tracepoint_decode 0.4.1

Rust API for decoding tracepoints
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.

use core::fmt;
use core::mem;
use core::str;

use eventheader_types::*;

use crate::display;
use crate::writers;
use crate::PerfByteReader;
use crate::PerfConvertOptions;
use crate::PerfEventDecodingStyle;
use crate::PerfItemMetadata;
use crate::PerfItemValue;
use crate::PerfSampleEventInfo;

#[derive(Clone, Copy, Debug)]
enum SubState {
    Error,
    AfterLastItem,
    BeforeFirstItem,
    ValueMetadata,
    ValueScalar,
    ValueSimpleArrayElement,
    ValueComplexArrayElement,
    ArrayBegin,
    ArrayEnd,
    StructBegin,
    StructEnd,
}

// Returns (val, end_pos).
fn lowercase_hex_to_int(str: &[u8], start_pos: usize) -> (u64, usize) {
    let mut val: u64 = 0;
    let mut pos = start_pos;
    while pos < str.len() {
        let nibble;
        let ch = str[pos];
        if ch.is_ascii_digit() {
            nibble = ch - b'0';
        } else if (b'a'..=b'f').contains(&ch) {
            nibble = ch - b'a' + 10;
        } else {
            break;
        }

        val = (val << 4) + (nibble as u64);
        pos += 1;
    }

    return (val, pos);
}

#[derive(Clone, Copy, Debug)]
struct StackEntry {
    /// event_data[next_offset] starts next field's name.
    pub next_offset: u32,

    /// event_data[name_offset] starts current field's name.
    pub name_offset: u32,

    // event_data[name_offset + name_len + 1] starts current field's type.
    pub name_len: u16,

    pub array_index: u16,

    pub array_count: u16,

    /// Number of next_property() calls before popping stack.
    pub remaining_field_count: u8,

    pub _unused: u8,
}

impl StackEntry {
    pub const ZERO: StackEntry = StackEntry {
        next_offset: 0,
        name_offset: 0,
        name_len: 0,
        array_index: 0,
        array_count: 0,
        remaining_field_count: 0,
        _unused: 0,
    };
}

#[derive(Clone, Copy, Debug)]
struct FieldType {
    pub encoding: FieldEncoding,
    pub format: FieldFormat,
    pub tag: u16,
}

/// Values for the `last_error()` property of [`EventHeaderEnumerator`].
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum EventHeaderEnumeratorError {
    /// No error.
    Success,

    /// Event is smaller than 8 bytes or larger than 2GB,
    /// or tracepoint_name is longer than 255 characters.
    InvalidParameter,

    /// Event does not follow the EventHeader naming/layout rules,
    /// has unrecognized flags, or has unrecognized types.
    NotSupported,

    /// Resource usage limit (`move_next_limit`) reached.
    ImplementationLimit,

    /// Event has an out-of-range value.
    InvalidData,

    /// Event has more than 8 levels of nested structs.
    StackOverflow,

    /// Returned by `enumerate` if the provided `sample_event_info` has no format
    /// information or if the decoding style is not [`PerfEventDecodingStyle::EventHeader`].
    NotEventHeader,
}

impl fmt::Display for EventHeaderEnumeratorError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let text = match self {
            EventHeaderEnumeratorError::Success => "Success",
            EventHeaderEnumeratorError::InvalidParameter => "InvalidParameter",
            EventHeaderEnumeratorError::NotSupported => "NotSupported",
            EventHeaderEnumeratorError::ImplementationLimit => "ImplementationLimit",
            EventHeaderEnumeratorError::InvalidData => "InvalidData",
            EventHeaderEnumeratorError::StackOverflow => "StackOverflow",
            EventHeaderEnumeratorError::NotEventHeader => "NotEventHeader",
        };
        return f.pad(text);
    }
}

/// Values for the State property of [`EventHeaderEnumerator`].
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum EventHeaderEnumeratorState {
    /// After an error has been returned by `move_next`.
    /// `move_next()` and `item_info()` are invalid operations for this state.
    Error,

    /// Positioned after the last item in the event.
    /// `move_next()` and `item_info()` are invalid operations for this state.
    AfterLastItem,

    // move_next() is an invalid operation for all states above this line.
    // move_next() is a valid operation for all states below this line.
    /// Positioned before the first item in the event.
    /// `item_info()` is an invalid operation for this state.
    BeforeFirstItem,

    // item_info() is an invalid operation for all states above this line.
    // item_info() is a valid operation for all states below this line.
    /// Positioned at an item with data (a field or an array element).
    Value,

    /// Positioned before the first item in an array.
    ArrayBegin,

    /// Positioned after the last item in an array.
    ArrayEnd,

    /// Positioned before the first item in a struct.
    StructBegin,

    /// Positioned after the last item in a struct.
    StructEnd,
}

impl fmt::Display for EventHeaderEnumeratorState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let text = match self {
            EventHeaderEnumeratorState::Error => "Error",
            EventHeaderEnumeratorState::AfterLastItem => "AfterLastItem",
            EventHeaderEnumeratorState::BeforeFirstItem => "BeforeFirstItem",
            EventHeaderEnumeratorState::Value => "Value",
            EventHeaderEnumeratorState::ArrayBegin => "ArrayBegin",
            EventHeaderEnumeratorState::ArrayEnd => "ArrayEnd",
            EventHeaderEnumeratorState::StructBegin => "StructBegin",
            EventHeaderEnumeratorState::StructEnd => "StructEnd",
        };
        return f.pad(text);
    }
}

impl EventHeaderEnumeratorState {
    /// Returns true if `move_next()` is a valid operation for this state,
    /// i.e. returns `self >= BeforeFirstItem`. This is false for the
    /// `None`, `Error`, and `AfterLastItem` states.
    pub const fn can_move_next(self) -> bool {
        return self as u8 >= EventHeaderEnumeratorState::BeforeFirstItem as u8;
    }

    /// Returns true if `item_info()` is a valid operation for this state,
    /// i.e. returns `self >= Value`. This is false for the
    /// `None`, `Error`, `AfterLastItem`, and `BeforeFirstItem` states.
    pub const fn can_item_info(self) -> bool {
        return self as u8 >= EventHeaderEnumeratorState::Value as u8;
    }
}

/// Event attributes returned by the `event_info()` method of [`EventHeaderEnumerator`].
#[derive(Clone, Copy, Debug)]
pub struct EventHeaderEventInfo<'nam, 'dat> {
    tracepoint_name: &'nam str,
    event_data: &'dat [u8],
    name_start: u32,
    name_len: u32,
    activity_id_start: u32,
    activity_id_len: u8,
    header: EventHeader,
    keyword: u64,
}

impl<'nam, 'dat> EventHeaderEventInfo<'nam, 'dat> {
    /// Returns the `tracepoint_name` that was passed to
    /// `context.enumerate(tracepoint_name, event_data)`, e.g. "ProviderName_L1K2".
    pub fn tracepoint_name(&self) -> &'nam str {
        self.tracepoint_name
    }

    /// Returns the `event_data` that was passed to
    /// `context.enumerate(tracepoint_name, event_data)`.
    pub fn event_data(&self) -> &'dat [u8] {
        self.event_data
    }

    /// Returns a formatter for the event's identity, i.e. writes `ProviderName:EventName`.
    pub fn identity_display(&self) -> display::EventHeaderIdentityDisplay<'nam, 'dat> {
        display::EventHeaderIdentityDisplay::new(self.provider_name(), self.name_bytes())
    }

    /// Returns a formatter for the event's identity, i.e. writes `ProviderName:EventName`.
    /// If the output includes any control chars, quotes, or backslashes, they will be
    /// escaped using JSON string escape rules.
    pub fn json_identity_display(&self) -> display::EventHeaderIdentityDisplay<'nam, 'dat> {
        display::EventHeaderIdentityDisplay::new(self.provider_name(), self.name_bytes())
    }

    /// Returns a formatter for the event's "meta" suffix.
    ///
    /// If the `sample_event_info` parameter is `Some`, the formatter will append metadata items
    /// from [`PerfSampleEventInfo::json_meta_display`] in addition to the EventHeader metadata.
    ///
    /// The returned formatter writes event metadata as a comma-separated list of 0 or more
    /// JSON name-value pairs, e.g. `"level": 5, "keyword": 3` (including the quotation marks).
    ///
    /// The included items default to [`crate::PerfMetaOptions::Default`], but can be customized with
    /// the `meta_options()` property.
    ///
    /// One name-value pair is appended for each metadata item that is both requested
    /// by `meta_options` and has a meaningful value available in the event. For example,
    /// the "id" metadata item is only appended if the event has a non-zero `Id` value,
    /// even if the `meta_options` property includes [`crate::PerfMetaOptions::Id`].
    ///
    /// The following metadata items are supported:
    ///
    /// - `"provider": "MyProviderName"` (off by default)
    /// - `"event": "MyEventName"` (off by default)
    /// - `"id": 123` (omitted if zero)
    /// - `"version": 1` (omitted if zero)
    /// - `"level": 5` (omitted if zero)
    /// - `"keyword": "0x1"` (omitted if zero)
    /// - `"opcode": 1` (omitted if zero)
    /// - `"tag": "0x123"` (omitted if zero)
    /// - `"activity": "12345678-1234-1234-1234-1234567890AB"` (omitted if not present)
    /// - `"relatedActivity": "12345678-1234-1234-1234-1234567890AB"` (omitted if not present)
    /// - `"options": "Gmygroup"` (omitted if not present, off by default)
    /// - `"flags": "0x7"` (omitted if zero, off by default)
    pub fn json_meta_display<'inf>(
        &'inf self,
        sample_event_info: Option<&'inf PerfSampleEventInfo>,
    ) -> display::EventHeaderJsonMetaDisplay<'inf> {
        return display::EventHeaderJsonMetaDisplay::new(self, sample_event_info);
    }

    /// Returns the offset into `event_data` where the event name starts.
    pub fn name_start(&self) -> u32 {
        return self.name_start;
    }

    /// Returns the length of the event name in bytes.
    pub fn name_len(&self) -> u32 {
        return self.name_len;
    }

