1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
#![doc = include_str!("../documentation/board/README.md")]
use super::*;
/// Ths code defines an enum `GameResult` that represents the result of a game. It has three
/// variants: `Win(Color)`, `Draw`, and `InProgress`.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum GameResult {
Win(Color),
Draw,
InProgress,
}
impl GameResult {
/// Check if the game result is a win
pub fn is_win(&self) -> bool {
matches!(self, GameResult::Win(_))
}
/// Check if the game result is a draw
pub fn is_draw(&self) -> bool {
matches!(self, GameResult::Draw)
}
/// Checks if the game result is in progress
pub fn is_in_progress(&self) -> bool {
matches!(self, GameResult::InProgress)
}
/// Returns the color of the winner, if there is one
pub fn winner(&self) -> Option<Color> {
match self {
GameResult::Win(color) => Some(*color),
_ => None,
}
}
}
#[derive(Clone, Debug)]
pub struct Board {
sub_board: SubBoard,
stack: Vec<(SubBoard, Option<Move>)>,
starting_fen: String,
repetition_table: RepetitionTable,
#[cfg(feature = "inbuilt_nnue")]
evaluator: Evaluator,
}
impl Board {
/// The function `new` creates a new instance of `Board` from a starting position FEN string.
///
/// Returns:
///
/// A new instance of `Board` is being returned, initialized with the starting position FEN
/// (Forsyth-Edwards Notation) string.
pub fn new() -> Self {
SubBoard::from_str(STARTING_POSITION_FEN).unwrap().into()
}
/// The function `set_fen` sets the board state based on a given FEN string.
///
/// Arguments:
///
/// * `fen`: FEN stands for Forsyth-Edwards Notation, which is a standard notation for describing a
/// particular board position of a chess game. It includes information about the placement of pieces
/// on the board, the player to move, castling rights, en passant square, halfmove clock, and full
///
/// Returns:
///
/// The `set_fen` function returns a `Result<()>`.
pub fn set_fen(&mut self, fen: &str) -> Result<()> {
let fen = simplify_fen(fen);
if !Self::is_good_fen(&fen) {
return Err(TimecatError::BadFen { fen });
}
if fen == self.get_fen() {
self.starting_fen = self.get_fen();
return Ok(());
}
self.sub_board = SubBoard::from_str(&fen)?;
self.repetition_table.clear();
self.repetition_table.insert(self.get_hash());
self.starting_fen = self.get_fen();
self.stack.clear();
Ok(())
}
/// The function `from_fen` parses a FEN string to create a new board state.
///
/// Arguments:
///
/// * `fen`: Forsyth-Edwards Notation (FEN) is a standard notation for describing a particular board
/// position of a chess game. It includes information about the placement of pieces on the board,
/// the current player's turn, castling rights, en passant square, halfmove clock, and full
///
/// Returns:
///
/// The `from_fen` function is returning a `Result` containing either a `ChessBoard` instance if the
/// FEN string was successfully parsed and set on the board, or an `TimecatError` if there was an
/// error during the parsing or setting of the FEN string.
pub fn from_fen(fen: &str) -> Result<Self> {
let mut board = Self::new();
board.set_fen(fen)?;
Ok(board)
}
/// This function returns a reference to the SubBoard struct owned by the current struct.
///
/// Returns:
///
/// A reference to the `SubBoard` struct is being returned.
pub fn get_sub_board(&self) -> &SubBoard {
&self.sub_board
}
#[cfg(feature = "inbuilt_nnue")]
pub fn get_evaluator(&self) -> &Evaluator {
&self.evaluator
}
#[cfg(feature = "inbuilt_nnue")]
pub fn get_evaluator_mut(&mut self) -> &mut Evaluator {
&mut self.evaluator
}
/// The function `is_good_fen` checks if a given FEN string is valid based on certain
/// criteria.
