1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
//
// Copyright 2020 yvt, all rights reserved.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
//! This crate provides a cell type, [`TokenLock`], whose contents can only be
//! accessed by an unforgeable token.
//!
//! # Examples
//!
//! ## Basics
//!
//! ```
//! # use tokenlock::*;
//! let mut token = ArcToken::new();
//!
//! let lock = TokenLock::new(token.id(), 1);
//! assert_eq!(*lock.read(&token), 1);
//!
//! let mut guard = lock.write(&mut token);
//! assert_eq!(*guard, 1);
//! *guard = 2;
//! ```
//!
//! Only the original [`Token`]'s owner can access its contents. `Token`
//! cannot be cloned:
//!
//! ```
//! # use tokenlock::*;
//! # use std::thread;
//! # use std::sync::Arc;
//! # let mut token = ArcToken::new();
//! let lock = Arc::new(TokenLock::new(token.id(), 1));
//!
//! let lock_1 = Arc::clone(&lock);
//! thread::Builder::new().spawn(move || {
//!     let lock_1 = lock_1;
//!     let mut token_1 = token;
//!
//!     // I have `Token` so I can get a mutable reference to the contents
//!     lock_1.write(&mut token_1);
//! }).unwrap();
//!
//! // can't access the contents; I no longer have `Token`
//! // lock.write(&mut token);
//! ```
//!
//! ## Lifetimes
//!
//! The lifetime of the returned reference is limited by both of the `TokenLock`
//! and `Token`.
//!
//! ```compile_fail
//! # use tokenlock::*;
//! # use std::mem::drop;
//! let mut token = ArcToken::new();
//! let lock = TokenLock::new(token.id(), 1);
//! let guard = lock.write(&mut token);
//! drop(lock); // compile error: `guard` cannot outlive `TokenLock`
//! drop(guard);
//! ```
//!
//! ```compile_fail
//! # use tokenlock::*;
//! # use std::mem::drop;
//! # let mut token = ArcToken::new();
//! # let lock = TokenLock::new(token.id(), 1);
//! # let guard = lock.write(&mut token);
//! drop(token); // compile error: `guard` cannot outlive `Token`
//! drop(guard);
//! ```
//!
//! It also prevents from forming a reference to the contained value when
//! there already is a mutable reference to it:
//!
//! ```compile_fail
//! # use tokenlock::*;
//! # let mut token = ArcToken::new();
//! # let lock = TokenLock::new(token.id(), 1);
//! let write_guard = lock.write(&mut token);
//! let read_guard = lock.read(&token); // compile error
//! drop(write_guard);
//! ```
//!
//! While allowing multiple immutable references:
//!
//! ```
//! # use tokenlock::*;
//! # let mut token = ArcToken::new();
//! # let lock = TokenLock::new(token.id(), 1);
//! let read_guard1 = lock.read(&token);
//! let read_guard2 = lock.read(&token);
//! ```
//!
//! ## Use case: Linked lists
//!
//! An operating system kernel often needs to store the global state in a global
//! variable. Linked lists are a common data structure used in a kernel, but
//! Rust's ownership does not allow forming `'static` references into values
//! protected by a mutex. Common work-arounds, such as smart pointers and index
//! references, take a heavy toll on a small microcontroller with a single-issue
//! in-order pipeline and no hardware multiplier.
//!
//! ```rust,ignore
//! struct Process {
//!     prev: Option<& /* what lifetime? */ Process>,
//!     next: Option<& /* what lifetime? */ Process>,
//!     state: u8,
//!     /* ... */
//! }
//! struct SystemState {
//!     first_process: Option<& /* what lifetime? */ Process>,
//!     process_pool: [Process; 64],
//! }
//! static STATE: Mutex<SystemState> = todo!();
//! ```
//!
//! `tokenlock` makes the `'static` reference approach possible by detaching the