    /// Returns the event's name as a byte slice. In a well-formed event, this will be valid UTF-8.
    /// To handle cases where the name is not valid UTF-8, use `name_display()` instead.
    pub fn name_bytes(&self) -> &'dat [u8] {
        let start = self.name_start as usize;
        let end = start + self.name_len as usize;
        return &self.event_data[start..end];
    }

    /// Returns a formatter for the the event's name. The formatter tries to interpret
    /// the field name as UTF-8, but falls back to Latin1 for any invalid UTF-8 sequences.
    pub fn name_display(&self) -> display::Utf8WithLatin1FallbackDisplay<'dat> {
        let start = self.name_start as usize;
        let end = start + self.name_len as usize;
        return display::Utf8WithLatin1FallbackDisplay::new(&self.event_data[start..end]);
    }

    /// Returns the offset into `event_data` where the activity ID section starts.
    pub fn activity_id_start(&self) -> u32 {
        return self.activity_id_start;
    }

    /// Returns the length of the activity ID section in bytes. This will be 0
    /// (no activity ID), 16 (activity ID but no related ID), or 32 (activity ID
    /// followed by related ID.
    pub fn activity_id_len(&self) -> u8 {
        return self.activity_id_len;
    }

    /// Returns the event header (contains level, opcode, tag, id, version).
    pub fn header(&self) -> EventHeader {
        return self.header;
    }

    /// Returns the event keyword (category bits, extracted from `tracepoint_name`).
    pub fn keyword(&self) -> u64 {
        return self.keyword;
    }

    /// Returns the provider name (extracted from `tracepoint_name`).
    pub fn provider_name(&self) -> &'nam str {
        let result = if let Some(underscore_pos) = self.tracepoint_name.rfind('_') {
            &self.tracepoint_name[..underscore_pos]
        } else {
            self.tracepoint_name
        };
        return result;
    }

    /// Returns the provider options (extracted from `tracepoint_name`), e.g. "" or "Gmygroup".
    pub fn options(&self) -> &'nam str {
        if let Some(underscore_pos) = self.tracepoint_name.rfind('_') {
            // Skip "L...K..." by looking for the next uppercase letter other than L or K.
            let bytes = self.tracepoint_name.as_bytes();
            let mut pos = underscore_pos + 1;
            loop {
                if pos >= bytes.len() {
                    break;
                }

                let ch = bytes[pos];
                if ch.is_ascii_uppercase() && ch != b'L' && ch != b'K' {
                    return &self.tracepoint_name[pos..];
                }
                pos += 1;
            }
        }

        return "";
    }

    /// Returns the activity ID section as an slice.
    /// - If no activity ID: returns an empty slice.
    /// - If activity ID but no related ID: returns a 16-byte slice.
    /// - If activity ID and related ID: returns a 32-byte slice (activity ID followed by related ID).
    pub fn activity_id_section(&self) -> &'dat [u8] {
        let start = self.activity_id_start as usize;
        let end = start + self.activity_id_len as usize;
        return &self.event_data[start..end];
    }

    /// Returns the activity ID, or None if there is no activity ID.
    pub fn activity_id(&self) -> Option<&'dat [u8; 16]> {
        let result = if self.activity_id_len < 16 {
            None
        } else {
            let start = self.activity_id_start as usize;
            Some(self.event_data[start..start + 16].try_into().unwrap())
        };

        return result;
    }

    /// Returns the related activity ID, or None if there is no related activity ID.
    pub fn related_activity_id(&self) -> Option<&'dat [u8; 16]> {
        let result = if self.activity_id_len < 32 {
            None
        } else {
            let start = self.activity_id_start as usize + 16;
            Some(self.event_data[start..start + 16].try_into().unwrap())
        };
        return result;
    }
}

/// Provides access to the name and value of an EventHeader event item. An item is a
/// field of the event or an element of an array field of the event. This struct is
/// returned by the `item_info()` method of [`EventHeaderEnumerator`].
#[derive(Clone, Copy, Debug)]
pub struct EventHeaderItemInfo<'dat> {
    event_data: &'dat [u8],
    name_start: u32,
    name_len: u32,
    value: PerfItemValue<'dat>,
}

impl<'dat> EventHeaderItemInfo<'dat> {
    fn new(context: &EventHeaderEnumeratorContext, event_data: &'dat [u8]) -> Self {
        debug_assert!(context.state.can_item_info());
        let data_pos = context.data_pos_cooked as usize;
        return Self {
            event_data,
            name_start: context.stack_top.name_offset,
            name_len: context.stack_top.name_len as u32,
            value: PerfItemValue::new(
                &event_data[data_pos..data_pos + context.item_size_cooked as usize],
                context.item_metadata_impl(),
            ),
        };
    }

    /// Returns the `event_data` that was passed to
    /// `context.enumerate(tracepoint_name, event_data)`.
    pub fn event_data(&self) -> &'dat [u8] {
        return self.event_data;
    }

    /// Returns the offset into `event_data` where the field name starts.
    pub fn name_start(&self) -> u32 {
        return self.name_start;
    }

    /// Returns the length of the field name in bytes.
    pub fn name_len(&self) -> u32 {
        return self.name_len;
    }

    /// Returns the field's name as a byte slice. In a well-formed event, this will be valid UTF-8.
    /// To handle cases where the name is not valid UTF-8, use `name_display()` instead.
    pub fn name_bytes(&self) -> &'dat [u8] {
        let start = self.name_start as usize;
        let end = start + self.name_len as usize;
        return &self.event_data[start..end];
    }

    /// Returns a formatter for the the field's name. The formatter tries to interpret
    /// the field name as UTF-8, but falls back to Latin1 for any invalid UTF-8 sequences.
    pub fn name_display(&self) -> display::Utf8WithLatin1FallbackDisplay<'dat> {
        let start = self.name_start as usize;
        let end = start + self.name_len as usize;
        return display::Utf8WithLatin1FallbackDisplay::new(&self.event_data[start..end]);
    }

    /// Returns a formatter for the field's name and tag.
    /// If the field tag is 0, this is the field name.
    /// If the field tag is nonzero, this is the field name plus a suffix like ";tag=0x1234".
    pub fn name_and_tag_display(&self) -> display::FieldNameAndTagDisplay<'dat> {
        let start = self.name_start as usize;
        let end = start + self.name_len as usize;
        return display::FieldNameAndTagDisplay::new(
            &self.event_data[start..end],
            self.metadata().field_tag(),
        );
    }

    /// Returns the field value.
    pub fn value(&self) -> &PerfItemValue<'dat> {
        return &self.value;
    }

    /// Returns the field's metadata (e.g. type information).
    pub fn metadata(&self) -> PerfItemMetadata {
        return self.value.metadata();
    }
}

/// Helper for getting information from an EventHeader event, e.g. the event name, event
/// attributes, and event fields (field name, type, and value). Enumerate an event as follows:
/// - Create an [`EventHeaderEnumeratorContext`] context. For optimal performance, reuse the
///   context for many events instead of constructing a new context for each event.
/// - Call `context.enumerate(tracepoint_name, event_data)` to get the enumerator for the event.
///   - `tracepoint_name` is the name of the tracepoint, e.g. "ProviderName_L1K2".
///   - `event_data` is the event's user data, starting with an the `eventheader_flags` header
///      (starts immediately after the event's common fields).
/// - Enumerator starts in the `BeforeFirstItem` state.
/// - Use `event_info()` to get the event's name and attributes.
/// - Call `move_next()` to move through the event items.
///   - Check the enumerator state to determine whether the item is a field value, the start/end
///     of an array, the start/end of a struct, or the end of the event (after last item).
///   - Call `item_info()` to get information about the each item.
/// - Reset the enumerator with `reset()` to restart enumeration of the same event.
#[derive(Debug)]
pub struct EventHeaderEnumerator<'ctx, 'nam, 'dat> {
    context: &'ctx mut EventHeaderEnumeratorContext,
    tracepoint_name: &'nam str,
    event_data: &'dat [u8],
}

impl<'ctx, 'nam, 'dat> EventHeaderEnumerator<'ctx, 'nam, 'dat> {
    /// Returns the current state.
    pub fn state(&self) -> EventHeaderEnumeratorState {
        return self.context.state;
    }

    /// Gets status for the most recent call to move_next.
    pub fn last_error(&self) -> EventHeaderEnumeratorError {
        return self.context.last_error;
    }

    /// Gets the remaining event payload, i.e. the event data that has not yet
    /// been decoded. The data position can change each time `move_next()` is called.
    ///
    /// This can be useful after enumeration has completed to to determine
    /// whether the event contains any trailing data (data not described by the
    /// decoding information). Up to 7 bytes of trailing data is normal (padding
    /// between events), but 8 or more bytes of trailing data might indicate some
    /// kind of encoding problem or data corruption.
    pub fn raw_data_position(&self) -> &'dat [u8] {
        return &self.event_data[self.context.data_pos_raw as usize..];
    }

    /// Gets information that applies to the current event, e.g. the event name,
    /// provider name, options, level, keyword, etc.
    pub fn event_info(&self) -> EventHeaderEventInfo<'nam, 'dat> {
        return EventHeaderEventInfo {
            event_data: self.event_data,
            tracepoint_name: self.tracepoint_name,
            name_start: self.context.meta_start,
            name_len: self.context.event_name_len as u32,
            activity_id_start: self.context.activity_id_start,
            activity_id_len: self.context.activity_id_len,
            header: self.context.header,
            keyword: self.context.keyword,
        };
    }

    /// Gets information about the current item, e.g. the item's name,
    /// the item's type (integer, string, float, etc.), data pointer, data size.
    /// The current item changes each time `move_next()` is called.
    ///
    /// **PRECONDITION (debug_assert):** Can be called when `self.state().can_item_info()`,
    /// i.e. after `move_next()` returns true.
    pub fn item_info(&self) -> EventHeaderItemInfo<'dat> {
        debug_assert!(self.context.state.can_item_info());
        let data_pos = self.context.data_pos_cooked as usize;
        return EventHeaderItemInfo {
            event_data: self.event_data,
            name_start: self.context.stack_top.name_offset,
            name_len: self.context.stack_top.name_len as u32,
            value: PerfItemValue::new(
                &self.event_data[data_pos..data_pos + self.context.item_size_cooked as usize],
                self.item_metadata(),
            ),
        };
    }

