transmutation 0.3.1

High-performance document conversion engine for AI/LLM embeddings - 27 formats supported
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
# Transmutation


**High-performance document conversion engine for AI/LLM embeddings**

Transmutation is a **pure Rust** document conversion engine designed to transform various file formats into optimized text and image outputs suitable for LLM processing and vector embeddings. Built as a core component of the HiveLLM Vectorizer ecosystem, Transmutation is a **high-performance alternative to Docling**, offering superior speed, lower memory usage, and zero runtime dependencies.

## šŸŽÆ Project Goals


- **Pure Rust implementation** - No Python dependencies, maximum performance
- Convert documents to LLM-friendly formats (Markdown, Images, JSON)
- Optimize output for embedding generation (text and multimodal)
- Maintain maximum quality with minimum size
- **Competitor to Docling** - **98x faster**, more efficient, and easier to deploy
- Seamless integration with HiveLLM Vectorizer

## šŸ“Š Benchmark Results


**Transmutation vs Docling** (Fast Mode - Pure Rust):

| Metric | Paper 1 (15 pages) | Paper 2 (25 pages) | Average |
|--------|--------------------|--------------------|---------|
| **Similarity** | 76.36% | 84.44% | **80.40%** |
| **Speed** | 108x faster | 88x faster | **98x faster** |
| **Time (Docling)** | 31.36s | 40.56s | ~35s |
| **Time (Transmutation)** | 0.29s | 0.46s | ~0.37s |

- āœ… **80% similarity** - Acceptable for most use cases
- āœ… **98x faster** - Near-instant conversion  
- āœ… **Pure Rust** - No Python/ML dependencies
- āœ… **Low memory** - 50 MB footprint
- šŸŽÆ **Goal**: 95% similarity (Precision Mode with C++ FFI - in development)

See [BENCHMARK_COMPARISON.md](BENCHMARK_COMPARISON.md) for detailed results.

## šŸ“‹ Supported Formats


### Document Formats


| Input Format | Output Options | Status | Modes |
|-------------|----------------|---------|-------|
| **PDF** | Image per page, Markdown (per page/full), JSON | āœ… **Production** | Fast, Precision, FFI |
| **DOCX** | Image per page, Markdown (per page/full), JSON | āœ… **Production** | Pure Rust + LibreOffice |
| **XLSX** | Markdown tables, CSV, JSON | āœ… **Production** | Pure Rust (148 pg/s) |
| **PPTX** | Image per slide, Markdown per slide | āœ… **Production** | Pure Rust (1639 pg/s) |
| **HTML** | Markdown, JSON | āœ… **Production** | Pure Rust (2110 pg/s) |
| **XML** | Markdown, JSON | āœ… **Production** | Pure Rust (2353 pg/s) |
| **TXT** | Markdown, JSON | āœ… **Production** | Pure Rust (2805 pg/s) |
| **CSV/TSV** | Markdown tables, JSON | āœ… **Production** | Pure Rust (2647 pg/s) |
| **RTF** | Markdown, JSON | āš ļø **Beta** | Pure Rust (simplified parser) |
| **ODT** | Markdown, JSON | āš ļø **Beta** | Pure Rust (ZIP + XML) |
| **MD** | Markdown (normalized), JSON | šŸ”„ Planned | - |

### Image Formats (OCR)


| Input Format | Output Options | OCR Engine | Status |
|-------------|----------------|------------|---------|
| **JPG/JPEG** | Markdown (OCR), JSON | Tesseract | āœ… **Production** |
| **PNG** | Markdown (OCR), JSON | Tesseract | āœ… **Production** |
| **TIFF/TIF** | Markdown (OCR), JSON | Tesseract | āœ… **Production** |
| **BMP** | Markdown (OCR), JSON | Tesseract | āœ… **Production** |
| **GIF** | Markdown (OCR), JSON | Tesseract | āœ… **Production** |
| **WEBP** | Markdown (OCR), JSON | Tesseract | āœ… **Production** |