///
/// Arguments:
///
/// * `fen`: The function `is_good_fen` takes a FEN (Forsyth-Edwards Notation) string as input and
/// checks if it is a valid FEN representation of a chess position. The function performs the
/// following checks:
///
/// Returns:
///
/// The function `is_good_fen` returns a boolean value - `true` if the FEN string passed as input is
/// considered good based on certain conditions, and `false` otherwise.
pub fn is_good_fen(fen: &str) -> bool {
let fen = simplify_fen(fen);
if SubBoard::from_str(&fen).is_err() {
return false;
}
let mut splitted_fen = fen.split(' ');
if splitted_fen.nth(4).unwrap_or("0").parse().unwrap_or(-1) < 0
|| splitted_fen.next().unwrap_or("1").parse().unwrap_or(-1) < 0
|| splitted_fen.next().is_some()
{
return false;
};
true
}
/// The `reset` function sets the position to the starting position.
pub fn reset(&mut self) {
self.set_fen(STARTING_POSITION_FEN).unwrap();
}
/// The `clear` function sets the internal state to an empty state represented by a specific
/// FEN string.
pub fn clear(&mut self) {
self.set_fen(EMPTY_FEN).unwrap();
}
/// The `flip_vertical` function flips the game board vertically and resets certain game
/// state variables.
pub fn flip_vertical(&mut self) {
self.sub_board.flip_vertical();
self.stack.clear();
self.repetition_table.clear();
self.starting_fen = self.get_fen();
}
/// The `flip_vertical_and_flip_turn` function flips the game board vertically and flips the turn and resets certain game
/// state variables.
pub fn flip_vertical_and_flip_turn(&mut self) {
self.sub_board.flip_vertical_and_flip_turn();
self.stack.clear();
self.repetition_table.clear();
self.starting_fen = self.get_fen();
}
/// The `flip_horizontal` function flips the game board horizontally and resets certain game
/// state variables.
pub fn flip_horizontal(&mut self) {
self.sub_board.flip_horizontal();
self.stack.clear();
self.repetition_table.clear();
self.starting_fen = self.get_fen();
}
#[inline]
pub fn to_board_string(&self, use_unicode: bool) -> String {
self.sub_board
.to_board_string(self.stack.last().and_then(|(_, m)| *m), use_unicode)
}
#[inline]
pub fn to_unicode_string(&self) -> String {
self.sub_board
.to_unicode_string(self.stack.last().and_then(|(_, m)| *m))
}
/// The function `result` determines the outcome of a game based on the current board status in a
/// Rust program.
///
/// Returns:
///
/// The `result` function returns a `GameResult` enum based on the current state of the game. If the
/// game is a draw due to some other reason, it returns `GameResult::Draw`. If the game is in a
/// checkmate state, it returns `GameResult::Win` for the player who did not make the last move. If
/// the game is in a stalemate state,
pub fn result(&self) -> GameResult {
if self.is_other_draw() {
return GameResult::Draw;
}
match self.status() {
BoardStatus::Checkmate => GameResult::Win(!self.turn()),
BoardStatus::Stalemate => GameResult::Draw,
BoardStatus::Ongoing => GameResult::InProgress,
}
}
/// The function `get_num_moves` returns the number of moves in a stack as a `NumMoves` type.
///
/// Returns:
///
/// The `get_num_moves` function is returning the number of elements in the `stack` as a `NumMoves`
/// type.
#[inline]
pub fn get_num_moves(&self) -> NumMoves {
self.stack.len() as NumMoves
}
/// The function `get_num_repetitions` returns the number of repetitions for a given hash value.
///
/// Returns:
///
/// The `get_num_repetitions` function is returning a `u8` value, which represents the number of
/// repetitions for a given hash in the repetition table.
#[inline]
pub fn get_num_repetitions(&self) -> u8 {
self.repetition_table.get_repetition(self.get_hash())
}
/// The function `is_repetition` checks if the number of repetitions is greater than or equal to a
/// specified value.
