three-word-networking 2.3.0

Convert IP addresses to memorable, family-friendly word groups. IPv4 = 3 words, IPv6 = 6 or 9 words. Perfect reconstruction with human-readable vocabulary.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.8"
# dependencies = [
#     "pandas>=2.0.0",
#     "textstat>=0.7.0",
#     "nltk>=3.8.0",
#     "requests>=2.28.0",
# ]
# ///
"""
Create a human-readable dictionary for three-word networking.
Uses multiple readability criteria to select the most readable 65,536 words.

Usage:
    uv run python create_readable_dictionary.py
"""

import os
import re
import pandas as pd
import textstat
import nltk
import requests
from collections import defaultdict
from typing import Dict, List, Tuple, Set
import json

# Download required NLTK data
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt')

try:
    nltk.data.find('corpora/cmudict')
except LookupError:
    nltk.download('cmudict')

class ReadabilityScorer:
    def __init__(self):
        self.cmu_dict = nltk.corpus.cmudict.dict()
        self.offensive_words = self.load_offensive_words()
        self.dale_chall_words = set()  # Will be populated
        self.oxford_words = {}  # word -> CEFR level
        
    def load_offensive_words(self) -> Set[str]:
        """Load list of offensive words to filter out."""
        offensive = {
            "fuck", "shit", "damn", "hell", "ass", "dick", "cunt", "bitch",
            "pussy", "cock", "bastard", "piss", "fag", "dyke", "nigger", "nigga",
            "retard", "rape", "nazi", "hitler", "whore", "slut"
        }
        return offensive
    