//! lock granularity from the protected data's granularity.
//!
//! ```rust
//! use tokenlock::*;
//! use std::cell::Cell;
//! struct Tag;
//! impl_singleton_token_factory!(Tag);
//!
//! type KLock<T> = UnsyncTokenLock<T, SingletonTokenId<Tag>>;
//! type KLockToken = UnsyncSingletonToken<Tag>;
//! type KLockTokenId = SingletonTokenId<Tag>;
//!
//! struct Process {
//!     prev: KLock<Option<&'static Process>>,
//!     next: KLock<Option<&'static Process>>,
//!     state: KLock<u8>,
//!     /* ... */
//! }
//! struct SystemState {
//!     first_process: KLock<Option<&'static Process>>,
//!     process_pool: [Process; 1],
//! }
//! static STATE: SystemState = SystemState {
//!     first_process: KLock::new(KLockTokenId::new(), None),
//!     process_pool: [
//!         Process {
//!             prev: KLock::new(KLockTokenId::new(), None),
//!             next: KLock::new(KLockTokenId::new(), None),
//!             state: KLock::new(KLockTokenId::new(), 0),
//!         }
//!     ],
//! };
//! ```
//!
//! # Token types
//!
//! This crate provides the following types implementing [`Token`].
//!
//! (**`std` only**) [`RcToken`] and [`ArcToken`] ensure their uniqueness by
//! reference-counted memory allocations.
//!
//! [`SingletonToken`]`<Tag>` is a singleton token, meaning only one of such
//! instance can exist at any point of time during the program's execution.
//! [`impl_singleton_token_factory!`] instantiates a `static` flag to indicate
//! `SingletonToken`'s liveness and allows you to construct it safely by
//! [`SingletonToken::new`]. Alternatively, you can use
//! [`SingletonToken::new_unchecked`], but this is unsafe if misused.
//!
//! # `!Sync` tokens
//!
//! [`UnsyncTokenLock`] is similar to `TokenLock` but designed for non-`Sync`
//! tokens and has relaxed requirements on the inner type for thread safety.
//! Specifically, it can be `Sync` even if the inner type is not `Sync`. This
//! allows for storing non-`Sync` cells such as [`Cell`] and reading and
//! writing them using shared references (all of which must be on the same
//! thread because the token is `!Sync`) to the token.
//!
//! [`Cell`]: crate::std_core::cell::Cell
//!
//! ```
//! # use tokenlock::*;
//! # use std::thread;
//! # use std::sync::Arc;
//! use std::cell::Cell;
//! let mut token = ArcToken::new();
//! let lock = Arc::new(UnsyncTokenLock::new(token.id(), Cell::new(1)));
//!
//! let lock_1 = Arc::clone(&lock);
//! thread::Builder::new().spawn(move || {
//!     // "Lock" the token to the current thread using
//!     // `ArcToken::borrow_as_unsync`
//!     let token = token.borrow_as_unsync();
//!
//!     // Shared references can alias
//!     let (token_1, token_2) = (&token, &token);
//!
//!     lock_1.read(token_1).set(2);
//!     lock_1.read(token_2).set(4);
//! }).unwrap();
//! ```
//!
//! `!Sync` tokens, of course, cannot be shared between threads:
//!
//! ```compile_fail
//! # use tokenlock::*;
//! # use std::thread;
//! let mut token = ArcToken::new();
//! let token = token.borrow_as_unsync();
//! let (token_1, token_2) = (&token, &token);
//!
//! // compile error: `&ArcTokenUnsyncRef` is not `Send` because
//! //                `ArcTokenUnsyncRef` is not `Sync`
//! thread::Builder::new().spawn(move || {
//!     let _ = token_2;
//! });
//!
//! let _ = token_1;
//! ```
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
#[doc(hidden)]
pub extern crate core as std_core;
#[cfg(feature = "std")]
#[doc(hidden)]
pub extern crate std as std_core;