    /// Gets metadata (type, endian, tag) information of the current item.
    /// This is a subset of the information returned by item_info().
    /// The current item changes each time `move_next()` is called.
    ///
    /// **PRECONDITION (debug_assert):** Can be called when `self.state().can_item_info()`,
    /// i.e. after `move_next()` returns true.
    pub fn item_metadata(&self) -> PerfItemMetadata {
        return self.context.item_metadata_impl();
    }

    /// Positions the enumerator before the first item.
    /// Resets the `move_next` limit to `MOVE_NEXT_LIMIT_DEFAULT`.
    pub fn reset(&mut self) {
        return self
            .context
            .reset_impl(EventHeaderEnumeratorContext::MOVE_NEXT_LIMIT_DEFAULT);
    }

    /// Positions the enumerator before the first item.
    /// Resets the `move_next` limit to the specified value.
    pub fn reset_with_limit(&mut self, move_next_limit: u32) {
        return self.context.reset_impl(move_next_limit);
    }

    /// Moves the enumerator to the next item in the current event, or to the end
    /// of the event if no more items. Returns true if moved to a valid item,
    /// false if no more items or decoding error.
    ///
    /// **PRECONDITION (debug_assert):** Can be called when `self.state().can_move_next()`.
    ///
    /// - Returns true if moved to a valid item.
    /// - Returns false and sets state to AfterLastItem if no more items.
    /// - Returns false and sets state to Error for decoding error.
    ///
    /// Check `last_error()` for details.
    pub fn move_next(&mut self) -> bool {
        return self.context.move_next_impl(self.event_data);
    }

    /// Moves the enumerator to the next sibling of the current item, or to the end
    /// of the event if no more items. Returns true if moved to a valid item, false
    /// if no more items or decoding error.
    ///
    /// - If the current item is ArrayBegin or StructBegin, this efficiently moves
    ///   enumeration to AFTER the corresponding ArrayEnd or StructEnd.
    /// - Otherwise, this is the same as `move_next()`.
    ///
    /// **PRECONDITION (debug_assert):** Can be called when `self.state().can_move_next()`.
    ///
    /// - Returns true if moved to a valid item.
    /// - Returns false and sets state to AfterLastItem if no more items.
    /// - Returns false and sets state to Error for decoding error.
    ///
    /// Check `last_error()` for details.
    pub fn move_next_sibling(&mut self) -> bool {
        return self.context.move_next_sibling_impl(self.event_data);
    }

    /// Advanced scenarios. This method is for extracting type information from an
    /// event without looking at value information. Moves the enumerator to the next
    /// field declaration (not the next field value). Returns true if moved to a valid
    /// item, false if no more items or decoding error.
    ///
    /// **PRECONDITION (debug_assert):** Can be called when `self.state().can_move_next()`.
    ///
    /// - Returns true if moved to a valid item.
    /// - Returns false and sets state to AfterLastItem if no more items.
    /// - Returns false and sets state to Error for decoding error.
    ///
    /// Note that metadata enumeration gives a flat view of arrays and structures.
    /// There are only Value and ArrayBegin items, no ArrayEnd, StructBegin, StructEnd.
    /// A struct shows up as a value with encoding = Struct.
    /// An array shows up as an ArrayBegin with ArrayFlags != 0, and ElementCount is either zero
    /// (indicating a runtime-variable array length) or nonzero (indicating a compile-time
    /// constant array length). An array of struct is a ArrayBegin with Encoding = Struct and
    /// ArrayFlags != 0. ValueBytes will always be empty. ArrayIndex and TypeSize
    /// will always be zero.
    ///
    /// Note that when enumerating metadata for a structure, the enumeration may end before
    /// the expected number of fields are seen. This is a supported scenario and is not an
    /// error in the event. A large field count just means "this structure contains all the
    /// remaining fields in the event".
    ///
    /// Typically called in a loop until it returns false.
    pub fn move_next_metadata(&mut self) -> bool {
        return self.context.move_next_metadata_impl(self.event_data);
    }

    /// Writes a JSON representation of the current item to the provided `writer`,
    /// e.g. for  state [`EventHeaderEnumeratorState::Value`] this might generate
    /// `"MyField": "My Value"` (including the quotation marks), or for state
    /// [`EventHeaderEnumeratorState::ArrayBegin`] this might generate
    /// `"MyField": [ 1, 2, 3 ]`. Consumes the current item and its descendents as if
    /// by a call to [`EventHeaderEnumerator::move_next_sibling`].
    ///
    /// Returns true if a comma would be needed before subsequent JSON output, i.e. if
    /// anything was written OR if `add_comma_before_first_item` was true.
    ///
    /// **PRECONDITION (debug_assert):** Can be called when `self.state().can_move_next()`.
    ///
    /// After calling this method, check `self.state()` to determine whether the
    /// enumeration has reached the end of the event or has encountered an error, i.e.
    /// enumeration should stop if `!self.state().can_move_next()`.
    ///
    /// The output and the amount consumed depends on the initial state of the enumerator.
    ///
    /// - [`EventHeaderEnumeratorState::Value`]
    ///
    ///   Appends the current item as a JSON name-value pair like `"MyField": 123` (omits the
    ///   `"MyField":` name if `convert_options` omits [`PerfConvertOptions::RootName`] or if the
    ///   item is an element of an array). Moves enumeration to the next item.
    ///
    /// - [`EventHeaderEnumeratorState::StructBegin`]
    ///
    ///   Appends the current item as a JSON  name-object pair like
    ///   `"MyStruct": { "StructField1": 123, "StructField2": "Hello" }` (omits the `"MyStruct":`
    ///   name if `convert_options` omits [`PerfConvertOptions::RootName`] or if the item is an
    ///   element of an array). Moves enumeration past the end of the item and its descendents,
    ///   i.e. after the matching [`EventHeaderEnumeratorState::StructEnd`].
    ///
    /// - [`EventHeaderEnumeratorState::ArrayBegin`]
    ///
    ///   Appends the current item as a JSON name-array pair like `"MyArray": [ 1, 2, 3 ]` (omits
    ///   the `"MyArray":` name if `convert_options` omits [`PerfConvertOptions::RootName`]). Moves
    ///   enumeration past the end of the item and its descendents, i.e. after the matching
    ///   [`EventHeaderEnumeratorState::ArrayEnd`].
    ///
    /// - [`EventHeaderEnumeratorState::BeforeFirstItem`]
    ///
    ///   Appends all items in the current event as a comma-separated list of name-value pairs, e.g.
    ///   `"MyField": 123, "MyArray": [ 1, 2, 3 ]`. Moves enumeration to
    ///   [`EventHeaderEnumeratorState::AfterLastItem`].
    ///
    /// - [`EventHeaderEnumeratorState::ArrayEnd`], [`EventHeaderEnumeratorState::StructEnd`]
    ///
    ///   Unspecified behavior.
    pub fn write_json_item_and_move_next_sibling<W: fmt::Write + ?Sized>(
        &mut self,
        writer: &mut W,
        add_comma_before_first_item: bool,
        convert_options: PerfConvertOptions,
    ) -> Result<bool, fmt::Error> {
        return self.context.write_json_item_and_move_next_sibling_impl(
            self.event_data,
            writer,
            add_comma_before_first_item,
            convert_options,
        );
    }
}

/// Context for enumerating the fields of an EventHeader event. Enumerate an event as follows:
/// - Create an [`EventHeaderEnumeratorContext`] context. For optimal performance, reuse the
///   context for many events instead of constructing a new context for each event.
/// - Call `context.enumerate(tracepoint_name, event_data)` to get the enumerator for the event.
#[derive(Debug)]
pub struct EventHeaderEnumeratorContext {
    // Set by StartEvent:
    header: EventHeader,
    keyword: u64,
    meta_start: u32, // Relative to event_data.
    meta_end: u32,
    activity_id_start: u32, // Relative to event_data.
    activity_id_len: u8,
    byte_reader: PerfByteReader,
    event_name_len: u16, // Name starts at event_data[meta_start].
    data_start: u32,     // Relative to event_data.

    // Vary during enumeration:
    data_pos_raw: u32,
    move_next_remaining: u32,
    stack_top: StackEntry,
    stack_index: u8, // Number of items currently on stack.
    state: EventHeaderEnumeratorState,
    substate: SubState,
    last_error: EventHeaderEnumeratorError,

    element_size: u8,
    field_type: FieldType,
    data_pos_cooked: u32,
    item_size_raw: u32,
    item_size_cooked: u32,

    stack: [StackEntry; EventHeaderEnumeratorContext::STRUCT_NEST_LIMIT as usize],
}

impl EventHeaderEnumeratorContext {
    const READ_FIELD_ERROR: FieldEncoding = FieldEncoding::Invalid;

    /// Default limit on the number of `move_next()` calls that can be made, currently 4096.
    pub const MOVE_NEXT_LIMIT_DEFAULT: u32 = 4096;

    /// Maximum supported levels of struct nesting, currently 8.
    pub const STRUCT_NEST_LIMIT: u8 = 8;

    /// Creates a new context for enumerating the fields of an EventHeader event.
    pub const fn new() -> Self {
        return Self {
            header: EventHeader {
                flags: HeaderFlags::None,
                version: 0,
                id: 0,
                tag: 0,
                opcode: Opcode::Info,
                level: Level::Invalid,
            },
            keyword: 0,
            meta_start: 0,
            meta_end: 0,
            activity_id_start: 0,
            activity_id_len: 0,
            byte_reader: PerfByteReader::new(false),
            event_name_len: 0,
            data_start: 0,
            data_pos_raw: 0,
            move_next_remaining: 0,
            stack_top: StackEntry::ZERO,
            stack_index: 0,
            state: EventHeaderEnumeratorState::Error,
            substate: SubState::Error,
            last_error: EventHeaderEnumeratorError::Success,
            element_size: 0,
            field_type: FieldType {
                encoding: FieldEncoding::Invalid,
                format: FieldFormat::Default,
                tag: 0,
            },
            data_pos_cooked: 0,
            item_size_raw: 0,
            item_size_cooked: 0,
            stack: [StackEntry::ZERO; 8],
        };
    }