    def download_dale_chall_list(self):
        """Download Dale-Chall 3000 word list from GitHub."""
        print("Downloading Dale-Chall 3000 word list...")
        try:
            # Try the GitHub gist directly
            url = "https://gist.githubusercontent.com/e00edcc6f508640fe24f263f5836a7dc/raw/1b1427e45cf3d476c4b9a21731c51b59e7fb7bad/dale-chall-3000-words.txt"
            response = requests.get(url)
            if response.status_code == 200:
                words = response.text.strip().split('\n')
                self.dale_chall_words = set(word.strip().lower() for word in words if word.strip())
                print(f"Loaded {len(self.dale_chall_words)} Dale-Chall words")
            else:
                print(f"Failed to download Dale-Chall list: {response.status_code}")
        except Exception as e:
            print(f"Error downloading Dale-Chall list: {e}")
            # Use a subset of known Dale-Chall words as fallback
            self.dale_chall_words = {
                "a", "able", "about", "above", "across", "act", "add", "afraid", "after", "again",
                "against", "age", "ago", "agree", "air", "all", "allow", "almost", "alone", "along",
                "already", "also", "always", "am", "among", "an", "and", "angry", "animal", "another",
                "answer", "any", "anyone", "anything", "appear", "apple", "are", "area", "arm", "around",
                "arrive", "art", "as", "ask", "at", "ate", "attack", "aunt", "away", "baby", "back",
                "bad", "bag", "ball", "bank", "bar", "base", "basket", "bat", "be", "bean", "bear",
                "beat", "beautiful", "became", "because", "become", "bed", "been", "before", "began",
                "begin", "behind", "being", "believe", "bell", "belong", "below", "beside", "best",
                "better", "between", "big", "bill", "bird", "birthday", "bit", "bite", "black", "blew",
                "block", "blood", "blow", "blue", "board", "boat", "body", "bone", "book", "born",
                "both", "bottle", "bottom", "bought", "bow", "bowl", "box", "boy", "branch", "brave",
                "bread", "break", "breakfast", "breath", "bring", "broke", "brother", "brought", "brown",
                "build", "burn", "bus", "business", "busy", "but", "butter", "buy", "by", "cabin",
                "cake", "call", "came", "camp", "can", "cap", "captain", "car", "card", "care",
                "careful", "carry", "case", "cat", "catch", "cattle", "caught", "cause", "cent",
                "center", "century", "certain", "chair", "chance", "change", "chapter", "charge",
                "chase", "cheap", "check", "cheese", "chicken", "chief", "child", "children", "choice",
                "choose", "chose", "church", "circle", "circus", "city", "class", "clean", "clear",
                "climb", "clock", "close", "cloth", "clothes", "cloud", "club", "coast", "coat",
                "coffee", "cold", "collect", "college", "color", "come", "comfort", "coming", "company",
                "compare", "complete", "cook", "cool", "copy", "corn", "corner", "correct", "cost",
                "cotton", "could", "count", "country", "course", "cousin", "cover", "cow", "crack",
                "cream", "creek", "cried", "crop", "cross", "crowd", "crown", "cry", "cup", "cut",
                "dad", "dance", "danger", "dark", "date", "daughter", "day", "dead", "dear", "death",
                "decide", "deep", "deer", "desk", "did", "die", "difference", "different", "dig",
                "dinner", "direction", "discover", "distance", "do", "doctor", "does", "dog", "dollar",
                "done", "door", "dot", "double", "down", "dozen", "drag", "draw", "dream", "dress",
                "drew", "drink", "drive", "drop", "drove", "dry", "duck", "during", "dust", "each",
                "ear", "early", "earn", "earth", "east", "easy", "eat", "edge", "egg", "eight",
                "either", "elephant", "else", "empty", "end", "enemy", "enjoy", "enough", "enter",
                "equal", "escape", "even", "evening", "ever", "every", "everyone", "everything",
                "exact", "except", "exchange", "excite", "excuse", "expect", "explain", "eye", "face",
                "fact", "fair", "fall", "family", "famous", "far", "farm", "farmer", "fast", "fat",
                "father", "fear", "feather", "fed", "feed", "feel", "feet", "fell", "fellow", "felt",
                "fence", "few", "field", "fight", "figure", "fill", "film", "find", "fine", "finger",
                "finish", "fire", "first", "fish", "fit", "five", "fix", "flag", "flat", "flew",
                "floor", "flower", "fly", "follow", "food", "foot", "for", "force", "forest", "forget",
                "form", "fort", "forward", "fought", "found", "four", "fox", "frame", "free", "freedom",
                "fresh", "friend", "frighten", "from", "front", "fruit", "full", "fun", "funny", "fur",
                "further", "future", "game", "garden", "gas", "gate", "gather", "gave", "general",
                "gentle", "get", "gift", "girl", "give", "glad", "glass", "go", "goat", "god", "goes",
                "gold", "golden", "gone", "good", "got", "government", "grab", "grade", "grain", "grand",
                "grandfather", "grandmother", "grass", "grave", "gray", "great", "green", "grew", "ground",
                "group", "grow", "guard", "guess", "guest", "guide", "gun", "had", "hair", "half", "hall",
