1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
use crate::ops::prelude::*; use ndarray::*; #[derive(Debug, Clone, new, Default)] pub struct ArgMaxMin { max: bool, axis: usize, keepdims: bool, } impl ArgMaxMin { fn eval_t<T: Datum + PartialOrd>(&self, input: SharedTensor) -> TractResult<SharedTensor> { use std::cmp::Ordering; let array = input.to_array_view::<T>()?; let f: fn(&(usize, &T), &(usize, &T)) -> Ordering = if self.max { |a, b| a.1.partial_cmp(&b.1).unwrap_or(a.0.cmp(&b.0)) } else { |a, b| b.1.partial_cmp(&a.1).unwrap_or(a.0.cmp(&b.0)) }; let mut values = array.map_axis(Axis(self.axis), |row| { row.iter().enumerate().max_by(f).unwrap().0 as i64 }); if self.keepdims { values = values.insert_axis(Axis(self.axis)); } Ok(Tensor::from(values).into()) } } impl Op for ArgMaxMin { fn name(&self) -> Cow<str> { "ArgMaxMin".into() } } impl StatelessOp for ArgMaxMin { fn eval(&self, mut inputs: TVec<SharedTensor>) -> TractResult<TVec<SharedTensor>> { let input = args_1!(inputs); Ok(tvec!(dispatch_numbers!(Self::eval_t(input.datum_type())( self, input ))?)) } } impl InferenceRulesOp for ArgMaxMin { fn rules<'r, 'p: 'r, 's: 'r>( &'s self, s: &mut Solver<'r>, inputs: &'p SharedTensorsProxy, outputs: &'p SharedTensorsProxy, ) -> InferenceResult { s.equals(&inputs.len, 1)?; s.equals(&outputs.len, 1)?; s.equals(&outputs[0].datum_type, DatumType::I64)?; if self.keepdims { s.equals(&outputs[0].rank, &inputs[0].rank)?; for i in 0..self.axis { s.equals(&outputs[0].shape[i], &inputs[0].shape[i])?; } s.equals(&outputs[0].shape[self.axis], 1.to_dim())?; s.given(&inputs[0].rank, move |s, rank| { for i in (self.axis + 1)..(rank as usize) { s.equals(&outputs[0].shape[i], &inputs[0].shape[i])?; } Ok(()) })?; } else { s.equals(&outputs[0].rank, inputs[0].rank.bex() - 1)?; for i in 0..self.axis { s.equals(&outputs[0].shape[i], &inputs[0].shape[i])?; } s.given(&inputs[0].rank, move |s, rank| { for i in (self.axis + 1)..(rank as usize - 1) { s.equals(&outputs[0].shape[i], &inputs[0].shape[i + 1])?; } Ok(()) })?; }; Ok(()) } }