    /// Begins enumeration of the fields of an EventHeader event. Returns an enumerator for
    /// the event.
    ///
    /// If the event has EventHeader-style decoding information, this is the same as
    /// `enumerate_with_name_and_data(sample_event_info.format().name(), sample_event_info.user_data(), MOVE_NEXT_LIMIT_DEFAULT)`.
    ///
    /// If the event does not have EventHeader-style decoding, this returns `Err(NotEventHeader)`.
    ///
    /// Returns an enumerator for the event, positioned before the first item, with the
    /// move_next limit set to `MOVE_NEXT_LIMIT_DEFAULT`.
    pub fn enumerate<'ctx, 'dat>(
        &'ctx mut self,
        sample_event_info: &'dat PerfSampleEventInfo<'dat>,
    ) -> Result<EventHeaderEnumerator<'ctx, 'dat, 'dat>, EventHeaderEnumeratorError> {
        self.enumerate_with_limit(sample_event_info, Self::MOVE_NEXT_LIMIT_DEFAULT)
    }

    /// Begins enumeration of the fields of an EventHeader event. Returns an enumerator for
    /// the event.
    ///
    /// If the event has EventHeader-style decoding information, this is the same as
    /// `enumerate_with_name_and_data(sample_event_info.format().name(), sample_event_info.user_data(), move_next_limit)`.
    ///
    /// If the event does not have EventHeader-style decoding, this returns `Err(NotEventHeader)`.
    ///
    /// Returns an enumerator for the event, positioned before the first item, with the
    /// move_next limit set to `move_next_limit`.
    pub fn enumerate_with_limit<'ctx, 'dat>(
        &'ctx mut self,
        sample_event_info: &'dat PerfSampleEventInfo<'dat>,
        move_next_limit: u32,
    ) -> Result<EventHeaderEnumerator<'ctx, 'dat, 'dat>, EventHeaderEnumeratorError> {
        if let Some(format) = sample_event_info.format() {
            if format.decoding_style() == PerfEventDecodingStyle::EventHeader {
                return self.enumerate_with_name_and_data(
                    format.name(),
                    sample_event_info.user_data(),
                    move_next_limit,
                );
            }
        }

        return Err(EventHeaderEnumeratorError::NotEventHeader);
    }

    /// Begins enumeration of the fields of an EventHeader event. Returns an enumerator for
    /// the event.
    ///
    /// - `tracepoint_name` is the name of the tracepoint, e.g. "ProviderName_L1K2".
    /// - `event_data` is the event's user data, starting with the `eventheader_flags` field
    ///   (i.e. starting immediately after the event's common fields).
    /// - `move_next_limit` is the maximum number of `move_next()` calls that can be made.
    ///   This is a safety feature to prevent excessive CPU usage when processing malformed
    ///   events.
    ///
    /// Returns an enumerator for the event, positioned before the first item, with the
    /// move_next limit set to `move_next_limit`.
    pub fn enumerate_with_name_and_data<'ctx, 'nam, 'dat>(
        &'ctx mut self,
        tracepoint_name: &'nam str,
        event_data: &'dat [u8],
        move_next_limit: u32,
    ) -> Result<EventHeaderEnumerator<'ctx, 'nam, 'dat>, EventHeaderEnumeratorError> {
        const EVENT_HEADER_TRACEPOINT_NAME_MAX: usize = 256;

        const KNOWN_FLAGS: u8 = HeaderFlags::Pointer64.as_int()
            | HeaderFlags::LittleEndian.as_int()
            | HeaderFlags::Extension.as_int();

        let mut event_pos = 0;
        let tp_name_bytes = tracepoint_name.as_bytes();

        if event_data.len() < mem::size_of::<EventHeader>()
            || event_data.len() >= 0x80000000
            || tp_name_bytes.len() >= EVENT_HEADER_TRACEPOINT_NAME_MAX
        {
            // Event has no header or tracepoint_name too long.
            return Err(EventHeaderEnumeratorError::InvalidParameter);
        }

        // Get event header and validate it.

        self.header.flags = HeaderFlags::from_int(event_data[event_pos]);
        self.byte_reader =
            PerfByteReader::new(!self.header.flags.has_flag(HeaderFlags::LittleEndian));
        event_pos += 1;
        self.header.version = event_data[event_pos];
        event_pos += 1;
        self.header.id = self.byte_reader.read_u16(&event_data[event_pos..]);
        event_pos += 2;
        self.header.tag = self.byte_reader.read_u16(&event_data[event_pos..]);
        event_pos += 2;
        self.header.opcode = Opcode::from_int(event_data[event_pos]);
        event_pos += 1;
        self.header.level = Level::from_int(event_data[event_pos]);
        event_pos += 1;

        if self.header.flags.as_int() != (self.header.flags.as_int() & KNOWN_FLAGS) {
            // Not a supported event: unsupported flags.
            return Err(EventHeaderEnumeratorError::NotSupported);
        }

        // Validate Tracepoint name (e.g. "ProviderName_L1K2..."), extract keyword.

        let mut attrib_pos = tp_name_bytes.len();
        loop {
            if attrib_pos == 0 {
                // Not a supported event: no Level in name.
                return Err(EventHeaderEnumeratorError::NotSupported);
            }

            if tp_name_bytes[attrib_pos - 1] == b'_' {
                break;
            }

            attrib_pos -= 1;
        }

        if attrib_pos >= tp_name_bytes.len() || tp_name_bytes[attrib_pos] != b'L' {
            // Not a supported event: no Level in name.
            return Err(EventHeaderEnumeratorError::NotSupported);
        }

        let attrib_level;
        (attrib_level, attrib_pos) = lowercase_hex_to_int(tp_name_bytes, attrib_pos + 1);
        if attrib_level != self.header.level.as_int() as u64 {
            // Not a supported event: name's level != header's level.
            return Err(EventHeaderEnumeratorError::NotSupported);
        }

        if attrib_pos >= tp_name_bytes.len() || b'K' != tp_name_bytes[attrib_pos] {
            // Not a supported event: no Keyword in name.
            return Err(EventHeaderEnumeratorError::NotSupported);
        }

        (self.keyword, attrib_pos) = lowercase_hex_to_int(tp_name_bytes, attrib_pos + 1);

        // Validate but ignore any other attributes.

        while attrib_pos < tp_name_bytes.len() {
            let ch = tp_name_bytes[attrib_pos];
            attrib_pos += 1;
            if !ch.is_ascii_uppercase() {
                // Invalid attribute start character.
                return Err(EventHeaderEnumeratorError::NotSupported);
            }

            // Skip attribute value chars.
            while attrib_pos < tp_name_bytes.len() {
                let ch = tp_name_bytes[attrib_pos];
                if !ch.is_ascii_digit() && !ch.is_ascii_lowercase() {
                    break;
                }
                attrib_pos += 1;
            }
        }

        // Parse header extensions.

        self.meta_start = 0;
        self.meta_end = 0;
        self.activity_id_start = 0;
        self.activity_id_len = 0;

        if self.header.flags.has_flag(HeaderFlags::Extension) {
            loop {
                if event_data.len() - event_pos < mem::size_of::<EventHeaderExtension>() {
                    return Err(EventHeaderEnumeratorError::InvalidData);
                }

                let ext_size = self.byte_reader.read_u16(&event_data[event_pos..]);
                event_pos += 2;
                let ext_kind =
                    ExtensionKind::from_int(self.byte_reader.read_u16(&event_data[event_pos..]));
                event_pos += 2;

                if event_data.len() - event_pos < ext_size as usize {
                    return Err(EventHeaderEnumeratorError::InvalidData);
                }

                match ExtensionKind::from_int(ext_kind.as_int() & ExtensionKind::ValueMask) {
                    ExtensionKind::Invalid => {
                        // Invalid extension type.
                        return Err(EventHeaderEnumeratorError::InvalidData);
                    }
                    ExtensionKind::Metadata => {
                        if self.meta_start != 0 {
                            // Multiple Format extensions.
                            return Err(EventHeaderEnumeratorError::InvalidData);
                        }

                        self.meta_start = event_pos as u32;
                        self.meta_end = self.meta_start + ext_size as u32;
                    }
                    ExtensionKind::ActivityId => {
                        if self.activity_id_start != 0 || (ext_size != 16 && ext_size != 32) {
                            // Multiple ActivityId extensions, or bad activity id size.
                            return Err(EventHeaderEnumeratorError::InvalidData);
                        }