                "hand", "handle", "hang", "happen", "happy", "hard", "has", "hat", "hate", "have", "he",
                "head", "health", "hear", "heard", "heart", "heat", "heavy", "held", "hello", "help",
                "hen", "her", "here", "herself", "hid", "hide", "high", "hill", "him", "himself", "his",
                "hit", "hold", "hole", "holiday", "home", "honest", "hope", "horn", "horse", "hospital",
                "hot", "hour", "house", "how", "however", "huge", "human", "hundred", "hung", "hungry",
                "hunt", "hurry", "hurt", "husband", "I", "ice", "idea", "if", "ill", "imagine",
                "important", "in", "inch", "include", "indeed", "indian", "inside", "instead", "interest",
                "into", "iron", "is", "island", "it", "its", "itself", "jack", "jail", "jar", "jet",
                "job", "join", "joke", "journey", "joy", "judge", "jump", "just", "keep", "kept", "key",
                "kick", "kid", "kill", "kind", "king", "kiss", "kitchen", "knee", "knew", "knife",
                "knock", "know", "lack", "ladder", "lady", "laid", "lake", "lamp", "land", "language",
                "large", "last", "late", "laugh", "law", "lay", "lazy", "lead", "leader", "leaf", "lean",
                "learn", "least", "leather", "leave", "led", "left", "leg", "lend", "length", "less",
                "lesson", "let", "letter", "level", "liberty", "library", "lie", "life", "lift", "light",
                "like", "likely", "line", "lion", "lip", "list", "listen", "little", "live", "load",
                "loaf", "lock", "log", "lone", "long", "look", "loose", "lord", "lose", "loss", "lost",
                "lot", "loud", "love", "lovely", "low", "lower", "luck", "lunch", "machine", "mad",
                "made", "magic", "mail", "main", "major", "make", "man", "manner", "many", "map",
                "march", "mark", "market", "marry", "mass", "master", "mat", "match", "matter", "may",
                "maybe", "me", "meal", "mean", "measure", "meat", "medicine", "meet", "member", "men",
                "met", "metal", "method", "middle", "might", "mile", "milk", "mill", "mind", "mine",
                "minute", "miss", "mistake", "mix", "moment", "money", "monkey", "month", "moon", "more",
                "morning", "most", "mother", "motion", "mountain", "mouse", "mouth", "move", "movie",
                "Mr.", "Mrs.", "much", "mud", "music", "must", "my", "myself", "nail", "name", "narrow",
                "nation", "nature", "near", "nearly", "necessary", "neck", "need", "needle", "neighbor",
                "neither", "nerve", "nest", "net", "never", "new", "news", "newspaper", "next", "nice",
                "night", "nine", "no", "nobody", "noise", "none", "noon", "nor", "north", "nose", "not",
                "note", "nothing", "notice", "now", "number", "nut", "object", "ocean", "of", "off",
                "offer", "office", "officer", "often", "oh", "oil", "old", "on", "once", "one", "only",
                "onto", "open", "opposite", "or", "orange", "order", "other", "ought", "our", "out",
                "outside", "over", "own", "owner", "pack", "package", "page", "paid", "pain", "paint",
                "pair", "palace", "pan", "paper", "parent", "park", "part", "party", "pass", "passage",
                "past", "pasture", "path", "pattern", "pay", "peace", "pen", "pencil", "penny", "people",
                "perfect", "perhaps", "person", "pet", "phone", "piano", "pick", "picnic", "picture",
                "pie", "piece", "pig", "pile", "pilot", "pin", "pink", "pipe", "place", "plain", "plan",
                "plane", "plant", "plate", "play", "pleasant", "please", "pleasure", "plenty", "plow",
                "pocket", "point", "poison", "pole", "police", "policeman", "pond", "pony", "pool",
                "poor", "pop", "popular", "porch", "position", "possible", "post", "pot", "potato",
                "pound", "pour", "powder", "power", "practice", "prepare", "present", "president",
                "press", "pretty", "prevent", "price", "prince", "princess", "print", "prison",
                "private", "prize", "probably", "problem", "produce", "promise", "proper", "protect",
                "proud", "prove", "public", "pull", "pump", "pupil", "puppy", "purchase", "pure",
                "purple", "purpose", "push", "put", "puzzle", "quarter", "queen", "question", "quick",
                "quiet", "quit", "quite", "rabbit", "race", "radio", "rag", "rail", "railroad", "rain",
                "raise", "ran", "ranch", "rang", "rapid", "rate", "rather", "raw", "reach", "read",
                "ready", "real", "reason", "receive", "record", "red", "refuse", "remain", "remember",
                "remove", "rent", "repair", "repeat", "reply", "report", "represent", "require", "rest",
                "result", "return", "reveal", "reward", "ribbon", "rice", "rich", "rid", "ride", "rider",
                "ridge", "riding", "right", "ring", "rise", "river", "road", "roar", "rob", "rock",
                "rode", "roll", "roof", "room", "root", "rope", "rose", "rough", "round", "route", "row",
                "royal", "rub", "rubber", "rule", "run", "rush", "sad", "saddle", "safe", "safety",
                "said", "sail", "sailor", "sake", "salad", "sale", "salt", "same", "sand", "sang",
                "sat", "save", "saw", "say", "scale", "scare", "school", "science", "scissors", "score",
                "sea", "search", "season", "seat", "second", "secret", "section", "see", "seed", "seek",
