # use triton_vm::triton_instr;
/// # use triton_vm::instruction::LabelledInstruction;
/// # use triton_vm::instruction::AnInstruction::Call;
/// let instruction = triton_instr!(call my_label);
/// assert_eq!(LabelledInstruction::Instruction(Call("my_label".to_string())), instruction);
/// ```
///
/// [tasm]: https://triton-vm.org/spec/instructions.html
#[macro_export]
macro_rules! triton_instr {
(pop $arg:literal) => {{
let argument = $crate::op_stack::NumberOfWords::try_from($arg).unwrap();
let instruction = $crate::instruction::AnInstruction::<String>::Pop(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
(push $arg:expr) => {{
let argument = $crate::prelude::BFieldElement::from($arg);
let instruction = $crate::instruction::AnInstruction::<String>::Push(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
(divine $arg:literal) => {{
let argument = $crate::op_stack::NumberOfWords::try_from($arg).unwrap();
let instruction = $crate::instruction::AnInstruction::<String>::Divine(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
(dup $arg:literal) => {{
let argument = $crate::op_stack::OpStackElement::try_from($arg).unwrap();
let instruction = $crate::instruction::AnInstruction::<String>::Dup(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
(swap $arg:literal) => {{
assert_ne!(0_u32, $arg, "`swap 0` is illegal.");
let argument = $crate::op_stack::OpStackElement::try_from($arg).unwrap();
let instruction = $crate::instruction::AnInstruction::<String>::Swap(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
(call $arg:ident) => {{
let argument = stringify!($arg).to_string();
let instruction = $crate::instruction::AnInstruction::<String>::Call(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
(read_mem $arg:literal) => {{
let argument = $crate::op_stack::NumberOfWords::try_from($arg).unwrap();
let instruction = $crate::instruction::AnInstruction::<String>::ReadMem(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
(write_mem $arg:literal) => {{
let argument = $crate::op_stack::NumberOfWords::try_from($arg).unwrap();
let instruction = $crate::instruction::AnInstruction::<String>::WriteMem(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
(read_io $arg:literal) => {{
let argument = $crate::op_stack::NumberOfWords::try_from($arg).unwrap();
let instruction = $crate::instruction::AnInstruction::<String>::ReadIo(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
(write_io $arg:literal) => {{
let argument = $crate::op_stack::NumberOfWords::try_from($arg).unwrap();
let instruction = $crate::instruction::AnInstruction::<String>::WriteIo(argument);
$crate::instruction::LabelledInstruction::Instruction(instruction)
}};
($instr:ident) => {{
let (_, instructions) = $crate::parser::tokenize(stringify!($instr)).unwrap();
instructions[0].to_labelled_instruction()
}};
}
/// Prove correct execution of a program written in Triton assembly.
/// This is a convenience function, abstracting away the details of the STARK construction.
/// If you want to have more control over the STARK construction, this method can serve as a
/// reference for how to use Triton VM.
///
/// Note that all arithmetic is in the prime field with 2^64 - 2^32 + 1 elements. If the
/// provided public input or secret input contains elements larger than this, proof generation
/// will be aborted.
///
/// The program executed by Triton VM must terminate gracefully, i.e., with instruction `halt`.
/// If the program crashes, _e.g._, due to an out-of-bounds instruction pointer or a failing
/// `assert` instruction, proof generation will fail.
///
/// The default STARK parameters used by Triton VM give a (conjectured) security level of 160 bits.
pub fn prove_program(
program: &Program,
public_input: PublicInput,
non_determinism: NonDeterminism,
) -> Result<(Stark, Claim, Proof), ProvingError> {
// Generate
// - the witness required for proof generation, i.e., the Algebraic Execution Trace (AET), and
// - the (public) output of the program.
//
// Crashes in the VM can occur for many reasons. For example:
// - due to failing `assert` instructions,
// - due to an out-of-bounds instruction pointer,
// - if the program does not terminate gracefully, _i.e._, with instruction `halt`,
// - if any of the two inputs does not conform to the program,
// - because of a bug in the program, among other things.
// If the VM crashes, proof generation will fail.
let (aet, public_output) = program.trace_execution(public_input.clone(), non_determinism)?;
// Set up the claim that is to be proven. The claim contains all public information. The
// proof is zero-knowledge with respect to everything else.