///
/// Arguments:
///
/// * `n_times`: The `n_times` parameter in the `is_repetition` function represents the number of
/// times a certain action or event should be repeated. The function checks if the number of
/// repetitions recorded is greater than or equal to the specified `n_times` value.
///
/// Returns:
///
/// A boolean value is being returned.
#[inline]
pub fn is_repetition(&self, n_times: usize) -> bool {
self.get_num_repetitions() as usize >= n_times
}
/// The function `gives_repetition` checks if a move results in a repetition based on the repetition
/// table.
///
/// Arguments:
///
/// * `move_`: The `move_` parameter is of type `Move`. It is used as an argument for the
/// `make_move_new` method of the `sub_board` field, and also as an argument for the
/// `get_repetition` method of the `repetition_table` field.
///
/// Returns:
///
/// The function `gives_repetition` is returning a boolean value, which indicates whether the result
/// of the expression
/// `self.repetition_table.get_repetition(self.sub_board.make_move_new(move_).get_hash())` is not equal
/// to 0.
#[inline]
pub fn gives_repetition(&self, move_: Move) -> bool {
self.repetition_table
.get_repetition(self.sub_board.make_move_new(move_).get_hash())
!= 0
}
/// The function checks if a move results in a threefold repetition in a Rust program.
///
/// Arguments:
///
/// * `move_`: The `move_` parameter in the `gives_threefold_repetition` function represents the
/// move that is being made on the board. This move is used to calculate the hash of the resulting
/// board state after the move is made.
///
/// Returns:
///
/// The function `gives_threefold_repetition` is returning a boolean value, indicating whether the
/// given move results in a threefold repetition in the game. It checks if the move leads to a
/// position that has been repeated twice before in the game.
#[inline]
pub fn gives_threefold_repetition(&self, move_: Move) -> bool {
self.repetition_table
.get_repetition(self.sub_board.make_move_new(move_).get_hash())
== 2
}
/// The function `gives_claimable_threefold_repetition` checks if a move leads to a position with a
/// claimable threefold repetition.
///
/// Arguments:
///
/// * `move_`: The `move_` parameter in the `gives_claimable_threefold_repetition` function
/// represents the move that is being made on the board. This move is used to generate a new board
/// state, and then the function checks if making any legal move from that new board state would
/// result in a
///
/// Returns:
///
/// The function `gives_claimable_threefold_repetition` returns a boolean value indicating whether
/// the given move results in a position where a threefold repetition can be claimed.
pub fn gives_claimable_threefold_repetition(&self, move_: Move) -> bool {
//TODO: check if this is correct
let new_board = self.sub_board.make_move_new(move_);
MoveGenerator::new_legal(&new_board).any(|m| {
let hash = new_board.make_move_new(m).get_hash();
self.repetition_table.get_repetition(hash) == 2
})
}
// pub fn gives_claimable_threefold_repetition(&mut self, move_: Move) -> bool {
// self.push(Some(move_));
// if self.is_threefold_repetition() {
// self.pop();
// return true;
// }
// if self
// .generate_legal_moves()
// .any(|m| self.gives_threefold_repetition(m))
// {
// self.pop();
// return true;
// }
// self.pop();
// false
// }
/// The function `is_threefold_repetition` checks if a certain position has occurred three times in
/// a game.
///
/// Returns:
///
/// The `is_threefold_repetition` function is being called, which in turn calls the `is_repetition`
/// function with the argument 3. The `is_repetition` function checks if the current board position
/// has been repeated a certain number of times (in this case, 3 times). The
/// `is_threefold_repetition` function then returns the result of this check as a boolean value
#[inline]
pub fn is_threefold_repetition(&self) -> bool {
self.is_repetition(3)
}
/// The function `is_other_draw` checks if the game is a draw based on fifty-move rule,
/// threefold repetition, or insufficient material.
///
/// Returns:
///
/// The `is_other_draw` function is returning a boolean value. It returns `true` if any of the
/// conditions `self.is_fifty_moves()`, `self.is_threefold_repetition()`, or
/// `self.is_insufficient_material()` are true. Otherwise, it returns `false`.