                "seem", "seen", "seldom", "select", "self", "sell", "send", "sense", "sent", "sentence",
                "separate", "serve", "service", "set", "settle", "seven", "several", "sew", "shade",
                "shadow", "shake", "shall", "shame", "shape", "share", "sharp", "she", "sheep", "sheet",
                "shelf", "shell", "shelter", "shine", "ship", "shirt", "shock", "shoe", "shone", "shook",
                "shoot", "shop", "shore", "short", "shot", "should", "shoulder", "shout", "show", "shut",
                "sick", "side", "sight", "sign", "signal", "silence", "silent", "silk", "silver",
                "similar", "simple", "since", "sing", "single", "sink", "sir", "sister", "sit", "six",
                "size", "skate", "ski", "skill", "skin", "skirt", "sky", "slave", "sleep", "slept",
                "slide", "slip", "slow", "small", "smart", "smell", "smile", "smoke", "smooth", "snake",
                "snow", "so", "soap", "social", "society", "sock", "soft", "soil", "sold", "soldier",
                "solid", "some", "somebody", "somehow", "someone", "something", "sometime", "sometimes",
                "somewhere", "son", "song", "soon", "sore", "sorry", "sort", "sound", "soup", "south",
                "space", "speak", "special", "speech", "speed", "spell", "spend", "spent", "spider",
                "spin", "spirit", "spite", "split", "spoke", "spoon", "sport", "spot", "spread",
                "spring", "square", "stable", "stack", "stage", "stair", "stamp", "stand", "star",
                "stare", "start", "state", "station", "stay", "steady", "steak", "steal", "steam",
                "steel", "steep", "stem", "step", "stick", "stiff", "still", "stock", "stole", "stomach",
                "stone", "stood", "stool", "stop", "store", "storm", "story", "stove", "straight",
                "strange", "stranger", "stream", "street", "strength", "stretch", "strike", "string",
                "strip", "strong", "struggle", "stuck", "student", "study", "stuff", "subject", "such",
                "sudden", "suffer", "sugar", "suggest", "suit", "sum", "summer", "sun", "Sunday",
                "supper", "supply", "support", "suppose", "sure", "surface", "surprise", "swallow",
                "swam", "swear", "sweep", "sweet", "swept", "swift", "swim", "swing", "switch", "sword",
                "swore", "table", "tail", "take", "taken", "talk", "tall", "tank", "tap", "tape", "task",
                "taste", "taught", "tax", "tea", "teach", "teacher", "team", "tear", "telephone", "tell",
                "temperature", "ten", "tent", "term", "terrible", "test", "than", "thank", "that", "the",
                "theater", "thee", "their", "them", "themselves", "then", "there", "therefore", "these",
                "they", "thick", "thin", "thing", "think", "third", "this", "those", "though", "thought",
                "thousand", "thread", "three", "threw", "throat", "through", "throughout", "throw",
                "thrown", "thumb", "thunder", "thus", "thy", "ticket", "tide", "tie", "tiger", "tight",
                "till", "time", "tin", "tiny", "tip", "tire", "title", "to", "tobacco", "today", "toe",
                "together", "told", "tomorrow", "ton", "tone", "tongue", "tonight", "too", "took", "tool",
                "tooth", "top", "tore", "torn", "total", "touch", "toward", "tower", "town", "toy",
                "track", "trade", "traffic", "trail", "train", "trap", "travel", "tray", "treasure",
                "treat", "tree", "trick", "tried", "trim", "trip", "troop", "tropical", "trouble",
                "truck", "true", "trunk", "trust", "truth", "try", "tube", "tune", "turn", "twelve",
                "twenty", "twice", "two", "type", "ugly", "uncle", "under", "understand", "unhappy",
                "union", "unit", "united", "universe", "university", "unless", "until", "up", "upon",
                "upper", "upward", "us", "use", "useful", "usual", "valley", "valuable", "value", "variety",
                "various", "vast", "vegetable", "verb", "very", "vessel", "victory", "view", "village",
                "visit", "visitor", "voice", "vote", "vowel", "voyage", "wagon", "wait", "wake", "walk",
                "wall", "want", "war", "warm", "warn", "was", "wash", "waste", "watch", "water", "wave",
                "way", "we", "weak", "wealth", "weapon", "wear", "weather", "web", "wedding", "week",
                "weigh", "weight", "welcome", "well", "went", "were", "west", "wet", "whale", "what",
                "wheat", "wheel", "when", "whenever", "where", "whether", "which", "while", "whip",
                "whisper", "whistle", "white", "who", "whole", "whom", "whose", "why", "wicked", "wide",
                "wife", "wild", "will", "willing", "win", "wind", "window", "wine", "wing", "winter",
                "wipe", "wire", "wise", "wish", "with", "within", "without", "woke", "wolf", "woman",
                "women", "won", "wonder", "wonderful", "wood", "wooden", "wool", "word", "wore", "work",
                "worker", "world", "worm", "worn", "worry", "worse", "worst", "worth", "would", "wound",
                "wrap", "wreck", "wrist", "write", "written", "wrong", "wrote", "yard", "year", "yellow",
                "yes", "yesterday", "yet", "you", "young", "youngster", "your", "yourself", "youth", "zero"
            }
            print(f"Using fallback Dale-Chall words: {len(self.dale_chall_words)} words")
    
