1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
use crate::{AggregationRule, ModularCandle, TakerTrade};

/// The resolution of the "TakerTrade" timestamps
#[derive(Debug, Clone, Copy)]
pub enum TimestampResolution {
    /// The timestamp of the TakerTrade is measured in seconds
    Second,

    /// The timestamp of the TakerTrade is measured in milliseconds
    Millisecond,

    /// The timestamp of the TakerTrade is measured in microseconds
    Microsecond,

    /// The timestamp of the TakerTrade is measured in nanoseconds
    Nanosecond,
}

/// The classic time based aggregation rule,
/// creating a new candle every n seconds
#[derive(Debug, Clone)]
pub struct TimeRule {
    /// If true, the reference timestamp needs to be reset
    init: bool,

    // The timestamp this rule uses as a reference
    reference_timestamp: i64,

    // The period for the candle in seconds
    // constants can be used nicely here from constants.rs
    // e.g.: M1 -> 1 minute candles
    period_s: i64,
}

impl TimeRule {
    /// Create a new instance of the time rule,
    /// with a given candle period in seconds
    ///
    /// # Arguments:
    /// period_s: How many seconds a candle will contain
    /// ts_res: The resolution each Trade timestamp will have
    ///
    pub fn new(period_s: i64, ts_res: TimestampResolution) -> Self {
        let ts_multiplier = match ts_res {
            TimestampResolution::Second => 1,
            TimestampResolution::Millisecond => 1_000,
            TimestampResolution::Microsecond => 1_000_000,
            TimestampResolution::Nanosecond => 1_000_000_000,
        };

        Self {
            init: true,
            reference_timestamp: 0,
            period_s: period_s * ts_multiplier,
        }
    }
}

impl<C, T> AggregationRule<C, T> for TimeRule
where
    C: ModularCandle<T>,
    T: TakerTrade,
{
    fn should_trigger(&mut self, trade: &T, _candle: &C) -> bool {
        if self.init {
            self.reference_timestamp = trade.timestamp();
            self.init = false;
        }
        let should_trigger = trade.timestamp() - self.reference_timestamp > self.period_s;
        if should_trigger {
            self.init = true;
        }

        should_trigger
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        aggregate_all_trades, load_trades_from_csv,
        plot::{plot_ohlc_candles, OhlcCandle},
        GenericAggregator, Trade, H1, M15, M5,
    };

    #[test]
    fn time_candles_plot() {
        let trades = load_trades_from_csv("data/Bitmex_XBTUSD_1M.csv").unwrap();

        let mut aggregator = GenericAggregator::<OhlcCandle, TimeRule, Trade>::new(
            TimeRule::new(M15, TimestampResolution::Millisecond),
            false,
        );
        let candles = aggregate_all_trades(&trades, &mut aggregator);
        println!("got {} candles", candles.len());

        plot_ohlc_candles(&candles, "img/time_candles_plot.png", (2560, 1440)).unwrap();
    }

    #[test]
    fn time_rule_differing_periods() {
        let trades = load_trades_from_csv("data/Bitmex_XBTUSD_1M.csv").unwrap();

        let mut aggregator = GenericAggregator::<OhlcCandle, TimeRule, Trade>::new(
            TimeRule::new(M15, TimestampResolution::Millisecond),
            false,
        );
        let candles = aggregate_all_trades(&trades, &mut aggregator);
        assert_eq!(candles.len(), 395);

        let mut aggregator = GenericAggregator::<OhlcCandle, TimeRule, Trade>::new(
            TimeRule::new(M5, TimestampResolution::Millisecond),
            false,
        );
        let candles = aggregate_all_trades(&trades, &mut aggregator);
        assert_eq!(candles.len(), 1180);

        let mut aggregator = GenericAggregator::<OhlcCandle, TimeRule, Trade>::new(
            TimeRule::new(H1, TimestampResolution::Millisecond),
            false,
        );
        let candles = aggregate_all_trades(&trades, &mut aggregator);
        assert_eq!(candles.len(), 99);
    }

    #[test]
    fn time_rule_differing_timestamp_resolutions() {
        // We know the XBTUSD series from Bitmex has millisecond timestamp resolution
        let trades_ms = load_trades_from_csv("data/Bitmex_XBTUSD_1M.csv").unwrap();

        // we can therefore transform them into seconds, microseconds and nanoseconds respectively
        let trades_s: Vec<Trade> = trades_ms
            .iter()
            .map(|v| Trade {
                timestamp: v.timestamp / 1000,
                price: v.price,
                size: v.size,
            })
            .collect();
        let trades_micros: Vec<Trade> = trades_ms
            .iter()
            .map(|v| Trade {
                timestamp: v.timestamp * 1000,
                price: v.price,
                size: v.size,
            })
            .collect();
        let trades_ns: Vec<Trade> = trades_ms
            .iter()
            .map(|v| Trade {
                timestamp: v.timestamp * 1_000_000,
                price: v.price,
                size: v.size,
            })
            .collect();

        // And make sure they produce the same number of candles regardless of timestamp resolution
        let mut aggregator = GenericAggregator::<OhlcCandle, TimeRule, Trade>::new(
            TimeRule::new(M15, TimestampResolution::Second),
            false,
        );
        let candles = aggregate_all_trades(&trades_s, &mut aggregator);
        assert_eq!(candles.len(), 395);

        let mut aggregator = GenericAggregator::<OhlcCandle, TimeRule, Trade>::new(
            TimeRule::new(M15, TimestampResolution::Millisecond),
            false,
        );
        let candles = aggregate_all_trades(&trades_ms, &mut aggregator);
        assert_eq!(candles.len(), 395);

        let mut aggregator = GenericAggregator::<OhlcCandle, TimeRule, Trade>::new(
            TimeRule::new(M15, TimestampResolution::Microsecond),
            false,
        );
        let candles = aggregate_all_trades(&trades_micros, &mut aggregator);
        assert_eq!(candles.len(), 395);

        let mut aggregator = GenericAggregator::<OhlcCandle, TimeRule, Trade>::new(
            TimeRule::new(M15, TimestampResolution::Nanosecond),
            false,
        );
        let candles = aggregate_all_trades(&trades_ns, &mut aggregator);
        assert_eq!(candles.len(), 395);
    }
}