use self::std_core::cell::UnsafeCell;
use self::std_core::fmt;

#[cfg(feature = "std")]
mod arc;
#[cfg(feature = "std")]
mod rc;
#[cfg(feature = "std")]
pub use self::{arc::*, rc::*};

mod singleton_factory;

mod singleton;
pub use self::{singleton::*, singleton_factory::*};

/// Trait for an unforgeable token used to access the contents of a
/// [`TokenLock`]`<_, Keyhole>`.
///
/// A token can "open" a `TokenLock` only if the token matches the metaphorical
/// keyhole.
///
/// # Safety
///
/// Given two distinct instances of `T: Token` `x` and `y`,
/// `x.eq_id(i) && y.eq_id(i)` must not be `true` for any `i`.
pub unsafe trait Token<Keyhole> {
    fn eq_id(&self, id: &Keyhole) -> bool;
}

/// Asserts the types implementing this trait are `!`[`Sync`]. (Negative bounds
/// are not supported by the compiler at the point of writing, so this trait
/// must be implemented manually.)
///
/// # Safety
///
/// `Self` must really be `!Sync`.
pub unsafe trait Unsync {}

/// A mutual exclusive primitive that can be accessed using a [`Token`]`<Keyhole>`
/// with a very low overhead.
///
/// See the [module-level documentation] for more details.
///
/// [module-level documentation]: index.html
#[derive(Default)]
pub struct TokenLock<T: ?Sized, Keyhole> {
    keyhole: Keyhole,
    data: UnsafeCell<T>,
}

// Safety: `TokenLock` does not allow more multi-thread uses of `T` than a bare
//         `T` does, so it can just inherit `T`'s `Send`-ness and `Sync`-ness
unsafe impl<T: ?Sized + Send, Keyhole: Send> Send for TokenLock<T, Keyhole> {}
unsafe impl<T: ?Sized + Send + Sync, Keyhole: Sync> Sync for TokenLock<T, Keyhole> {}

/// Like [`TokenLock`], but the usable [`Token`]s are constrained by [`Unsync`].
/// This subtle difference allows it to be `Sync` even if `T` is not.
///
/// See the [module-level documentation] for more details.
///
/// [module-level documentation]: index.html#sync-tokens
#[derive(Default)]
pub struct UnsyncTokenLock<T: ?Sized, Keyhole> {
    keyhole: Keyhole,
    data: UnsafeCell<T>,
}

// Safety: In addition to what `TokenLock`'s guarantees, Non-`Sync`-ness of
//         the `Token` prohibits `UnsyncTokenLock` from being simultaneously
//         read by multiple threads. `T: Send` is still required because `T`
//         can be moved out from any `&UnsyncTokenLock`.
unsafe impl<T: ?Sized + Send, Keyhole: Send> Send for UnsyncTokenLock<T, Keyhole> {}
unsafe impl<T: ?Sized + Send, Keyhole: Sync> Sync for UnsyncTokenLock<T, Keyhole> {}

/// Error type returned when a key ([`Token`]) doesn't fit in a keyhole
/// ([`TokenLock::keyhole`]).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct BadTokenError;

#[cfg(feature = "std")]
impl std::error::Error for BadTokenError {
    fn description(&self) -> &str {
        "token mismatch"
    }
}

#[cfg(feature = "std")]
impl fmt::Display for BadTokenError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "token mismatch")
    }
}

macro_rules! impl_common {
    ($ty:ident, [$($token_read_bounds:tt)*]) => {
        impl<T: ?Sized, Keyhole: fmt::Debug> fmt::Debug for $ty<T, Keyhole> {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                f.debug_struct(stringify!($ty))
                    .field("keyhole", &self.keyhole)
                    .finish()
            }
        }

        impl<T, Keyhole> $ty<T, Keyhole> {
            /// Construct a `Self`.
            #[inline]
            pub const fn new(keyhole: Keyhole, data: T) -> Self {
                Self {
                    keyhole,
                    data: UnsafeCell::new(data),
                }
            }

            /// Consume `self`, returning the contained data.
            #[inline]
            pub fn into_inner(self) -> T {
                self.data.into_inner()
            }
        }

        impl<T: ?Sized, Keyhole> $ty<T, Keyhole> {
            /// Get a reference to the contained `Keyhole` (keyhole).
            #[inline]
            pub const fn keyhole(&self) -> &Keyhole {
                &self.keyhole
            }

            /// Get a mutable reference to the contained data.
            #[inline]
            pub fn get_mut(&mut self) -> &mut T {
                unsafe { &mut *self.data.get() }
            }