#[inline]
pub fn is_other_draw(&self) -> bool {
self.is_fifty_moves() || self.is_threefold_repetition() || self.is_insufficient_material()
}
/// The function `is_draw` checks if a game is a draw by calling two other functions.
///
/// Returns:
///
/// The `is_draw` function is returning a boolean value. It returns `true` if either
/// `is_other_draw()` or `is_stalemate()` methods return `true`, otherwise it returns `false`.
#[inline]
pub fn is_draw(&self) -> bool {
self.is_other_draw() || self.is_stalemate()
}
/// The function `is_game_over` checks if the game is over based on whether it is a draw or
/// the board status is not ongoing.
///
/// Returns:
///
/// A boolean value is being returned. The method `is_game_over` returns `true` if either
/// `is_other_draw()` method returns `true` or the `status()` method does not return
/// `BoardStatus::Ongoing`. Otherwise, it returns `false`.
#[inline]
pub fn is_game_over(&self) -> bool {
self.is_other_draw() || self.status() != BoardStatus::Ongoing
}
/// The `push` function takes an optional move, updates the sub-board accordingly, and adds
/// the previous sub-board state and move to a stack.
///
/// Arguments:
///
/// * `optional_move`: The `optional_move` parameter in the `push` function is of type `impl
/// Into<Option<Move>>`. This means it can accept any type that can be converted into an
/// `Option<Move>`. Inside the function, the `optional_move` is converted into an `Option<Move>`
pub fn push(&mut self, optional_move: impl Into<Option<Move>>) {
let optional_move = optional_move.into();
let sub_board_copy = self.sub_board.clone();
self.sub_board = if let Some(move_) = optional_move {
#[cfg(test)]
assert!(self.is_legal(move_));
self.sub_board.make_move_new(move_)
} else {
self.sub_board
.null_move()
.expect("Trying to push null move while in check!")
};
self.repetition_table.insert(self.get_hash());
self.stack.push((sub_board_copy, optional_move));
// #[cfg(feature = "inbuilt_nnue")]
// self.store_and_update_evaluator()
}
pub fn pop(&mut self) -> Option<Move> {
let (sub_board, optional_move) = self.stack.pop().unwrap();
self.repetition_table.remove(self.get_hash());
self.sub_board = sub_board;
optional_move
}
/// The function `get_all_moves` returns a vector of references to all moves stored in a stack.
///
/// Returns:
///
/// A vector of references to `Option<Move>` values is being returned.
#[inline]
pub fn get_all_moves(&self) -> Vec<Option<Move>> {
self.stack.iter().map(|(_, m)| *m).collect_vec()
}
/// The function `get_last_move` returns the last move made, if any, from a stack of moves.
///
/// Returns:
///
/// The `get_last_move` function returns an `Option` that contains either `Some(Move)` if there is a
/// last move available in the stack, or `None` if the stack is empty.
#[inline]
pub fn get_last_move(&self) -> Option<Option<Move>> {
self.stack.last().map(|(_, m)| *m)
}
/// The function checks if any element in the stack contains a null move.
///
/// Returns:
///
/// The `contains_null_move` function is returning a boolean value (`true` or `false`). It checks if
/// there is any `None` value present in the `m` field of the tuples in the `stack` vector. If any
/// `None` value is found, it returns `true`, indicating that a null move is present in the stack;
/// otherwise, it returns `false`.
#[inline]
pub fn contains_null_move(&self) -> bool {
self.stack.iter().any(|(_, m)| m.is_none())
}
/// The function `get_ply` returns the length of the stack.
///
/// Returns:
///
/// The `get_ply` function is returning the length of the `stack` vector, which represents the
/// number of elements currently stored in the stack.
#[inline]
pub fn get_ply(&self) -> usize {
self.stack.len()
}
/// The function `has_empty_stack` checks if the stack is empty.
///
/// Returns:
///
/// A boolean value indicating whether the stack is empty or not.