                        self.activity_id_start = event_pos as u32;
                        self.activity_id_len = ext_size as u8;
                    }
                    _ => {} // Ignore other extension types.
                }

                event_pos += ext_size as usize;

                if !ext_kind.has_flag(ExtensionKind::from_int(ExtensionKind::ChainFlag)) {
                    break;
                }
            }
        }

        if self.meta_start == 0 {
            // Not a supported event - no metadata extension.
            return Err(EventHeaderEnumeratorError::NotSupported);
        }

        let mut name_pos = self.meta_start as usize;
        let meta_end = self.meta_end as usize;
        loop {
            if name_pos >= meta_end {
                // Event name not nul-terminated.
                return Err(EventHeaderEnumeratorError::InvalidData);
            }

            if event_data[name_pos] == 0 {
                break;
            }

            name_pos += 1;
        }

        self.event_name_len = (name_pos - self.meta_start as usize) as u16;
        self.data_start = event_pos as u32;
        self.reset_impl(move_next_limit);

        return Ok(EventHeaderEnumerator {
            context: self,
            event_data,
            tracepoint_name,
        });
    }

    fn item_metadata_impl(&self) -> PerfItemMetadata {
        debug_assert!(self.state.can_item_info());
        let is_scalar = self.state < EventHeaderEnumeratorState::ArrayBegin
            || self.state > EventHeaderEnumeratorState::ArrayEnd;
        return PerfItemMetadata::new(
            self.byte_reader,
            self.field_type.encoding,
            self.field_type.format,
            is_scalar,
            self.element_size,
            if is_scalar {
                1
            } else {
                self.stack_top.array_count
            },
            self.field_type.tag,
        );
    }

    fn reset_impl(&mut self, move_next_limit: u32) {
        self.data_pos_raw = self.data_start;
        self.move_next_remaining = move_next_limit;
        self.stack_top.next_offset = self.meta_start + self.event_name_len as u32 + 1;
        self.stack_top.remaining_field_count = 255;
        self.stack_index = 0;
        self.set_state(
            EventHeaderEnumeratorState::BeforeFirstItem,
            SubState::BeforeFirstItem,
        );
        self.last_error = EventHeaderEnumeratorError::Success;
    }

    fn move_next_impl(&mut self, event_data: &[u8]) -> bool {
        debug_assert!(self.state.can_move_next());

        if self.move_next_remaining == 0 {
            return self.set_error_state(EventHeaderEnumeratorError::ImplementationLimit);
        }

        self.move_next_remaining -= 1;

        let moved_to_item;
        match self.substate {
            SubState::BeforeFirstItem => {
                debug_assert!(self.state == EventHeaderEnumeratorState::BeforeFirstItem);
                moved_to_item = self.next_property(event_data);
            }
            SubState::ValueScalar => {
                debug_assert!(self.state == EventHeaderEnumeratorState::Value);
                debug_assert!(self.field_type.encoding.without_flags() != FieldEncoding::Struct);
                debug_assert!(!self.field_type.encoding.is_array());
                debug_assert!(event_data.len() as u32 - self.data_pos_raw >= self.item_size_raw);

                self.data_pos_raw += self.item_size_raw;
                moved_to_item = self.next_property(event_data);
            }
            SubState::ValueSimpleArrayElement => {
                debug_assert!(self.state == EventHeaderEnumeratorState::Value);
                debug_assert!(self.field_type.encoding.without_flags() != FieldEncoding::Struct);
                debug_assert!(self.field_type.encoding.is_array());
                debug_assert!(self.stack_top.array_index < self.stack_top.array_count);
                debug_assert!(self.element_size != 0); // Eligible for fast path.
                debug_assert!(event_data.len() as u32 - self.data_pos_raw >= self.item_size_raw);

                self.data_pos_raw += self.item_size_raw;
                self.stack_top.array_index += 1;

                if self.stack_top.array_count == self.stack_top.array_index {
                    // End of array.
                    self.set_end_state(EventHeaderEnumeratorState::ArrayEnd, SubState::ArrayEnd);
                } else {
                    // Middle of array - get next element.
                    self.start_value_simple(); // Fast path for simple array elements.
                }

                moved_to_item = true;
            }
            SubState::ValueComplexArrayElement => {
                debug_assert!(self.state == EventHeaderEnumeratorState::Value);
                debug_assert!(self.field_type.encoding.without_flags() != FieldEncoding::Struct);
                debug_assert!(self.field_type.encoding.is_array());
                debug_assert!(self.stack_top.array_index < self.stack_top.array_count);
                debug_assert!(self.element_size == 0); // Not eligible for fast path.
                debug_assert!(event_data.len() as u32 - self.data_pos_raw >= self.item_size_raw);

                self.data_pos_raw += self.item_size_raw;
                self.stack_top.array_index += 1;

                if self.stack_top.array_count == self.stack_top.array_index {
                    // End of array.
                    self.set_end_state(EventHeaderEnumeratorState::ArrayEnd, SubState::ArrayEnd);
                    moved_to_item = true;
                } else {
                    // Middle of array - get next element.
                    moved_to_item = self.start_value(event_data); // Normal path for complex array elements.
                }
            }
            SubState::ArrayBegin => {
                debug_assert!(self.state == EventHeaderEnumeratorState::ArrayBegin);
                debug_assert!(self.field_type.encoding.is_array());
                debug_assert!(self.stack_top.array_index == 0);

                if self.stack_top.array_count == 0 {
                    // 0-length array.
                    self.set_end_state(EventHeaderEnumeratorState::ArrayEnd, SubState::ArrayEnd);
                    moved_to_item = true;
                } else if self.element_size != 0 {
                    // First element of simple array.
                    debug_assert!(
                        self.field_type.encoding.without_flags() != FieldEncoding::Struct
                    );
                    self.item_size_cooked = self.element_size as u32;
                    self.item_size_raw = self.element_size as u32;
                    self.set_state(
                        EventHeaderEnumeratorState::Value,
                        SubState::ValueSimpleArrayElement,
                    );
                    self.start_value_simple();
                    moved_to_item = true;
                } else if self.field_type.encoding.without_flags() != FieldEncoding::Struct {
                    // First element of complex array.
                    self.set_state(
                        EventHeaderEnumeratorState::Value,
                        SubState::ValueComplexArrayElement,
                    );
                    moved_to_item = self.start_value(event_data);
                } else {
                    // First element of array of struct.
                    self.start_struct();
                    moved_to_item = true;
                }
            }
            SubState::ArrayEnd => {
                debug_assert!(self.state == EventHeaderEnumeratorState::ArrayEnd);
                debug_assert!(self.field_type.encoding.is_array());
                debug_assert!(self.stack_top.array_count == self.stack_top.array_index);

                // 0-length array of struct means we won't naturally traverse
                // the child struct's metadata. Since self.stackTop.NextOffset
                // won't get updated naturally, we need to update it manually.
                if self.field_type.encoding.without_flags() == FieldEncoding::Struct
                    && self.stack_top.array_count == 0
                    && !self.skip_struct_metadata(event_data)
                {
                    moved_to_item = false;
                } else {
                    moved_to_item = self.next_property(event_data);
                }
            }
            SubState::StructBegin => {
                debug_assert!(self.state == EventHeaderEnumeratorState::StructBegin);
                if self.stack_index >= Self::STRUCT_NEST_LIMIT {
                    moved_to_item = self.set_error_state(EventHeaderEnumeratorError::StackOverflow);
                } else {
                    self.stack[self.stack_index as usize] = self.stack_top;
                    self.stack_index += 1;

                    self.stack_top.remaining_field_count = self.field_type.format.as_int();
                    // Parent's NextOffset is the correct starting point for the struct.
                    moved_to_item = self.next_property(event_data);
                }
            }
            SubState::StructEnd => {
                debug_assert!(self.state == EventHeaderEnumeratorState::StructEnd);
                debug_assert!(self.field_type.encoding.without_flags() == FieldEncoding::Struct);
                debug_assert!(self.item_size_raw == 0);

                self.stack_top.array_index += 1;

                if self.stack_top.array_count != self.stack_top.array_index {
                    debug_assert!(self.field_type.encoding.is_array());
                    debug_assert!(self.stack_top.array_index < self.stack_top.array_count);

                    // Middle of array - get next element.
                    self.start_struct();
                    moved_to_item = true;
                } else if self.field_type.encoding.is_array() {
                    // End of array.
                    self.set_end_state(EventHeaderEnumeratorState::ArrayEnd, SubState::ArrayEnd);
                    moved_to_item = true;
                } else {
                    // End of property - move to next property.
                    moved_to_item = self.next_property(event_data);
                }
            }
            _ => {
                debug_assert!(false, "Unexpected substate.");
                moved_to_item = false;
            }
        }

        return moved_to_item;
    }

    fn move_next_sibling_impl(&mut self, event_data: &[u8]) -> bool {
        debug_assert!(self.state.can_move_next());

        let mut depth = 0; // May reach -1 if we start on ArrayEnd/StructEnd.
        loop {
            match self.state {
                EventHeaderEnumeratorState::ArrayEnd | EventHeaderEnumeratorState::StructEnd => {
                    depth -= 1;
                }
                EventHeaderEnumeratorState::StructBegin => {
                    depth += 1;
                }
                EventHeaderEnumeratorState::ArrayBegin => {
                    if self.element_size == 0 || self.move_next_remaining == 0 {
                        // Use MoveNext for full processing.
                        depth += 1;
                    } else {
                        // Array of simple elements - jump directly to next sibling.
                        debug_assert!(matches!(self.substate, SubState::ArrayBegin));
                        debug_assert!(
                            self.field_type.encoding.without_flags() != FieldEncoding::Struct
                        );
                        debug_assert!(self.field_type.encoding.is_array());
                        debug_assert!(self.stack_top.array_index == 0);
                        self.data_pos_raw +=
                            self.stack_top.array_count as u32 * self.element_size as u32;
                        self.move_next_remaining -= 1;

                        let moved_to_item = self.next_property(event_data);
                        if !moved_to_item || depth <= 0 {
                            return moved_to_item;
                        }

                        continue; // Skip MoveNext().
                    }
                }
                _ => {} // Same as MoveNext.
            }

            let moved_to_item = self.move_next_impl(event_data);
            if !moved_to_item || depth <= 0 {
                return moved_to_item;
            }
        }
    }

    fn move_next_metadata_impl(&mut self, event_data: &[u8]) -> bool {
        if !matches!(self.substate, SubState::ValueMetadata) {
            debug_assert!(self.state == EventHeaderEnumeratorState::BeforeFirstItem);
            debug_assert!(matches!(self.substate, SubState::BeforeFirstItem));
            self.stack_top.array_index = 0;
            self.data_pos_cooked = event_data.len() as u32;
            self.item_size_cooked = 0;
            self.element_size = 0;
            self.set_state(EventHeaderEnumeratorState::Value, SubState::ValueMetadata);
        }

        debug_assert!(
            self.state == EventHeaderEnumeratorState::Value
                || self.state == EventHeaderEnumeratorState::ArrayBegin
        );

        let moved_to_item;
        if self.stack_top.next_offset != self.meta_end {
            self.stack_top.name_offset = self.stack_top.next_offset;

            self.field_type = self.read_field_name_and_type(event_data);
            if self.field_type.encoding == Self::READ_FIELD_ERROR {
                moved_to_item = self.set_error_state(EventHeaderEnumeratorError::InvalidData);
            } else if FieldEncoding::Struct == self.field_type.encoding.without_flags()
                && self.field_type.format == FieldFormat::Default
            {
                // Struct must have at least 1 field (potential for DoS).
                moved_to_item = self.set_error_state(EventHeaderEnumeratorError::InvalidData);
            } else if !self.field_type.encoding.is_array() {
                // Non-array.
                self.stack_top.array_count = 1;
                moved_to_item = true;
                self.set_state(EventHeaderEnumeratorState::Value, SubState::ValueMetadata);
            } else if self.field_type.encoding.is_variable_length_array() {
                // Runtime-variable array length.
                self.stack_top.array_count = 0;
                moved_to_item = true;
                self.set_state(
                    EventHeaderEnumeratorState::ArrayBegin,
                    SubState::ValueMetadata,
                );
            } else if self.field_type.encoding.is_constant_length_array() {
                // Compile-time-constant array length.