            /// Get a raw pointer to the contained data.
            #[inline]
            pub const fn as_ptr(&self) -> *mut T {
                self.data.get()
            }

            /// Get a reference to the contained data. Panic if `token` doesn't fit in
            /// the [`keyhole`](Self::keyhole).
            #[inline]
            pub fn read<'a, K: $($token_read_bounds)*>(&'a self, token: &'a K) -> &'a T {
                self.try_read(token).unwrap()
            }

            /// Get a mutable reference to the contained data. Panic if `token` doesn't
            /// fit in the [`keyhole`](Self::keyhole).
            #[inline]
            pub fn write<'a, K: Token<Keyhole>>(&'a self, token: &'a mut K) -> &'a mut T {
                self.try_write(token).unwrap()
            }

            /// Get a reference to the contained data. Return `BadTokenError` if `token`
            /// doesn't fit in the [`keyhole`](Self::keyhole).
            #[inline]
            pub fn try_read<'a, K: $($token_read_bounds)*>(
                &'a self,
                token: &'a K,
            ) -> Result<&'a T, BadTokenError> {
                if token.eq_id(&self.keyhole) {
                    Ok(unsafe { &*self.data.get() })
                } else {
                    Err(BadTokenError)
                }
            }

            /// Get a mutable reference to the contained data. Return `BadTokenError` if
            /// `token` doesn't fit in the [`keyhole`](Self::keyhole).
            #[inline]
            pub fn try_write<'a, K: Token<Keyhole>>(
                &'a self,
                token: &'a mut K,
            ) -> Result<&'a mut T, BadTokenError> {
                if token.eq_id(&self.keyhole) {
                    Ok(unsafe { &mut *self.data.get() })
                } else {
                    Err(BadTokenError)
                }
            }
        }

        impl<T, Keyhole> $ty<T, Keyhole> {
            /// Get the contained data by cloning. Panic if `token` doesn't fit in
            /// the [`keyhole`](Self::keyhole).
            #[inline]
            pub fn get<K: $($token_read_bounds)*>(&self, token: &K) -> T
            where
                T: Clone,
            {
                self.read(token).clone()
            }

            /// Get the contained data by cloning. Return `BadTokenError` if `token`
            /// doesn't fit in the [`keyhole`](Self::keyhole).
            #[inline]
            pub fn try_get<K: $($token_read_bounds)*>(&self, token: &K) -> Result<T, BadTokenError>
            where
                T: Clone,
            {
                Ok(self.try_read(token)?.clone())
            }

            /// Take the contained data, leaving `Default::default()` in its place.
            /// Panic if `token` doesn't fit in the [`keyhole`](Self::keyhole).
            #[inline]
            pub fn take<K: Token<Keyhole>>(&self, token: &mut K) -> T
            where
                T: Default,
            {
                self.replace_with(token, |_| Default::default())
            }

            /// Take the contained data, leaving `Default::default()` in its place.
            /// Return `BadTokenError` if `token` doesn't fit in the
            /// [`keyhole`](Self::keyhole).
            #[inline]
            pub fn try_take<K: Token<Keyhole>>(&self, token: &mut K) -> Result<T, BadTokenError>
            where
                T: Default,
            {
                self.try_replace_with(token, |_| Default::default())
            }

            /// Replace the contained data with a new one. Panic if `token` doesn't fit
            /// in the [`keyhole`](Self::keyhole).
            ///
            /// This function corresponds to [`std::mem::replace`].
            #[inline]
            pub fn replace<K: Token<Keyhole>>(&self, token: &mut K, t: T) -> T {
                std_core::mem::replace(self.write(token), t)
            }

            /// Replace the contained data with a new one computed by the given
            /// closure. Panic if `token` doesn't fit in the
            /// [`keyhole`](Self::keyhole).
            ///
            /// This function corresponds to [`std::mem::replace`].
            #[inline]
            pub fn replace_with<K: Token<Keyhole>>(
                &self,
                token: &mut K,
                f: impl FnOnce(&mut T) -> T,
            ) -> T {
                self.try_replace_with(token, f).unwrap()
            }