#[inline]
pub fn has_empty_stack(&self) -> bool {
self.stack.is_empty()
}
/// The function `push_san` takes a SAN (Standard Algebraic Notation) string, parses it into a move,
/// pushes the move onto the board, and returns the move.
///
/// Arguments:
///
/// * `san`: The `san` parameter in the `push_san` function is a reference to a string that
/// represents a move in Standard Algebraic Notation (SAN).
///
/// Returns:
///
/// The `push_san` function returns a `Result` containing an `Option` of `Move` or an `TimecatError`.
pub fn push_san(&mut self, san: &str) -> Result<Option<Move>> {
let move_ = self.parse_san(san)?;
self.push(move_);
Ok(move_)
}
/// The `push_sans` function removes double spaces and trims a string, splits it into
/// individual words, and then pushes each word as a move into a vector.
///
/// Arguments:
///
/// * `sans`: The `sans` parameter in the `push_sans` function is a reference to a string (`&str`)
/// that represents a sequence of chess moves in Standard Algebraic Notation (SAN). The function
/// processes this input by removing double spaces and trimming the string, then splitting it into
/// individual move tokens
///
/// Returns:
///
/// The `push_sans` function is returning a `Result` containing a `Vec` of `Option<Move>` or an
/// `TimecatError`.
#[inline]
pub fn push_sans(&mut self, sans: &str) -> Result<Vec<Option<Move>>> {
remove_double_spaces_and_trim(sans)
.split(' ')
.map(|san| self.push_san(san))
.collect()
}
/// The function `push_uci` takes a UCI string, parses it into a move, pushes the move onto a stack,
/// and returns the move.
///
/// Arguments:
///
/// * `uci`: The `uci` parameter in the `push_uci` function is a reference to a string that
/// represents a move in UCI (Universal Chess Interface) notation.
///
/// Returns:
///
/// The function `push_uci` returns a `Result` containing an `Option` of `Move` or an `TimecatError`.
pub fn push_uci(&mut self, uci: &str) -> Result<Option<Move>> {
let move_ = self.parse_uci(uci)?;
self.push(move_);
Ok(move_)
}
/// The `push_str` function pushes a string to a data structure using the UCI protocol.
///
/// Arguments:
///
/// * `s`: The parameter `s` in the `push_str` function is a reference to a string slice (`&str`).
#[inline]
pub fn push_str(&mut self, s: &str) {
self.push_uci(s).unwrap();
}
/// The function `push_uci_moves` takes a string of UCI moves, processes them, and pushes them onto
/// a vector of optional Moves.
///
/// Arguments:
///
/// * `uci_moves`: The `uci_moves` parameter is a string containing a series of UCI (Universal Chess
/// Interface) formatted moves separated by spaces.
///
/// Returns:
///
/// The `push_uci_moves` function returns a `Result` containing a `Vec` of `Option<Move>` or an
/// `TimecatError`.
#[inline]
pub fn push_uci_moves(&mut self, uci_moves: &str) -> Result<Vec<Option<Move>>> {
remove_double_spaces_and_trim(uci_moves)
.split(' ')
.map(|san| self.push_uci(san))
.collect()
}
/// The function `algebraic_and_push` takes an optional move, determines if it is a check or
/// checkmate, and returns the algebraic notation of the move with appropriate suffixes.
///
/// Arguments:
///
/// * `optional_move`: The `optional_move` parameter is of type `impl Into<Option<Move>>`, which
/// means it can accept any type that can be converted into an `Option<Move>`. This parameter is
/// used to provide an optional move that the function will process.