    def load_oxford_pdfs(self):
        """Note: In practice, you'd need to manually download and extract these."""
        # For now, we'll use a simulated subset
        print("Note: Oxford 3000/5000 PDFs need manual download from:")
        print("- https://www.oxfordlearnersdictionaries.com/external/pdf/wordlists/oxford-3000-5000/American_Oxford_3000.pdf")
        print("- https://www.oxfordlearnersdictionaries.com/external/pdf/wordlists/oxford-3000-5000/American_Oxford_5000.pdf")
        
        # Simulated Oxford words with CEFR levels
        self.oxford_words = {
            # A1 level (most basic)
            "the": "A1", "be": "A1", "have": "A1", "do": "A1", "say": "A1",
            "go": "A1", "can": "A1", "get": "A1", "make": "A1", "know": "A1",
            "think": "A1", "take": "A1", "see": "A1", "come": "A1", "want": "A1",
            "use": "A1", "find": "A1", "give": "A1", "tell": "A1", "work": "A1",
            "call": "A1", "try": "A1", "ask": "A1", "need": "A1", "feel": "A1",
            "become": "A1", "leave": "A1", "put": "A1", "mean": "A1", "keep": "A1",
            # A2 level
            "begin": "A2", "seem": "A2", "help": "A2", "show": "A2", "hear": "A2",
            "play": "A2", "run": "A2", "move": "A2", "live": "A2", "believe": "A2",
            # B1 level
            "include": "B1", "continue": "B1", "set": "B1", "learn": "B1", "change": "B1",
            # B2 level
            "develop": "B2", "consider": "B2", "appear": "B2", "involve": "B2", "require": "B2",
        }
    