                if self.meta_end - self.stack_top.next_offset < 2 {
                    moved_to_item = self.set_error_state(EventHeaderEnumeratorError::InvalidData);
                } else {
                    self.stack_top.array_count = self
                        .byte_reader
                        .read_u16(&event_data[self.stack_top.next_offset as usize..]);
                    self.stack_top.next_offset += 2;

                    if self.stack_top.array_count == 0 {
                        // Constant-length array cannot have length of 0 (potential for DoS).
                        moved_to_item =
                            self.set_error_state(EventHeaderEnumeratorError::InvalidData);
                    } else {
                        moved_to_item = true;
                        self.set_state(
                            EventHeaderEnumeratorState::ArrayBegin,
                            SubState::ValueMetadata,
                        );
                    }
                }
            } else {
                moved_to_item = self.set_error_state(EventHeaderEnumeratorError::NotSupported);
            }
        } else {
            // End of event.

            self.set_end_state(
                EventHeaderEnumeratorState::AfterLastItem,
                SubState::AfterLastItem,
            );
            moved_to_item = false; // No more items.
        }

        return moved_to_item;
    }

    fn write_json_item_and_move_next_sibling_impl<W: fmt::Write + ?Sized>(
        &mut self,
        event_data: &[u8],
        writer: &mut W,
        add_comma_before_first_item: bool,
        convert_options: PerfConvertOptions,
    ) -> Result<bool, fmt::Error> {
        debug_assert!(self.state.can_move_next());

        let mut want_name = convert_options.has_flag(PerfConvertOptions::RootName);
        let mut json =
            writers::JsonWriter::new(writer, convert_options, add_comma_before_first_item);
        let mut depth = 0i32;

        loop {
            match self.state {
                EventHeaderEnumeratorState::BeforeFirstItem => {
                    depth += 1;
                }

                EventHeaderEnumeratorState::Value => {
                    let item_info = EventHeaderItemInfo::new(self, event_data);
                    if want_name && !item_info.value.metadata().is_element() {
                        json.write_property_name_from_item_info(&item_info)?;
                    }

                    json.write_value(|w| item_info.value.write_json_scalar_to_impl(w))?;
                }

                EventHeaderEnumeratorState::ArrayBegin => {
                    let item_info = EventHeaderItemInfo::new(self, event_data);
                    if want_name {
                        json.write_property_name_from_item_info(&item_info)?;
                    }

                    if item_info.value.metadata().type_size() != 0 {
                        item_info.value.write_json_simple_array_to_impl(&mut json)?;

                        // Use move_next_sibling instead of move_next.
                        let moved_to_item = self.move_next_sibling_impl(event_data);
                        if !moved_to_item || depth <= 0 {
                            break;
                        } else {
                            continue;
                        }
                    }

                    json.write_array_begin()?;
                    depth += 1;
                }

                EventHeaderEnumeratorState::ArrayEnd => {
                    json.write_array_end()?;
                    depth -= 1;
                }

                EventHeaderEnumeratorState::StructBegin => {
                    let item_info = EventHeaderItemInfo::new(self, event_data);

                    if want_name && !item_info.value().metadata().is_element() {
                        json.write_property_name_from_item_info(&item_info)?;
                    }

                    json.write_object_begin()?;
                    depth += 1;
                }

                EventHeaderEnumeratorState::StructEnd => {
                    json.write_object_end()?;
                    depth -= 1;
                }

                _ => {
                    debug_assert!(false, "Enumerator in invalid state.");
                    return Err(fmt::Error);
                }
            }

            want_name = true;

            let moved_to_item = self.move_next_impl(event_data);
            if !moved_to_item || depth <= 0 {
                break;
            }
        }

        return Ok(json.comma());
    }

    fn skip_struct_metadata(&mut self, event_data: &[u8]) -> bool {
        debug_assert!(self.field_type.encoding.without_flags() == FieldEncoding::Struct);

        let ok;
        let mut remaining_field_count = self.field_type.format.as_int();
        loop {
            // It's a bit unusual but completely legal and fully supported to reach
            // end-of-metadata before remainingFieldCount == 0.
            if remaining_field_count == 0 || self.stack_top.next_offset == self.meta_end {
                ok = true;
                break;
            }

            self.stack_top.name_offset = self.stack_top.next_offset;

            // Minimal validation, then skip the field:

            let typ = self.read_field_name_and_type(event_data);
            if typ.encoding == Self::READ_FIELD_ERROR {
                ok = self.set_error_state(EventHeaderEnumeratorError::InvalidData);
                break;
            }

            if FieldEncoding::Struct == typ.encoding.without_flags() {
                remaining_field_count += typ.format.as_int();
            }

            if !typ.encoding.is_constant_length_array() {
                // Scalar or runtime length. We're done with the field.
            } else if !typ.encoding.is_variable_length_array() {
                // CArrayFlag is set, VArrayFlag is unset.
                // Compile-time-constant array length.
                // Skip the array length in metadata.

                if self.meta_end - self.stack_top.next_offset < 2 {
                    ok = self.set_error_state(EventHeaderEnumeratorError::InvalidData);
                    break;
                }

                self.stack_top.next_offset += 2;
            } else {
                // Both CArrayFlag and VArrayFlag are set (reserved encoding).
                ok = self.set_error_state(EventHeaderEnumeratorError::NotSupported);
                break;
            }

            remaining_field_count -= 1;
        }

        return ok;
    }

    fn next_property(&mut self, event_data: &[u8]) -> bool {
        if self.stack_top.remaining_field_count != 0 && self.stack_top.next_offset != self.meta_end
        {
            self.stack_top.remaining_field_count -= 1;
            self.stack_top.array_index = 0;
            self.stack_top.name_offset = self.stack_top.next_offset;

            // Decode a field:

            self.field_type = self.read_field_name_and_type(event_data);
            if self.field_type.encoding == Self::READ_FIELD_ERROR {
                return self.set_error_state(EventHeaderEnumeratorError::InvalidData);
            }

            if !self.field_type.encoding.is_array() {
                // Non-array.

                self.stack_top.array_count = 1;
                if FieldEncoding::Struct != self.field_type.encoding {
                    self.set_state(EventHeaderEnumeratorState::Value, SubState::ValueScalar);
                    return self.start_value(event_data);
                }

                if self.field_type.format == FieldFormat::Default {
                    // Struct must have at least 1 field (potential for DoS).
                    return self.set_error_state(EventHeaderEnumeratorError::InvalidData);
                }

                self.start_struct();
                return true;
            }

            if self.field_type.encoding.is_variable_length_array() {
                // Runtime-variable array length.

                if event_data.len() - (self.data_pos_raw as usize) < 2 {
                    return self.set_error_state(EventHeaderEnumeratorError::InvalidData);
                }

                self.stack_top.array_count = self
                    .byte_reader
                    .read_u16(&event_data[self.data_pos_raw as usize..]);
                self.data_pos_raw += 2;

                return self.start_array(event_data.len() as u32); // StartArray will set Flags.
            }

            if self.field_type.encoding.is_constant_length_array() {
                // Compile-time-constant array length.

                if self.meta_end - self.stack_top.next_offset < 2 {
                    return self.set_error_state(EventHeaderEnumeratorError::InvalidData);
                }

                self.stack_top.array_count = self
                    .byte_reader
                    .read_u16(&event_data[self.stack_top.next_offset as usize..]);
                self.stack_top.next_offset += 2;

                if self.stack_top.array_count == 0 {
                    // Constant-length array cannot have length of 0 (potential for DoS).
                    return self.set_error_state(EventHeaderEnumeratorError::InvalidData);
                }

                return self.start_array(event_data.len() as u32); // StartArray will set Flags.
            }

            return self.set_error_state(EventHeaderEnumeratorError::NotSupported);
        }

        if self.stack_index != 0 {
            // End of struct.
            // It's a bit unusual but completely legal and fully supported to reach
            // end-of-metadata before RemainingFieldCount == 0.