### Audio/Video Formats


| Input Format | Output Options | Engine | Status |
|-------------|----------------|---------|---------|
| **MP3** | Markdown (transcription), JSON | Whisper | āœ… **Production** |
| **WAV** | Markdown (transcription), JSON | Whisper | āœ… **Production** |
| **M4A** | Markdown (transcription), JSON | Whisper | āœ… **Production** |
| **FLAC** | Markdown (transcription), JSON | Whisper | āœ… **Production** |
| **OGG** | Markdown (transcription), JSON | Whisper | āœ… **Production** |
| **MP4** | Markdown (transcription), JSON | FFmpeg + Whisper | āœ… **Production** |
| **AVI** | Markdown (transcription), JSON | FFmpeg + Whisper | āœ… **Production** |
| **MKV** | Markdown (transcription), JSON | FFmpeg + Whisper | āœ… **Production** |
| **MOV** | Markdown (transcription), JSON | FFmpeg + Whisper | āœ… **Production** |
| **WEBM** | Markdown (transcription), JSON | FFmpeg + Whisper | āœ… **Production** |

### Archive Formats


| Input Format | Output Options | Status | Performance |
|-------------|----------------|---------|-------------|
| **ZIP** | File listing, statistics, Markdown index, JSON | āœ… **Production** | Pure Rust (1864 pg/s) |
| **TAR/GZ** | Extract and process contents | šŸ”„ Planned | - |
| **7Z** | Extract and process contents | šŸ”„ Planned | - |

## šŸš€ Quick Start


### Installation


**Windows MSI Installer:**
```powershell
# Download from releases or build:

.\build-msi.ps1
msiexec /i target\wix\transmutation-0.3.0-x86_64.msi
```
See [`docs/MSI_BUILD.md`](docs/MSI_BUILD.md) for details.

**Cargo:**
```bash
# Add to Cargo.toml

[dependencies]
transmutation = "0.2"

# Core features (always enabled, no flags needed):

# - PDF, HTML, XML, ZIP, TXT, CSV, TSV, RTF, ODT


# With Office formats (default)

[dependencies.transmutation]
version = "0.2"
features = ["office"]  # DOCX, XLSX, PPTX

# With optional features (requires external tools)

features = ["office", "pdf-to-image", "tesseract", "audio"]
```

### External Dependencies


Transmutation is **mostly pure Rust**, with **core features requiring ZERO dependencies**:

| Feature | Requires | Status |
|---------|----------|---------|
| **Core** (PDF, HTML, XML, ZIP, TXT, CSV, TSV, RTF, ODT) | āœ… **None** | Always enabled |
| `office` (DOCX, XLSX, PPTX - Text) | āœ… **None** | Pure Rust (default) |
| `pdf-to-image` | āš ļø poppler-utils | Optional |
| `office` + images | āš ļø LibreOffice | Optional |
| `image-ocr` | āš ļø Tesseract OCR | Optional |
| `audio` | āš ļø Whisper CLI | Optional |
| `video` | āš ļø FFmpeg + Whisper | Optional |
| `archives-extended` (TAR, GZ, 7Z) | āš ļø tar, flate2 crates | Optional |

**During compilation**, `build.rs` will automatically **detect missing dependencies** and provide installation instructions:

```bash
cargo build --features "pdf-to-image"

# If pdftoppm is missing, you'll see:

āš ļø  Optional External Dependencies Missing

  āŒ pdftoppm (poppler-utils): PDF → Image conversion
     Install: sudo apt-get install poppler-utils

šŸ“– Quick install (all dependencies):
   ./install/install-deps-linux.sh
```

**Installation scripts** are provided for all platforms:
- **Linux**: `./install/install-deps-linux.sh`
- **macOS**: `./install/install-deps-macos.sh`  
- **Windows**: `.\install\install-deps-windows.ps1` (or `.bat`)

See [`install/README.md`](install/README.md) for detailed instructions.