//
// While it is more convenient to construct a `Claim::about_program(&program)`, this API is
// purposefully not used here to highlight that only a program's hash digest, not the full
// program, is part of the claim.
let claim = Claim {
program_digest: program.hash::<Tip5>(),
input: public_input.individual_tokens,
output: public_output,
};
// The default parameters give a (conjectured) security level of 160 bits.
let stark = Stark::default();
// Generate the proof.
let proof = stark.prove(&claim, &aet, &mut None)?;
Ok((stark, claim, proof))
}
/// A convenience function for proving a [`Claim`] and the program that claim corresponds to.
/// Method [`prove_program`] gives a simpler interface with less control.
pub fn prove(
stark: Stark,
claim: &Claim,
program: &Program,
non_determinism: NonDeterminism,
) -> Result<Proof, ProvingError> {
let program_digest = program.hash::<Tip5>();
if program_digest != claim.program_digest {
return Err(ProvingError::ProgramDigestMismatch);
}
let (aet, public_output) = program.trace_execution((&claim.input).into(), non_determinism)?;
if public_output != claim.output {
return Err(ProvingError::PublicOutputMismatch);
}
stark.prove(claim, &aet, &mut None)
}
/// Verify a proof generated by [`prove`] or [`prove_program`].
///
/// Use [`Stark::verify`] for more verbose verification failures.
#[must_use]
pub fn verify(stark: Stark, claim: &Claim, proof: &Proof) -> bool {
stark.verify(claim, proof, &mut None).is_ok()
}
#[cfg(test)]
mod tests {
use assert2::assert;
use assert2::let_assert;
use proptest::prelude::*;
use proptest_arbitrary_interop::arb;
use test_strategy::proptest;
use crate::instruction::LabelledInstruction;
use crate::instruction::TypeHint;
use super::*;
#[proptest]
fn prove_verify_knowledge_of_hash_preimage(
#[strategy(arb())] hash_preimage: Digest,
#[strategy(arb())] some_tie_to_an_outer_context: Digest,
) {
let hash_digest = hash_preimage.hash::<Tip5>().values();
let program = triton_program! {
divine 5
hash
push {hash_digest[4]}
push {hash_digest[3]}
push {hash_digest[2]}
push {hash_digest[1]}
push {hash_digest[0]}
assert_vector
read_io 5
halt
};
let public_input = PublicInput::from(some_tie_to_an_outer_context.reversed().values());
let non_determinism = NonDeterminism::new(hash_preimage.reversed().values());
let maybe_proof = prove_program(&program, public_input.clone(), non_determinism);
let (stark, claim, proof) =
maybe_proof.map_err(|err| TestCaseError::Fail(err.to_string().into()))?;
prop_assert_eq!(Stark::default(), stark);
let verdict = verify(stark, &claim, &proof);
prop_assert!(verdict);
prop_assert!(claim.output.is_empty());
let expected_program_digest = program.hash::<Tip5>();
prop_assert_eq!(expected_program_digest, claim.program_digest);
prop_assert_eq!(public_input.individual_tokens, claim.input);
}
#[test]
fn lib_use_initial_ram() {
let program = triton_program!(
push 51 read_mem 1 pop 1
push 42 read_mem 1 pop 1
mul
write_io 1 halt
);
let public_input = PublicInput::default();
let initial_ram = [(42, 17), (51, 13)].map(|(address, v)| (bfe!(address), bfe!(v)));
let non_determinism = NonDeterminism::default().with_ram(initial_ram);
let (stark, claim, proof) = prove_program(&program, public_input, non_determinism).unwrap();
assert!(13 * 17 == claim.output[0].value());
let verdict = verify(stark, &claim, &proof);
assert!(verdict);
}
#[test]
fn lib_prove_verify() {
let program = triton_program!(push 1 assert halt);
let claim = Claim::about_program(&program);
let stark = Stark::default();
let proof = prove(stark, &claim, &program, [].into()).unwrap();
let verdict = verify(stark, &claim, &proof);
assert!(verdict);
}
#[test]
fn lib_prove_with_incorrect_program_digest_gives_appropriate_error() {
let program = triton_program!(push 1 assert halt);
let other_program = triton_program!(push 2 assert halt);
let claim = Claim::about_program(&other_program);
let stark = Stark::default();
let_assert!(Err(err) = prove(stark, &claim, &program, [].into()));