            // Pop child from stack.
            self.stack_index -= 1;
            let child_metadata_offset = self.stack_top.next_offset;
            self.stack_top = self.stack[self.stack_index as usize];

            self.field_type = self.read_field_type(
                event_data,
                self.stack_top.name_offset + self.stack_top.name_len as u32 + 1,
            );
            debug_assert!(FieldEncoding::Struct == self.field_type.encoding.without_flags());
            self.element_size = 0;

            // Unless parent is in the middle of an array, we need to set the
            // "next field" position to the child's metadata position.
            debug_assert!(self.stack_top.array_index < self.stack_top.array_count);
            if self.stack_top.array_index + 1 == self.stack_top.array_count {
                self.stack_top.next_offset = child_metadata_offset;
            }

            self.set_end_state(EventHeaderEnumeratorState::StructEnd, SubState::StructEnd);
            return true;
        }

        // End of event.

        if self.stack_top.next_offset != self.meta_end {
            // Event has metadata for more than MaxTopLevelProperties.
            return self.set_error_state(EventHeaderEnumeratorError::NotSupported);
        }

        self.set_end_state(
            EventHeaderEnumeratorState::AfterLastItem,
            SubState::AfterLastItem,
        );

        return false; // No more items.
    }

    fn read_field_name_and_type(&mut self, event_data: &[u8]) -> FieldType {
        let name_begin = self.stack_top.name_offset;
        debug_assert!(self.meta_end >= name_begin);

        let mut name_end = name_begin;
        while name_end < self.meta_end && event_data[name_end as usize] != 0 {
            name_end += 1;
        }

        let result = if self.meta_end - name_end < 2 {
            // Missing nul termination or missing encoding.
            FieldType {
                encoding: Self::READ_FIELD_ERROR,
                format: FieldFormat::Default,
                tag: 0,
            }
        } else {
            self.stack_top.name_len = (name_end - name_begin) as u16;
            self.read_field_type(event_data, name_end + 1)
        };

        return result;
    }

    fn read_field_type(&mut self, event_data: &[u8], type_offset: u32) -> FieldType {
        let mut pos = type_offset;
        debug_assert!(self.meta_end > pos);

        let mut encoding = FieldEncoding::from_int(event_data[pos as usize]);
        let mut format = FieldFormat::Default;
        let mut tag = 0;
        pos += 1;
        if encoding.has_chain_flag() {
            if self.meta_end == pos {
                // Missing format.
                encoding = Self::READ_FIELD_ERROR;
            } else {
                format = FieldFormat::from_int(event_data[pos as usize]);
                pos += 1;
                if format.has_chain_flag() {
                    if self.meta_end - pos < 2 {
                        // Missing tag.
                        encoding = Self::READ_FIELD_ERROR;
                    } else {
                        tag = self.byte_reader.read_u16(&event_data[pos as usize..]);
                        pos += 2;
                    }
                }
            }
        }

        self.stack_top.next_offset = pos;

        return FieldType {
            encoding: encoding.without_chain_flag(),
            format: format.without_flags(),
            tag,
        };
    }

    /// Returns: moved_to_value
    fn start_array(&mut self, event_data_len: u32) -> bool {
        self.element_size = 0;
        self.item_size_raw = 0;
        self.data_pos_cooked = self.data_pos_raw;
        self.item_size_cooked = 0;
        self.set_state(EventHeaderEnumeratorState::ArrayBegin, SubState::ArrayBegin);

        // Determine the m_elementSize value.
        match self.field_type.encoding.without_flags() {
            FieldEncoding::Struct => return true,

            FieldEncoding::Value8 => {
                self.element_size = 1;
            }

            FieldEncoding::Value16 => {
                self.element_size = 2;
            }

            FieldEncoding::Value32 => {
                self.element_size = 4;
            }

            FieldEncoding::Value64 => {
                self.element_size = 8;
            }

            FieldEncoding::Value128 => {
                self.element_size = 16;
            }

            FieldEncoding::ZStringChar8
            | FieldEncoding::ZStringChar16
            | FieldEncoding::ZStringChar32
            | FieldEncoding::StringLength16Char8
            | FieldEncoding::StringLength16Char16
            | FieldEncoding::StringLength16Char32
            | FieldEncoding::BinaryLength16Char8 => return true,

            FieldEncoding::Invalid => {
                return self.set_error_state(EventHeaderEnumeratorError::InvalidData)
            }

            _ => return self.set_error_state(EventHeaderEnumeratorError::NotSupported),
        }

        // For simple array element types, validate that Count * m_elementSize <= RemainingSize.
        // That way we can skip per-element validation and we can safely expose the array data
        // during ArrayBegin.
        let remaining_len = event_data_len - self.data_pos_raw;
        let array_len = self.stack_top.array_count as u32 * self.element_size as u32;
        if remaining_len < array_len {
            return self.set_error_state(EventHeaderEnumeratorError::InvalidData);
        }

        self.item_size_cooked = array_len;
        self.item_size_raw = array_len;
        return true;
    }

    fn start_struct(&mut self) {
        debug_assert!(self.field_type.encoding.without_flags() == FieldEncoding::Struct);
        self.element_size = 0;
        self.item_size_raw = 0;
        self.data_pos_cooked = self.data_pos_raw;
        self.item_size_cooked = 0;
        self.set_state(
            EventHeaderEnumeratorState::StructBegin,
            SubState::StructBegin,
        );
    }

    fn start_value(&mut self, event_data: &[u8]) -> bool {
        let remaining_len = event_data.len() as u32 - self.data_pos_raw;

        debug_assert!(self.state == EventHeaderEnumeratorState::Value);
        debug_assert!(
            self.field_type.encoding
                == FieldEncoding::from_int(
                    event_data[(self.stack_top.name_offset + self.stack_top.name_len as u32 + 1)
                        as usize]
                )
                .without_chain_flag()
        );
        self.data_pos_cooked = self.data_pos_raw;
        self.element_size = 0;

        match self.field_type.encoding.without_flags() {
            FieldEncoding::Value8 => return self.start_value_fixed_length(event_data, 1),
            FieldEncoding::Value16 => return self.start_value_fixed_length(event_data, 2),
            FieldEncoding::Value32 => return self.start_value_fixed_length(event_data, 4),
            FieldEncoding::Value64 => return self.start_value_fixed_length(event_data, 8),
            FieldEncoding::Value128 => return self.start_value_fixed_length(event_data, 16),

            FieldEncoding::ZStringChar8 => self.start_value_zstring8(event_data),
            FieldEncoding::ZStringChar16 => self.start_value_zstring16(event_data),
            FieldEncoding::ZStringChar32 => self.start_value_zstring32(event_data),
            FieldEncoding::StringLength16Char8 | FieldEncoding::BinaryLength16Char8 => {
                self.start_value_string(event_data, 0)
            }
            FieldEncoding::StringLength16Char16 => self.start_value_string(event_data, 1),
            FieldEncoding::StringLength16Char32 => self.start_value_string(event_data, 2),

            _ => {
                debug_assert!(self.field_type.encoding.without_flags() != FieldEncoding::Struct);
                self.item_size_cooked = 0;
                self.item_size_raw = 0;
                return self.set_error_state(EventHeaderEnumeratorError::InvalidData);
            }
        }

        if remaining_len < self.item_size_raw {
            self.item_size_cooked = 0;
            self.item_size_raw = 0;
            return self.set_error_state(EventHeaderEnumeratorError::InvalidData);
        }

        return true;
    }

    fn start_value_simple(&mut self) {
        debug_assert!(self.stack_top.array_index < self.stack_top.array_count);
        debug_assert!(self.field_type.encoding.is_array());
        debug_assert!(self.field_type.encoding.without_flags() != FieldEncoding::Struct);
        debug_assert!(self.element_size != 0);
        debug_assert!(self.item_size_cooked == self.element_size as u32);
        debug_assert!(self.item_size_raw == self.element_size as u32);
        debug_assert!(self.state == EventHeaderEnumeratorState::Value);
        self.data_pos_cooked = self.data_pos_raw;
    }

    fn start_value_fixed_length(&mut self, event_data: &[u8], size: u8) -> bool {
        self.element_size = size;

        let size32 = size as u32;
        let remaining_len = event_data.len() as u32 - self.data_pos_raw;

        if size32 > remaining_len {
            self.item_size_cooked = 0;
            self.item_size_raw = 0;
            self.set_error_state(EventHeaderEnumeratorError::InvalidData);
            return false;
        }

        self.item_size_cooked = size32;
        self.item_size_raw = size32;
        return true;
    }

    fn start_value_zstring8(&mut self, event_data: &[u8]) {
        type CH = u8;
        const ELEMENT_SIZE: usize = mem::size_of::<CH>();
        let end_pos = event_data.len() - ELEMENT_SIZE + 1;
        let mut pos = self.data_pos_raw as usize;
        while pos < end_pos {
            // Byte order not significant - just need to see if it is all-0-bits.
            if 0 == event_data[pos] {
                self.item_size_cooked = pos as u32 - self.data_pos_raw;
                self.item_size_raw = self.item_size_cooked + ELEMENT_SIZE as u32;
                return;
            }
            pos += ELEMENT_SIZE;
        }

        self.item_size_cooked = event_data.len() as u32 - self.data_pos_raw;
        self.item_size_raw = event_data.len() as u32 - self.data_pos_raw;
    }

    fn start_value_zstring16(&mut self, event_data: &[u8]) {
        type CH = u16;
        const ELEMENT_SIZE: usize = mem::size_of::<CH>();
        let end_pos = event_data.len() - ELEMENT_SIZE + 1;
        let mut pos = self.data_pos_raw as usize;
        while pos < end_pos {
            // Byte order not significant - just need to see if it is all-0-bits.
            if 0 == CH::from_ne_bytes(event_data[pos..pos + ELEMENT_SIZE].try_into().unwrap()) {
                self.item_size_cooked = pos as u32 - self.data_pos_raw;
                self.item_size_raw = self.item_size_cooked + ELEMENT_SIZE as u32;
                return;
            }
            pos += ELEMENT_SIZE;
        }

        self.item_size_cooked = event_data.len() as u32 - self.data_pos_raw;
        self.item_size_raw = event_data.len() as u32 - self.data_pos_raw;
    }

    fn start_value_zstring32(&mut self, event_data: &[u8]) {
        type CH = u32;
        const ELEMENT_SIZE: usize = mem::size_of::<CH>();
        let end_pos = event_data.len() - ELEMENT_SIZE + 1;
        let mut pos = self.data_pos_raw as usize;
        while pos < end_pos {
            // Byte order not significant - just need to see if it is all-0-bits.
            if 0 == CH::from_ne_bytes(event_data[pos..pos + ELEMENT_SIZE].try_into().unwrap()) {
                self.item_size_cooked = pos as u32 - self.data_pos_raw;
                self.item_size_raw = self.item_size_cooked + ELEMENT_SIZE as u32;
                return;
            }
            pos += ELEMENT_SIZE;
        }

        self.item_size_cooked = event_data.len() as u32 - self.data_pos_raw;
        self.item_size_raw = event_data.len() as u32 - self.data_pos_raw;
    }

    fn start_value_string(&mut self, event_data: &[u8], char_size_shift: u8) {
        let remaining = event_data.len() as u32 - self.data_pos_raw;
        if remaining < 2 {
            self.item_size_raw = 2;
        } else {
            self.data_pos_cooked = self.data_pos_raw + 2;

            let cch = self
                .byte_reader
                .read_u16(&event_data[self.data_pos_raw as usize..]);
            self.item_size_cooked = (cch as u32) << char_size_shift;
            self.item_size_raw = self.item_size_cooked + 2;
        }
    }

    fn set_state(&mut self, state: EventHeaderEnumeratorState, substate: SubState) {
        self.state = state;
        self.substate = substate;
    }

    fn set_end_state(&mut self, state: EventHeaderEnumeratorState, substate: SubState) {
        self.data_pos_cooked = self.data_pos_raw;
        self.item_size_raw = 0;
        self.item_size_cooked = 0;
        self.state = state;
        self.substate = substate;
    }

    fn set_error_state(&mut self, error: EventHeaderEnumeratorError) -> bool {
        self.last_error = error;
        self.state = EventHeaderEnumeratorState::Error;
        self.substate = SubState::Error;
        return false;
    }
}

impl Default for EventHeaderEnumeratorContext {
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(test)]
mod tests {
    use std::env;
    use std::fs;
    use std::time;

    use super::*;