## šŸ“– Usage Guide


### CLI Usage


**Basic Conversion:**
```bash
# Convert PDF to Markdown

transmutation convert document.pdf -o output.md

# Convert DOCX to Markdown with images

transmutation convert report.docx -o output.md --extract-images

# Convert with precision mode (77% similarity)

transmutation convert paper.pdf -o output.md --precision

# Convert multiple files

transmutation batch *.pdf -o output/ --parallel 4
```

**Format-Specific Examples:**
```bash
# PDF → Markdown (split by pages)

transmutation convert document.pdf -o output/ --split-pages

# DOCX → Markdown + Images

transmutation convert report.docx -o output.md --images

# XLSX → CSV

transmutation convert data.xlsx -o output.csv --format csv

# PPTX → Markdown (one file per slide)

transmutation convert slides.pptx -o output/ --split-slides

# Image OCR → Markdown

transmutation convert scan.jpg -o output.md --ocr --lang eng

# ZIP → Extract and convert all

transmutation convert archive.zip -o output/ --recursive
```

**Advanced Options:**
```bash
# Optimize for LLM embeddings

transmutation convert document.pdf \
  --optimize-llm \
  --max-chunk-size 512 \
  --remove-headers \
  --normalize-whitespace

# High-quality image extraction

transmutation convert document.pdf \
  --extract-images \
  --dpi 300 \
  --image-quality high

# Batch processing with progress

transmutation batch papers/*.pdf \
  -o converted/ \
  --parallel 8 \
  --progress \
  --format markdown
```

### Library Usage (Rust)


**Basic Conversion:**
```rust
use transmutation::{Converter, OutputFormat, ConversionOptions};

#[tokio::main]

async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize converter
    let converter = Converter::new()?;
    
    // Convert PDF to Markdown
    let result = converter
        .convert("document.pdf")
        .to(OutputFormat::Markdown)
        .with_options(ConversionOptions {
            split_pages: true,
            optimize_for_llm: true,
            ..Default::default()
        })
        .execute()
        .await?;
    
    // Save output
    result.save("output/document.md").await?;
    
    println!("Converted {} pages", result.page_count());
    Ok(())
}
```

### Batch Processing


```rust
use transmutation::{Converter, BatchProcessor, OutputFormat};

#[tokio::main]

async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let converter = Converter::new()?;
    let batch = BatchProcessor::new(converter);
    
    // Process multiple files
    let results = batch
        .add_files(&["doc1.pdf", "doc2.docx", "doc3.pptx"])
        .to(OutputFormat::Markdown)
        .parallel(4)
        .execute()
        .await?;
    
    for (file, result) in results {
        println!("{}: {} -> {}", file, result.input_size(), result.output_size());
    }
    
    Ok(())
}
```

### Vectorizer Integration


```rust
use transmutation::{Converter, OutputFormat};
use vectorizer::VectorizerClient;

#[tokio::main]

async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let converter = Converter::new()?;
    let vectorizer = VectorizerClient::new("http://localhost:15002").await?;
    
    // Convert and embed in one pipeline
    let result = converter
        .convert("document.pdf")
        .to(OutputFormat::EmbeddingReady)
        .pipe_to(&vectorizer)
        .execute()
        .await?;
    
    println!("Embedded {} chunks", result.chunk_count());
    Ok(())
}
```

### Python Usage (PyO3 Bindings - Future)


```python
from transmutation import Converter, OutputFormat

# Initialize converter

converter = Converter()

# Convert PDF to Markdown

result = converter.convert(
    "document.pdf",
    output_format=OutputFormat.Markdown,
    split_pages=True,
    optimize_for_llm=True
)

result.save("output/document.md")
print(f"Converted {result.page_count()} pages")

# Batch processing

from transmutation import BatchProcessor

batch = BatchProcessor(converter)
results = batch.add_files([
    "doc1.pdf",
    "doc2.docx",
    "doc3.pptx"
]).to(OutputFormat.Markdown).parallel(4).execute()

for file, result in results:
    print(f"{file}: {result.input_size()} -> {result.output_size()}")
```

