trig_const/sin.rs
1// origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
2//
3// ====================================================
4// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5//
6// Developed at SunPro, a Sun Microsystems, Inc. business.
7// Permission to use, copy, modify, and distribute this
8// software is freely granted, provided that this notice
9// is preserved.
10// ====================================================
11
12// sin(x)
13// Return sine function of x.
14//
15// kernel function:
16// k_sin ... sine function on [-pi/4,pi/4]
17// k_cos ... cose function on [-pi/4,pi/4]
18// rem_pio2 ... argument reduction routine
19//
20// Method.
21// Let S,C and T denote the sin, cos and tan respectively on
22// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
23// in [-pi/4 , +pi/4], and let n = k mod 4.
24// We have
25//
26// n sin(x) cos(x) tan(x)
27// ----------------------------------------------------------
28// 0 S C T
29// 1 C -S -1/T
30// 2 -S -C T
31// 3 -C S -1/T
32// ----------------------------------------------------------
33//
34// Special cases:
35// Let trig be any of sin, cos, or tan.
36// trig(+-INF) is NaN, with signals;
37// trig(NaN) is that NaN;
38//
39// Accuracy:
40// TRIG(x) returns trig(x) nearly rounded
41
42use crate::{k_cos::k_cos, k_sin::k_sin, rem_pio2::rem_pio2};
43
44/// Sine
45///
46/// ```
47/// # use trig_const::sin;
48/// # use core::f64::consts::PI;
49/// # fn float_eq(lhs: f64, rhs: f64) { assert!((lhs - rhs).abs() < 0.0001, "lhs: {}, rhs: {}", lhs, rhs); }
50/// const SIN_PI: f64 = sin(PI);
51/// float_eq(SIN_PI, 0.0);
52/// ```
53pub const fn sin(x: f64) -> f64 {
54 /* High word of x. */
55 let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
56
57 /* |x| ~< pi/4 */
58 if ix <= 0x3fe921fb {
59 if ix < 0x3e500000 {
60 /* |x| < 2**-26 */
61 /* raise inexact if x != 0 and underflow if subnormal*/
62 return x;
63 }
64 return k_sin(x, 0.0, 0);
65 }
66
67 /* sin(Inf or NaN) is NaN */
68 if ix >= 0x7ff00000 {
69 return f64::NAN;
70 }
71
72 /* argument reduction needed */
73 let (n, y0, y1) = rem_pio2(x);
74 match n & 3 {
75 0 => k_sin(y0, y1, 1),
76 1 => k_cos(y0, y1),
77 2 => -k_sin(y0, y1, 1),
78 _ => -k_cos(y0, y1),
79 }
80}