assert!(let ProvingError::ProgramDigestMismatch = err);
}
#[test]
fn lib_prove_with_incorrect_public_output_gives_appropriate_error() {
let program = triton_program! { read_io 1 push 2 mul write_io 1 halt };
let claim = Claim::about_program(&program)
.with_input(vec![bfe!(2)])
.with_output(vec![bfe!(5)]);
let stark = Stark::default();
let_assert!(Err(err) = prove(stark, &claim, &program, [].into()));
assert!(let ProvingError::PublicOutputMismatch = err);
}
#[test]
fn nested_triton_asm_interpolation() {
let double_write = triton_asm![write_io 1; 2];
let quadruple_write = triton_asm!({&double_write} write_io 2);
let snippet_0 = triton_asm!(push 7 nop call my_label);
let snippet_1 = triton_asm!(pop 2 halt my_label: push 8 push 9 {&quadruple_write});
let source_code = triton_asm!(push 6 {&snippet_0} {&snippet_1} halt);
let program = triton_program!({ &source_code });
let public_output = program.run([].into(), [].into()).unwrap();
let expected_output = [9, 8, 7, 6].map(BFieldElement::new).to_vec();
assert_eq!(expected_output, public_output);
}
#[test]
fn triton_asm_interpolation_of_many_pops() {
let push_25 = triton_asm![push 0; 25];
let pop_25 = triton_asm![pop 5; 5];
let program = triton_program! { push 1 { &push_25 } { &pop_25 } assert halt };
let _ = program.run([].into(), [].into()).unwrap();
}
#[test]
#[should_panic(expected = "IndexOutOfBounds(0)")]
fn parsing_pop_with_illegal_argument_fails() {
let _ = triton_instr!(pop 0);
}
#[test]
fn triton_asm_macro_can_parse_type_hints() {
let instructions = triton_asm!(
hint name_0: Type0 = stack[0..8]
hint name_1 = stack[1..9]
hint name_2: Type2 = stack[2]
hint name_3 = stack[3]
);
assert!(4 == instructions.len());
let_assert!(LabelledInstruction::TypeHint(type_hint_0) = instructions[0].clone());
let_assert!(LabelledInstruction::TypeHint(type_hint_1) = instructions[1].clone());
let_assert!(LabelledInstruction::TypeHint(type_hint_2) = instructions[2].clone());
let_assert!(LabelledInstruction::TypeHint(type_hint_3) = instructions[3].clone());
let expected_type_hint_0 = TypeHint {
starting_index: 0,
length: 8,
type_name: Some("Type0".to_string()),
variable_name: "name_0".to_string(),
};
let expected_type_hint_1 = TypeHint {
starting_index: 1,
length: 8,
type_name: None,
variable_name: "name_1".to_string(),
};
let expected_type_hint_2 = TypeHint {
starting_index: 2,
length: 1,
type_name: Some("Type2".to_string()),
variable_name: "name_2".to_string(),
};
let expected_type_hint_3 = TypeHint {
starting_index: 3,
length: 1,
type_name: None,
variable_name: "name_3".to_string(),
};
assert!(expected_type_hint_0 == type_hint_0);
assert!(expected_type_hint_1 == type_hint_1);
assert!(expected_type_hint_2 == type_hint_2);
assert!(expected_type_hint_3 == type_hint_3);
}
#[test]
fn triton_program_macro_can_parse_type_hints() {
let program = triton_program! {
push 3 hint loop_counter = stack[0]
call my_loop
pop 1
halt
my_loop:
dup 0 push 0 eq
hint return_condition: bool = stack[0]
skiz return
divine 3
swap 3
hint magic_number: XFE = stack[1..4]
hint fizzled_magic = stack[5..8]
recurse
};
let expected_type_hint_address_02 = TypeHint {
starting_index: 0,
length: 1,
type_name: None,
variable_name: "loop_counter".to_string(),
};
let expected_type_hint_address_12 = TypeHint {
starting_index: 0,
length: 1,
type_name: Some("bool".to_string()),
variable_name: "return_condition".to_string(),
};
let expected_type_hint_address_18_0 = TypeHint {
starting_index: 1,
length: 3,
type_name: Some("XFE".to_string()),
variable_name: "magic_number".to_string(),
};
let expected_type_hint_address_18_1 = TypeHint {
starting_index: 5,
length: 3,
type_name: None,
variable_name: "fizzled_magic".to_string(),
};
assert!(vec![expected_type_hint_address_02] == program.type_hints_at(2));
assert!(vec![expected_type_hint_address_12] == program.type_hints_at(12));
let expected_type_hints_address_18 = vec![
expected_type_hint_address_18_0,
expected_type_hint_address_18_1,
];
assert!(expected_type_hints_address_18 == program.type_hints_at(18));
}
}