/// * `long`: The `long` parameter in the `algebraic_and_push` function is a boolean flag that
/// indicates whether the algebraic notation should include long notation or not. When `long` is
/// true, the algebraic notation will include additional information, typically the starting and
/// ending squares of the move. When
///
/// Returns:
///
/// The function `algebraic_and_push` returns a `Result<String>`. The result can either
/// be an `Ok` containing a `String` value representing the algebraic notation of a move with
/// optional suffixes like "#" for checkmate or "+" for check, or an `Err` containing a `BoardError`
/// if an error occurs during the execution of the function.
pub fn algebraic_and_push(
&mut self,
optional_move: impl Into<Option<Move>>,
long: bool,
) -> Result<String> {
let optional_move = optional_move.into();
if optional_move.is_none() {
return Ok("--".to_string());
}
let move_ = optional_move.unwrap();
let san = move_.algebraic_without_suffix(self.get_sub_board(), long)?;
// Look ahead for check or checkmate.
self.push(move_);
let is_checkmate = self.is_checkmate();
// Add check or checkmate suffix.
if is_checkmate {
Ok(san + "#")
} else if self.is_check() {
Ok(san + "+")
} else {
Ok(san)
}
}
/// The function `san_and_push` takes an optional move and converts it into algebraic notation
/// before pushing it onto the board.
///
/// Arguments:
///
/// * `optional_move`: The `optional_move` parameter is a move that is optional and can be either
/// `Some(Move)` or `None`. It is passed as an argument to the `san_and_push` method.
///
/// Returns:
///
/// The `san_and_push` function is returning a `Result<String>`.
#[inline]
pub fn san_and_push(&mut self, optional_move: impl Into<Option<Move>>) -> Result<String> {
self.algebraic_and_push(optional_move.into(), false)
}
/// The function `lan_and_push` takes an optional move and converts it into algebraic notation
/// before pushing it onto the board.
///
/// Arguments:
///
/// * `optional_move`: The `optional_move` parameter is of type `impl Into<Option<Move>>`, which
/// means it can accept any type that can be converted into an `Option<Move>`. This parameter is
/// used as an input to the `lan_and_push` method.
///
/// Returns:
///
/// The `lan_and_push` function returns a `Result<String>`.
#[inline]
pub fn lan_and_push(&mut self, optional_move: impl Into<Option<Move>>) -> Result<String> {
self.algebraic_and_push(optional_move.into(), true)
}
/// The `variation_san` function processes a sequence of moves in a chess game, converting
/// them to Standard Algebraic Notation (SAN) format.
///
/// Arguments:
///
/// * `board`: The `board` parameter in the `variation_san` function represents the current state of
/// the chess board. It is of type `Board`, which likely contains information about the positions of
/// the pieces on the board, the current player's turn, and other relevant data for playing a game
/// of chess. The
/// * `variation`: The `variation_san` function you provided takes in a reference to a `Board` and a
/// vector of optional `Move`s called `variation`. The function iterates over the optional moves in
/// the variation, checks if each move is legal on the board, and constructs the Standard Algebraic
/// Notation (
///
/// Returns:
///
/// The function `variation_san` returns a `String` containing the Standard Algebraic Notation (SAN)
/// representation of the moves in the provided variation on the chess board.
pub fn variation_san(board: &Board, variation: Vec<Option<Move>>) -> String {
let mut board = board.clone();
let mut san = Vec::new();
for optional_move in variation {
if let Some(move_) = optional_move {
if !board.is_legal(move_) {
panic!("illegal move {move_} in position {}", board.get_fen());
}
}
if board.turn() == White {
let san_str = board.san_and_push(optional_move);
san.push(format!(
"{}. {}",
board.get_fullmove_number(),
san_str.unwrap()
));
} else if san.is_empty() {
let san_str = board.san_and_push(optional_move);
san.push(format!(
"{}...{}",
board.get_fullmove_number(),
san_str.unwrap()
));
} else {
san.push(board.san_and_push(optional_move).unwrap().to_string());
}
}
let mut san_string = String::new();
for s in san {
san_string += &(s + " ");
}
san_string.trim().to_string()
}
/// The function `get_pgn` constructs a PGN (Portable Game Notation) string representation
/// of a chess game, including FEN (Forsyth-Edwards Notation) and move information.