### JavaScript/TypeScript (Neon Bindings - Future)


```typescript
import { Converter, OutputFormat, ConversionOptions } from 'transmutation';

// Initialize converter
const converter = new Converter();

// Convert PDF to Markdown
const result = await converter
  .convert('document.pdf')
  .to(OutputFormat.Markdown)
  .withOptions({
    splitPages: true,
    optimizeForLlm: true,
    extractImages: false
  })
  .execute();

await result.save('output/document.md');
console.log(`Converted ${result.pageCount()} pages`);

// Batch processing
import { BatchProcessor } from 'transmutation';

const batch = new BatchProcessor(converter);
const results = await batch
  .addFiles(['doc1.pdf', 'doc2.docx', 'doc3.pptx'])
  .to(OutputFormat.Markdown)
  .parallel(4)
  .execute();

results.forEach(([file, result]) => {
  console.log(`${file}: ${result.inputSize()} -> ${result.outputSize()}`);
});
```

## šŸŽÆ Common Use Cases


### 1. RAG System Document Ingestion


```bash
# Convert research papers for semantic search

transmutation batch papers/*.pdf \
  -o embeddings/ \
  --optimize-llm \
  --split-pages \
  --max-chunk-size 512 \
  --parallel 8

# Then index with Vectorizer

vectorizer insert --collection research_papers embeddings/*.md
```

### 2. Document Archive Migration


```bash
# Convert legacy documents to Markdown

transmutation batch archive/ \
  -o markdown/ \
  --recursive \
  --format markdown \
  --parallel 16 \
  --progress

# Supported: PDF, DOCX, XLSX, PPTX, RTF, ODT, HTML, XML

```

### 3. OCR for Scanned Documents


```bash
# Batch OCR with Tesseract

transmutation batch scans/*.jpg \
  -o text/ \
  --ocr \
  --lang eng \
  --dpi 300 \
  --parallel 4

# Multi-language support

transmutation convert document_pt.jpg \
  -o output.md \
  --ocr \
  --lang por
```

### 4. Legal Document Processing


```bash
# Convert legal PDFs with high precision

transmutation convert contract.pdf \
  -o contract.md \
  --precision \
  --preserve-layout \
  --extract-tables \
  --include-metadata

# Batch process court documents

transmutation batch cases/*.pdf \
  -o processed/ \
  --precision \
  --parallel 4
```

### 5. Academic Paper Analysis


```bash
# Extract text from arXiv papers

transmutation batch papers/*.pdf \
  -o markdown/ \
  --split-pages \
  --extract-tables \
  --normalize-whitespace

# Create embeddings for similarity search

vectorizer insert --collection arxiv markdown/*.md
```

### 6. Data Extraction from Spreadsheets


```bash
# Convert Excel to Markdown tables

transmutation convert data.xlsx -o tables.md --format markdown

# Convert to CSV for analysis

transmutation convert data.xlsx -o data.csv --format csv

# Convert to JSON

transmutation convert data.xlsx -o data.json --format json
```

### 7. Presentation Content Extraction


```bash
# Extract text from PowerPoint slides

transmutation convert presentation.pptx \
  -o slides/ \
  --split-slides \
  --extract-images \
  --format markdown

# Batch process training materials

transmutation batch trainings/*.pptx \
  -o content/ \
  --split-slides \
  --parallel 8
```

### 8. Web Content Archiving


```bash
# Convert saved HTML pages

transmutation batch pages/*.html \
  -o markdown/ \
  --format markdown \
  --normalize-whitespace

# Process downloaded documentation

transmutation batch docs/*.html \
  -o processed/ \
  --extract-images \
  --parallel 4
```

## šŸ”§ Configuration


### Conversion Options


```rust
pub struct ConversionOptions {
    // Output control
    pub split_pages: bool,           // Split output by pages
    pub optimize_for_llm: bool,      // Optimize for LLM processing
    pub max_chunk_size: usize,       // Maximum chunk size (tokens)
    
    // Quality settings
    pub image_quality: ImageQuality, // High, Medium, Low
    pub dpi: u32,                    // DPI for image output (default: 150)
    pub ocr_language: String,        // OCR language (default: "eng")
    
    // Processing options
    pub preserve_layout: bool,       // Preserve document layout
    pub extract_tables: bool,        // Extract tables separately
    pub extract_images: bool,        // Extract embedded images
    pub include_metadata: bool,      // Include document metadata
    
    // Optimization
    pub compression_level: u8,       // 0-9 for output compression
    pub remove_headers_footers: bool,
    pub remove_watermarks: bool,
    pub normalize_whitespace: bool,
}
```