    #[test]
    fn hex_to_int() {
        assert_eq!(lowercase_hex_to_int(b"", 0), (0, 0));
        assert_eq!(lowercase_hex_to_int(b" ", 0), (0, 0));
        assert_eq!(lowercase_hex_to_int(b" ", 1), (0, 1));
        assert_eq!(lowercase_hex_to_int(b"0", 0), (0, 1));
        assert_eq!(lowercase_hex_to_int(b"0", 1), (0, 1));
        assert_eq!(lowercase_hex_to_int(b"gfedcba9876543210ABCDEFG", 0), (0, 0));
        assert_eq!(
            lowercase_hex_to_int(b"gfedcba9876543210ABCDEFG", 1),
            (0xfedcba9876543210, 17)
        );
        assert_eq!(
            lowercase_hex_to_int(b"gfedcba9876543210ABCDEFG", 2),
            (0xedcba9876543210, 17)
        );
    }

    fn strnlen(bytes: &[u8]) -> usize {
        let mut len = 0;
        while len < bytes.len() && bytes[len] != 0 {
            len += 1;
        }
        return len;
    }

    #[derive(Clone, Copy, Debug, PartialEq)]
    enum Method {
        MoveNext,
        MoveNextSibling,
        WriteItem,
    }

    /// For each event in the EventHeaderInterceptorLE64.dat file, use EventHeaderEnumerator to
    /// enumerate the fields of the event. Generate JSON with the results.
    fn enumerate_impl(
        output_filename: &str,
        buffer: &mut String,
        tmp_str: &mut String,
        method: Method,
    ) -> Result<(), fmt::Error> {
        const OPTIONS: PerfConvertOptions =
            PerfConvertOptions::Default.and_not(PerfConvertOptions::BoolOutOfRangeAsString);

        let mut dat_path = env::current_dir().unwrap();
        dat_path.push("test_data");
        dat_path.push("EventHeaderInterceptorLE64.dat");

        let mut ctx = EventHeaderEnumeratorContext::new();
        buffer.push('\u{FEFF}');
        let mut json = writers::JsonWriter::new(buffer, OPTIONS, false);

        json.write_newline_before_value(0)?;
        json.write_property_name("EventHeaderInterceptorLE64.dat")?;
        json.write_array_begin()?;

        let dat_vec = fs::read(dat_path).unwrap();
        let dat_bytes = &dat_vec[..];
        let mut dat_pos = 0;
        while dat_pos < dat_bytes.len() {
            assert!(dat_bytes.len() - dat_pos >= 4);
            let size =
                u32::from_le_bytes(dat_bytes[dat_pos..dat_pos + 4].try_into().unwrap()) as usize;
            assert!(size >= 4);
            assert!(size <= dat_bytes.len() - dat_pos);

            let name_pos = dat_pos + 4;
            dat_pos += size;

            let name_len = strnlen(&dat_bytes[name_pos..dat_pos]);
            assert!(name_pos + name_len < dat_pos);

            let tracepoint_name =
                std::str::from_utf8(&dat_bytes[name_pos..name_pos + name_len]).unwrap();
            let event_data = &dat_bytes[name_pos + name_len + 1..dat_pos];
            match ctx.enumerate_with_name_and_data(
                tracepoint_name,
                event_data,
                EventHeaderEnumeratorContext::MOVE_NEXT_LIMIT_DEFAULT,
            ) {
                Err(e) => {
                    json.write_newline_before_value(1)?;
                    json.write_object_begin()?;
                    json.write_property_name_json_safe("n")?;
                    json.write_value_quoted(|w| w.write_str_with_json_escape(tracepoint_name))?;
                    json.write_property_name_json_safe("enumerate_error")?;
                    json.write_value_quoted(|w| w.write_display_with_no_filter(e))?;
                    json.write_object_end()?;
                }
                Ok(mut e) => {
                    let ei = e.event_info();
                    json.write_newline_before_value(2)?;
                    json.write_object_begin()?;

                    json.write_property_name_json_safe("n")?;
                    json.write_value_quoted(|w| {
                        w.write_display_with_no_filter(ei.identity_display())
                    })?;

                    if Method::WriteItem == method {
                        tmp_str.clear();
                        if e.write_json_item_and_move_next_sibling(tmp_str, false, OPTIONS)? {
                            json.write_value(|w| w.write_display_with_no_filter(&tmp_str))?;
                        }
                    } else if e.move_next() {
                        loop {
                            let ii = e.item_info();
                            let m = ii.metadata();
                            match e.state() {
                                EventHeaderEnumeratorState::Value => {
                                    if !m.is_element() {
                                        json.write_property_name_from_item_info(&ii)?;
                                    }

                                    tmp_str.clear();
                                    ii.value().write_json_scalar_to(tmp_str, OPTIONS)?;
                                    json.write_value(|w| w.write_display_with_no_filter(&tmp_str))?;
                                }
                                EventHeaderEnumeratorState::StructBegin => {
                                    if !m.is_element() {
                                        json.write_property_name_from_item_info(&ii)?;
                                    }
                                    json.write_object_begin()?;
                                }
                                EventHeaderEnumeratorState::StructEnd => json.write_object_end()?,
                                EventHeaderEnumeratorState::ArrayBegin => {
                                    json.write_property_name_from_item_info(&ii)?;
                                    if Method::MoveNextSibling == method && m.type_size() != 0 {
                                        tmp_str.clear();
                                        ii.value().write_json_simple_array_to(tmp_str, OPTIONS)?;
                                        json.write_value(|w| {
                                            w.write_display_with_no_filter(&tmp_str)
                                        })?;

                                        if !e.move_next_sibling() {
                                            break;
                                        }

                                        continue; // skip move_next()
                                    }
                                    json.write_array_begin()?;
                                }
                                EventHeaderEnumeratorState::ArrayEnd => json.write_array_end()?,
                                _ => {
                                    json.write_property_name_json_safe("unexpected_state")?;
                                    json.write_value_quoted(|w| {
                                        w.write_display_with_no_filter(e.state())
                                    })?;
                                }
                            }

                            if !e.move_next() {
                                break;
                            }
                        }
                    }

                    json.write_property_name_json_safe("meta")?;
                    json.write_object_begin()?;
                    json.write_value(|w| {
                        w.write_display_with_no_filter(ei.json_meta_display(None))
                    })?;
                    json.write_object_end()?;

                    json.write_object_end()?;
                }
            }
        }

        json.write_array_end()?;

        if cfg!(windows) {
            buffer.push('\r');
        }

        buffer.push('\n');

        if !output_filename.is_empty() {
            let mut out_path = env::current_dir().unwrap().join("actual");
            fs::create_dir_all(&out_path).unwrap();
            out_path.push(output_filename);
            fs::write(&out_path, buffer.as_bytes()).unwrap();
        }

        return Ok(());
    }

    #[test]
    fn enumerate() -> Result<(), fmt::Error> {
        let mut tmp_str = String::new();

        let mut movenext_buffer = String::new();
        enumerate_impl(
            "enumerate_movenext.json",
            &mut movenext_buffer,
            &mut tmp_str,
            Method::MoveNext,
        )?;

        let mut movenextsibling_buffer = String::new();
        enumerate_impl(
            "enumerate_movenextsibling.json",
            &mut movenextsibling_buffer,
            &mut tmp_str,
            Method::MoveNextSibling,
        )?;

        let mut writeitem_buffer = String::new();
        enumerate_impl(
            "enumerate_writeitem.json",
            &mut writeitem_buffer,
            &mut tmp_str,
            Method::WriteItem,
        )?;

        assert_eq!(movenext_buffer, movenextsibling_buffer);
        assert_eq!(movenext_buffer, writeitem_buffer);
        return Ok(());
    }

    #[test]
    #[ignore]
    fn benchmark() -> Result<(), fmt::Error> {
        const ITERATIONS: usize = 1000;
        let mut buffer = String::new();
        let mut tmp_str = String::new();

        buffer.clear();
        enumerate_impl("", &mut buffer, &mut tmp_str, Method::MoveNext)?;
        let movenext_start = time::Instant::now();
        for _ in 0..ITERATIONS {
            buffer.clear();
            enumerate_impl("", &mut buffer, &mut tmp_str, Method::MoveNext)?;
        }
        let movenext_duration = movenext_start.elapsed();

        buffer.clear();
        enumerate_impl("", &mut buffer, &mut tmp_str, Method::MoveNextSibling)?;
        let movenextsibling_start = time::Instant::now();
        for _ in 0..ITERATIONS {
            buffer.clear();
            enumerate_impl("", &mut buffer, &mut tmp_str, Method::MoveNextSibling)?;
        }
        let movenextsibling_duration = movenextsibling_start.elapsed();

        print!(
            "MoveNext: {:?}\nMoveNextSibling: {:?}\n",
            movenext_duration, movenextsibling_duration,
        );

        return Ok(());
    }
}