///
/// Returns:
///
/// The `get_pgn` function returns a `String` containing the PGN (Portable Game Notation)
/// representation of a chess game. The PGN includes information such as the FEN (Forsyth-Edwards
/// Notation) of the starting position and the sequence of moves in standard algebraic notation.
pub fn get_pgn(&self) -> String {
let mut pgn = String::new();
if self.starting_fen != STARTING_POSITION_FEN {
pgn += &format!("[FEN \"{}\"]\n", self.starting_fen);
}
pgn += &Self::variation_san(
&Self::from_fen(&self.starting_fen).unwrap(),
self.stack
.clone()
.into_iter()
.map(|(_, optional_m)| optional_m)
.collect_vec(),
);
pgn
}
/// The function `perft_helper` recursively calculates the number of possible moves at a given depth
/// in a chess game, optionally printing the moves.
///
/// Arguments:
///
/// * `depth`: The `depth` parameter in the `perft_helper` function represents the depth to which the
/// function should calculate the number of possible moves. It determines how many moves ahead the
/// function should look to calculate the perft value.
/// * `print_move`: The `print_move` parameter in the `perft_helper` function is a boolean flag that
/// determines whether the function should print out the moves and their corresponding counts during
/// the perft calculation. If `print_move` is set to `true`, the function will display the move and
/// its count for each
///
/// Returns:
///
/// The `perft_helper` function is returning the total number of positions reached after exploring the
/// specified depth of the game tree.
fn perft_helper(&mut self, depth: Depth, print_move: bool) -> usize {
let moves = self.generate_legal_moves();
if depth == 1 {
return moves.len();
}
let mut count: usize = 0;
for move_ in moves {
self.push(move_);
let c_count = self.perft_helper(depth - 1, false);
self.pop();
if print_move {
println!(
"{}: {}",
move_.colorize(PERFT_MOVE_STYLE),
c_count.colorize(PERFT_COUNT_STYLE),
);
}
count += c_count;
}
count
}
/// The function `perft` calculates the number of possible moves at a given depth in a game.
///
/// Arguments:
///
/// * `depth`: The `depth` parameter represents the depth of the search tree to which the Perft
/// algorithm will be applied. It determines how many moves ahead the algorithm will explore to
/// calculate the number of possible positions.
///
/// Returns:
///
/// The `perft` function is returning the result of calling the `perft_helper` function with the
/// specified depth and a boolean value of `true`.
#[inline]
pub fn perft(&mut self, depth: Depth) -> usize {
self.perft_helper(depth, true)
}
#[cfg(feature = "inbuilt_nnue")]
#[inline]
pub fn evaluate(&mut self) -> Score {
self.evaluator.evaluate(&self.sub_board)
}
#[cfg(feature = "inbuilt_nnue")]
#[inline]
pub fn evaluate_flipped(&mut self) -> Score {
let score = self.evaluate();
self.score_flipped(score)
}
}
impl fmt::Display for Board {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.to_board_string(false))
}
}
impl Default for Board {
fn default() -> Self {
STARTING_POSITION_FEN.into()
}
}
impl FromStr for Board {
type Err = TimecatError;
fn from_str(fen: &str) -> Result<Self> {
Self::from_fen(fen)
}
}
impl From<&str> for Board {
fn from(fen: &str) -> Self {
Self::from_fen(fen).unwrap()
}
}
impl From<SubBoard> for Board {
fn from(sub_board: SubBoard) -> Self {
let mut board = Self {
#[cfg(feature = "inbuilt_nnue")]
evaluator: Evaluator::new(&sub_board),
starting_fen: sub_board.get_fen(),
sub_board,
stack: Vec::new(),
repetition_table: RepetitionTable::new(),
};
board.repetition_table.insert(board.get_hash());
board
}
}
impl From<&SubBoard> for Board {
fn from(sub_board: &SubBoard) -> Self {
sub_board.to_owned().into()
}
}
impl Deref for Board {
type Target = SubBoard;
fn deref(&self) -> &Self::Target {
&self.sub_board
}
}