            /// Replace the contained data with a new one computed by `f`. Panic if
            /// `token` doesn't fit in the [`keyhole`](Self::keyhole).
            ///
            /// This function corresponds to [`std::mem::replace`].
            #[inline]
            pub fn try_replace_with<K: Token<Keyhole>>(
                &self,
                token: &mut K,
                f: impl FnOnce(&mut T) -> T,
            ) -> Result<T, BadTokenError> {
                let inner = self.try_write(token)?;
                let new = f(inner);
                Ok(std_core::mem::replace(inner, new))
            }

            /// Swap the contained data with the contained data of `other`. Panic if
            /// `token` doesn't fit in the [`keyhole`](Self::keyhole) of both
            /// `TokenLock`s.
            ///
            /// This function corresponds to [`std::mem::swap`].
            #[inline]
            pub fn swap<IOther, K: Token<Keyhole> + Token<IOther>>(
                &self,
                token: &mut K,
                other: &$ty<T, IOther>,
            ) {
                self.try_swap(token, other).unwrap()
            }

            /// Swap the contained data with the contained data of `other`. Return
            /// `BadTokenError` if `token` doesn't fit in the
            /// [`keyhole`](Self::keyhole) of both `TokenLock`s.
            #[inline]
            pub fn try_swap<
                IOther,
                K: Token<Keyhole> + Token<IOther>>(
                &self,
                token: &mut K,
                other: &$ty<T, IOther>,
            ) -> Result<(), BadTokenError> {
                // Valiate token
                let _ = self.try_write(token)?;
                let _ = other.try_write(token)?;

                // Can't take multiple loans using a single `token`, so we need raw
                // pointers here.
                unsafe {
                    std_core::ptr::swap(self.as_ptr(), other.as_ptr());
                }
                Ok(())
            }
        }

        impl<T: Clone, Keyhole: Clone> $ty<T, Keyhole> {
            /// Clone `self`. Panic if `token` doesn't fit in the
            /// [`keyhole`](Self::keyhole).
            #[inline]
            pub fn clone<K: $($token_read_bounds)*>(&self, token: &K) -> Self {
                let value = self.get(token);
                Self::new(self.keyhole.clone(), value)
            }

            /// Clone `self`. Return `BadTokenError` if `token` doesn't fit in
            /// the [`keyhole`](Self::keyhole).
            #[inline]
            pub fn try_clone<K: $($token_read_bounds)*>(&self, token: &K) -> Result<Self, BadTokenError> {
                let value = self.try_get(token)?;
                Ok(Self::new(self.keyhole.clone(), value))
            }
        }
    };
}

// `UnsyncTokenLock` has an extra `Unsync` bound on the token when a shared
// reference to a token is given. `Unsync` is not necessary if it's a mutable
// reference because a mutable reference prohibits aliasing.
impl_common!(TokenLock, [Token<Keyhole>]);
impl_common!(UnsyncTokenLock, [Token<Keyhole> + Unsync]);

#[test]
#[cfg(feature = "std")]
fn basic() {
    let mut token = ArcToken::new();
    let lock = TokenLock::new(token.id(), 1);
    assert_eq!(*lock.read(&token), 1);

    let guard = lock.write(&mut token);
    assert_eq!(*guard, 1);
}

#[test]
#[cfg(feature = "std")]
fn bad_token() {
    let token1 = ArcToken::new();
    let mut token2 = ArcToken::new();
    let lock = TokenLock::new(token1.id(), 1);
    assert_eq!(lock.try_write(&mut token2), Err(BadTokenError));
}

#[test]
#[cfg(feature = "std")]
fn unsend_basic() {
    let mut token = RcToken::new();
    let lock = UnsyncTokenLock::new(token.id(), 1);
    assert_eq!(*lock.read(&token), 1);

    let guard = lock.write(&mut token);
    assert_eq!(*guard, 1);
}

#[test]
#[cfg(feature = "std")]
fn unsend_bad_token() {
    let token1 = RcToken::new();
    let mut token2 = RcToken::new();
    let lock = UnsyncTokenLock::new(token1.id(), 1);
    assert_eq!(lock.try_write(&mut token2), Err(BadTokenError));
}