## šŸ†š Why Transmutation vs Docling?


| Feature | Transmutation | Docling |
|---------|--------------|---------|
| **Language** | 100% Rust | Python |
| **Performance** | āœ… **250x faster** | Baseline |
| **Memory Usage** | āœ… ~20MB | ~2-3GB |
| **Dependencies** | āœ… Zero runtime deps | Python + ML models |
| **Deployment** | āœ… Single binary (~5MB) | Python env + models (~2GB) |
| **Startup Time** | āœ… <100ms | ~5-10s |
| **Platform Support** | āœ… Windows/Mac/Linux | Requires Python |

### LLM Framework Integrations


- **LangChain**: Document loaders and text splitters
- **LlamaIndex**: Document readers and node parsers
- **Haystack**: Document converters and preprocessors
- **DSPy**: Optimized document processing

## šŸ“Š Performance


### Real-World Benchmarks āœ…


**Test Document:** Attention Is All You Need (arXiv:1706.03762v7.pdf)  
**Size:** 2.22 MB, 15 pages

| Metric | Transmutation | Docling | Improvement |
|--------|--------------|---------|-------------|
| **Conversion Time** | 0.21s | 52.68s | āœ… **250x faster** |
| **Processing Speed** | 71 pages/sec | 0.28 pages/sec | āœ… **254x faster** |
| **Memory Usage** | ~20MB | ~2-3GB | āœ… **100-150x less** |
| **Startup Time** | <0.1s | ~6s | āœ… **60x faster** |
| **Output Quality (Fast)** | 71.8% similarity | 100% (reference) | āš ļø **Trade-off** |
| **Output Quality (Precision)** | 77.3% similarity | 100% (reference) | āš ļø **+5.5% better** |

### Projected Performance


| Operation | Input Size | Time | Throughput |
|-----------|-----------|------|------------|
| PDF → Markdown | 2.2MB (15 pages) | 0.21s | **71 pages/s** āœ… |
| PDF → Markdown | 10MB (100 pages) | ~1.4s | **71 pages/s** |
| Batch (1,000 PDFs) | 2.2GB (15,000 pages) | ~4 min | **3,750 pages/min** |

### Memory Footprint


- Base: ~20MB (pure Rust, no Python runtime) āœ…
- Per conversion: Minimal (streaming processing)
- No ML models required (unlike Docling's 2-3GB)

### Precision vs Performance Trade-off


**Fast Mode (default)** - 71.8% similarity:
- āœ… 250x faster than Docling
- āœ… Pure Rust with basic text heuristics
- āœ… Works on any PDF without training
- āœ… Zero runtime dependencies

**Precision Mode (`--precision`)** - 77.3% similarity:
- āœ… 250x faster than Docling (same speed as fast mode)
- āœ… Enhanced text processing with space correction
- āœ… +5.5% better than fast mode
- āœ… No hardcoded rules, all generic heuristics

**Why not 95%+ similarity?**

Docling uses:
1. **`docling-parse`** (C++ library) - Extracts text with precise coordinates, fonts, and layout info
2. **LayoutModel** (ML) - Deep learning to detect block types (headings, paragraphs, tables) visually
3. **ReadingOrderModel** (ML) - ML-based reading order determination

Transmutation provides **three modes**:

**1. Fast Mode (default):**
- Pure Rust text extraction (`pdf-extract`)
- Generic heuristics (no ML)
- 71.8% similarity, 250x faster

**2. Precision Mode (`--precision`):**
- Enhanced text processing
- Generic heuristics + space correction
- 77.3% similarity, 250x faster

**Future: C++ FFI Mode** - Direct integration with docling-parse (no Python):
- Will use C++ library via FFI for 95%+ similarity
- No Python dependency, pure Rust + C++ shared library
- In development

| Mode | Similarity | Speed | Memory | Dependencies |
|------|-----------|-------|--------|--------------|
| **Fast** | 71.8% | 250x | 50 MB | None (pure Rust) |
| **Precision** | 77.3% | 250x | 50 MB | None (pure Rust) |
| **FFI** *(future)* | 95%+ | ~50x | 100 MB | C++ shared lib only |

## šŸ›£ļø Roadmap


See [ROADMAP.md](ROADMAP.md) for detailed development plan.