    def count_syllables(self, word: str) -> int:
        """Count syllables using CMU pronouncing dictionary."""
        word_lower = word.lower()
        if word_lower in self.cmu_dict:
            # CMU dict uses numbers to indicate stress on vowels
            # Count the number of digits (each represents a vowel sound)
            pronunciation = self.cmu_dict[word_lower][0]  # Take first pronunciation
            return len([ph for ph in pronunciation if ph[-1].isdigit()])
        else:
            # Fallback to textstat
            return textstat.syllable_count(word)
    
    def is_phonetically_regular(self, word: str) -> bool:
        """Check if word follows regular phonetic patterns."""
        # Simple heuristic: words in CMU dict are generally more regular
        return word.lower() in self.cmu_dict
    
    def get_word_frequency_score(self, word: str, position_in_list: int) -> float:
        """Score based on position in frequency lists."""
        # Lower position = higher frequency = better score
        if position_in_list < 1000:
            return 1.0
        elif position_in_list < 5000:
            return 0.8
        elif position_in_list < 10000:
            return 0.6
        elif position_in_list < 20000:
            return 0.4
        else:
            return 0.2
    
    def get_cefr_score(self, word: str) -> float:
        """Score based on CEFR level."""
        cefr_scores = {
            "A1": 1.0,
            "A2": 0.9,
            "B1": 0.7,
            "B2": 0.5,
            "C1": 0.3,
            "C2": 0.1
        }
        return cefr_scores.get(self.oxford_words.get(word.lower(), "C2"), 0.1)
    
    def calculate_readability_score(self, word: str, position: int = 50000) -> Dict[str, float]:
        """Calculate comprehensive readability score for a word."""
        scores = {}
        
        # 1. Syllable score (prefer 1-2 syllables)
        syllables = self.count_syllables(word)
        if syllables == 1:
            scores['syllable'] = 1.0
        elif syllables == 2:
            scores['syllable'] = 0.9
        elif syllables == 3:
            scores['syllable'] = 0.6
        else:
            scores['syllable'] = 0.2
        
        # 2. Length score (prefer 3-7 characters)
        length = len(word)
        if 3 <= length <= 5:
            scores['length'] = 1.0
        elif 6 <= length <= 7:
            scores['length'] = 0.8
        elif length == 2 or length == 8:
            scores['length'] = 0.6
        elif length == 9:
            scores['length'] = 0.4
        else:
            scores['length'] = 0.2
        
        # 3. Dale-Chall familiarity
        scores['dale_chall'] = 1.0 if word.lower() in self.dale_chall_words else 0.3
        
        # 4. CEFR level
        scores['cefr'] = self.get_cefr_score(word)
        
        # 5. Frequency score
        scores['frequency'] = self.get_word_frequency_score(word, position)
        
        # 6. Phonetic regularity
        scores['phonetic'] = 1.0 if self.is_phonetically_regular(word) else 0.5
        
        # 7. No numbers or special characters
        scores['clean'] = 1.0 if word.isalpha() else 0.0
        
        # 8. Not offensive
        scores['appropriate'] = 0.0 if word.lower() in self.offensive_words else 1.0
        
        # Calculate weighted total
        weights = {
            'syllable': 0.20,
            'length': 0.10,
            'dale_chall': 0.20,
            'cefr': 0.15,
            'frequency': 0.20,
            'phonetic': 0.10,
            'clean': 0.03,
            'appropriate': 0.02
        }
        
        scores['total'] = sum(scores[k] * weights[k] for k in weights)
        return scores

def load_existing_word_lists() -> List[Tuple[str, int]]:
    """Load existing word lists with frequency information."""
    words_with_position = []
    
    # 1. Load Google 10k list (highest priority)
    if os.path.exists("data/google-10000-english.txt"):
        print("Loading Google 10k list...")
        with open("data/google-10000-english.txt", 'r') as f:
            for position, line in enumerate(f):
                word = line.strip()
                if word and 2 <= len(word) <= 12:
                    words_with_position.append((word, position))
    