### Phase 1: Foundation (Q1 2025) āœ… COMPLETE

- āœ… Project structure and architecture
- āœ… Core converter interfaces
- āœ… PDF conversion (pure Rust - pdf-extract)
- āœ… Advanced Markdown output with intelligent paragraph joining
- āœ… **98x faster than Docling** benchmark achieved (97 papers tested)

### Phase 1.5: Distribution & Tooling (Oct 2025) āœ… COMPLETE

- āœ… Windows MSI installer with dependency management
- āœ… Custom icons and professional branding
- āœ… Multi-platform installation scripts (5 variants)
- āœ… Build-time dependency detection
- āœ… Comprehensive documentation

### Phase 2: Core Formats (Q2 2025) āœ… 100% COMPLETE

- āœ… **DOCX conversion** (Markdown + Images - Pure Rust)
- āœ… **XLSX conversion** (Markdown/CSV/JSON - Pure Rust, 148 pg/s)
- āœ… **PPTX conversion** (Markdown/Images - Pure Rust, 1639 pg/s)
- āœ… **HTML/XML conversion** (Pure Rust, 2110-2353 pg/s)
- āœ… **Text formats** (TXT, CSV, TSV, RTF, ODT - Pure Rust)
- āœ… **11 formats** total (8 production, 2 beta)

### Phase 2.5: Core Features Architecture āœ… COMPLETE

- āœ… Core formats always enabled (no feature flags)
- āœ… Simplified API and user experience
- āœ… Faster compilation

### Phase 3: Advanced Features (Q3 2025) āœ… COMPLETE

- āœ… **Archive handling** (ZIP, TAR, TAR.GZ - 1864 pg/s)
- āœ… **Batch processing** (Concurrent with Tokio - 4,627 pg/s)
- āœ… **Image OCR** (Tesseract - 6 formats, 88x faster than Docling)

### Phase 4: Advanced Optimizations

- šŸ“ Performance optimizations
- šŸ“ Quality improvements (RTF, ODT)
- šŸ“ Memory optimizations
- šŸ“ v1.0.0 Release

## šŸ¤ Contributing


See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.

## šŸ“ License


MIT License - see [LICENSE](LICENSE) for details.

## šŸ“ Changelog


See [CHANGELOG.md](CHANGELOG.md) for detailed version history and release notes.

**Current Version**: 0.3.0 (December 6, 2025)

## šŸ”— Links


- **GitHub**: https://github.com/hivellm/transmutation
- **Documentation**: https://docs.hivellm.org/transmutation
- **Changelog**: [CHANGELOG.md]CHANGELOG.md
- **Docling Project**: https://github.com/docling-project
- **HiveLLM Vectorizer**: https://github.com/hivellm/vectorizer

## šŸ† Credits


Built with ā¤ļø by the HiveLLM Team

**Pure Rust implementation** - No Python, no ML model dependencies

Powered by:
- [lopdf]https://github.com/J-F-Liu/lopdf - Pure Rust PDF parsing
- [docx-rs]https://github.com/bokuweb/docx-rs - Pure Rust DOCX parsing
- [Tesseract]https://github.com/tesseract-ocr/tesseract - OCR engine (optional)
- [FFmpeg]https://ffmpeg.org/ - Multimedia processing (optional)

**Inspired by** [Docling](https://github.com/docling-project), but built to be faster, lighter, and easier to deploy.

---

**Status**: āœ… v0.3.0 - Performance & Memory Optimization Release

**Latest Updates (v0.3.0)**:
- ⚔ **Memory Optimization**: Cached regex patterns, pre-allocated buffers
- šŸ”§ **Fixed O(n²) Issue**: Page extraction now O(n) for split-pages mode
- šŸš€ **Reduced Memory Pressure**: Early release of PDF bytes after extraction
- šŸ“‰ **Lower Memory Footprint**: Especially beneficial for library usage