    # 2. Load words_alpha.txt (lower priority)
    if os.path.exists("data/words_alpha.txt"):
        print("Loading words_alpha.txt...")
        with open("data/words_alpha.txt", 'r') as f:
            for position, line in enumerate(f):
                word = line.strip()
                if word and 2 <= len(word) <= 10 and word.isalpha():
                    # Add 10000 to position to indicate lower priority
                    words_with_position.append((word, position + 10000))
    
    return words_with_position

def generate_word_forms(base_words: Set[str]) -> Set[str]:
    """Generate common word forms (plurals, tenses, etc.)."""
    word_forms = set(base_words)
    
    # Common suffixes
    for word in list(base_words):
        # Plurals
        if not word.endswith('s'):
            word_forms.add(word + 's')
            if word.endswith('y') and len(word) > 2 and word[-2] not in 'aeiou':
                word_forms.add(word[:-1] + 'ies')
        
        # -ing forms
        if word.endswith('e') and len(word) > 2:
            word_forms.add(word[:-1] + 'ing')
        else:
            word_forms.add(word + 'ing')
        
        # -ed forms
        if word.endswith('e'):
            word_forms.add(word + 'd')
        elif word.endswith('y') and len(word) > 2 and word[-2] not in 'aeiou':
            word_forms.add(word[:-1] + 'ied')
        else:
            word_forms.add(word + 'ed')
        
        # -er forms
        if word.endswith('e'):
            word_forms.add(word + 'r')
        else:
            word_forms.add(word + 'er')
        
        # -est forms
        if word.endswith('e'):
            word_forms.add(word + 'st')
        else:
            word_forms.add(word + 'est')
    
    return word_forms

def main():
    print("Creating human-readable dictionary for three-word networking...")
    print("=" * 60)
    
    # Initialize scorer
    scorer = ReadabilityScorer()
    scorer.download_dale_chall_list()
    scorer.load_oxford_pdfs()
    
    # Load existing word lists
    print("\nLoading word sources...")
    words_with_position = load_existing_word_lists()
    print(f"Loaded {len(words_with_position)} candidate words")
    
    # Score all words
    print("\nScoring words for readability...")
    scored_words = []
    
    for i, (word, position) in enumerate(words_with_position):
        if i % 10000 == 0:
            print(f"Processed {i}/{len(words_with_position)} words...")
        
        scores = scorer.calculate_readability_score(word, position)
        if scores['appropriate'] > 0 and scores['clean'] > 0:  # Basic filters
            scored_words.append({
                'word': word,
                'position': position,
                'total_score': scores['total'],
                **scores
            })
    
    # Convert to DataFrame for easier manipulation
    df = pd.DataFrame(scored_words)
    
    # Sort by total score (descending)
    df = df.sort_values('total_score', ascending=False)
    
    # Take top 65,536 words
    top_words = df.head(65536)
    
    # Generate some statistics
    print("\n" + "=" * 60)
    print("DICTIONARY STATISTICS:")
    print(f"Total words selected: {len(top_words)}")
    print(f"Average readability score: {top_words['total_score'].mean():.3f}")
    print(f"Average syllables: {top_words['syllable'].mean():.2f}")
    print(f"Words in Dale-Chall list: {(top_words['dale_chall'] == 1.0).sum()}")
    
    # Show sample of top words
    print("\nTop 50 words by readability:")
    for i, row in top_words.head(50).iterrows():
        print(f"{row['word']:15} (score: {row['total_score']:.3f})")
    
    # Save the dictionary
    output_words = top_words['word'].tolist()
    
    # Ensure exactly 65,536 words
    while len(output_words) < 65536:
        output_words.append(f"word{len(output_words):05d}")
    
    with open("data/human_readable_word_list_65k.txt", 'w') as f:
        f.write('\n'.join(output_words))
    
    print(f"\n✓ Saved {len(output_words)} words to data/human_readable_word_list_65k.txt")
    
    # Save detailed scores for analysis
    top_words.to_csv("data/word_readability_scores.csv", index=False)
    print("✓ Saved detailed scores to data/word_readability_scores.csv")

if __name__ == "__main__":
    main()