three-word-networking 2.3.0

Convert IP addresses to memorable, family-friendly word groups. IPv4 = 3 words, IPv6 = 6 or 9 words. Perfect reconstruction with human-readable vocabulary.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.8"
# dependencies = [
#     "nltk>=3.8.0",
# ]
# ///
"""
Create a dictionary where ALL 65,536 words are highly readable.
This is crucial because the Feistel network picks from random positions.

Usage:
    uv run python create_all_readable_dictionary.py
"""

import nltk
from collections import defaultdict
import random

# Download required NLTK data
try:
    nltk.data.find('corpora/cmudict')
except LookupError:
    nltk.download('cmudict')

def generate_all_forms(base_word):
    """Generate all common forms of a word."""
    forms = {base_word}
    
    # Handle special cases first
    special_cases = {
        'be': ['am', 'is', 'are', 'was', 'were', 'been', 'being'],
        'have': ['has', 'had', 'having'],
        'do': ['does', 'did', 'done', 'doing'],
        'go': ['goes', 'went', 'gone', 'going'],
        'make': ['makes', 'made', 'making'],
        'take': ['takes', 'took', 'taken', 'taking'],
        'come': ['comes', 'came', 'coming'],
        'see': ['sees', 'saw', 'seen', 'seeing'],
        'get': ['gets', 'got', 'gotten', 'getting'],
        'give': ['gives', 'gave', 'given', 'giving'],
        'know': ['knows', 'knew', 'known', 'knowing'],
        'think': ['thinks', 'thought', 'thinking'],
        'say': ['says', 'said', 'saying'],
        'tell': ['tells', 'told', 'telling'],
        'find': ['finds', 'found', 'finding'],
        'leave': ['leaves', 'left', 'leaving'],
        'feel': ['feels', 'felt', 'feeling'],
        'bring': ['brings', 'brought', 'bringing'],
        'begin': ['begins', 'began', 'begun', 'beginning'],
        'keep': ['keeps', 'kept', 'keeping'],
        'hold': ['holds', 'held', 'holding'],
        'write': ['writes', 'wrote', 'written', 'writing'],
        'stand': ['stands', 'stood', 'standing'],
        'hear': ['hears', 'heard', 'hearing'],
        'let': ['lets', 'letting'],
        'mean': ['means', 'meant', 'meaning'],
        'set': ['sets', 'setting'],
        'meet': ['meets', 'met', 'meeting'],
        'run': ['runs', 'ran', 'running'],
        'pay': ['pays', 'paid', 'paying'],
        'sit': ['sits', 'sat', 'sitting'],
        'speak': ['speaks', 'spoke', 'spoken', 'speaking'],
        'lie': ['lies', 'lay', 'lain', 'lying'],
        'lead': ['leads', 'led', 'leading'],
        'read': ['reads', 'reading'],
        'grow': ['grows', 'grew', 'grown', 'growing'],
        'lose': ['loses', 'lost', 'losing'],
        'fall': ['falls', 'fell', 'fallen', 'falling'],
        'send': ['sends', 'sent', 'sending'],
        'build': ['builds', 'built', 'building'],
        'understand': ['understands', 'understood', 'understanding'],
        'draw': ['draws', 'drew', 'drawn', 'drawing'],
        'break': ['breaks', 'broke', 'broken', 'breaking'],
        'spend': ['spends', 'spent', 'spending'],
        'cut': ['cuts', 'cutting'],
        'rise': ['rises', 'rose', 'risen', 'rising'],
        'drive': ['drives', 'drove', 'driven', 'driving'],
        'buy': ['buys', 'bought', 'buying'],
        'wear': ['wears', 'wore', 'worn', 'wearing'],
        'choose': ['chooses', 'chose', 'chosen', 'choosing'],
        'child': ['children'],
        'man': ['men'],
        'woman': ['women'],
        'person': ['people'],
        'life': ['lives'],
        'leaf': ['leaves'],
        'half': ['halves'],
        'self': ['selves'],
        'foot': ['feet'],
        'tooth': ['teeth'],
        'mouse': ['mice'],
        'goose': ['geese'],
    }
    
    if base_word in special_cases:
        forms.update(special_cases[base_word])
        return forms
    
    # Regular transformations
    # -s form (plural/3rd person)
    if not base_word.endswith('s'):
        if base_word.endswith('y') and len(base_word) > 2 and base_word[-2] not in 'aeiou':
            forms.add(base_word[:-1] + 'ies')
        elif base_word.endswith(('s', 'ss', 'sh', 'ch', 'x', 'z')):
            forms.add(base_word + 'es')
        elif base_word.endswith('o') and base_word[-2:] not in ['oo', 'eo']:
            forms.add(base_word + 'es')
        else:
            forms.add(base_word + 's')
    
    # -ing form
    if base_word.endswith('ie'):
        forms.add(base_word[:-2] + 'ying')
    elif base_word.endswith('e') and not base_word.endswith('ee'):
        forms.add(base_word[:-1] + 'ing')
    elif len(base_word) >= 3 and base_word[-1] in 'bcdgklmnprstvwz' and base_word[-2] in 'aeiou' and base_word[-3] not in 'aeiou':
        forms.add(base_word + base_word[-1] + 'ing')
    else:
        forms.add(base_word + 'ing')
    
    # -ed form
    if base_word.endswith('e'):
        forms.add(base_word + 'd')
    elif base_word.endswith('y') and len(base_word) > 2 and base_word[-2] not in 'aeiou':
        forms.add(base_word[:-1] + 'ied')
    elif len(base_word) >= 3 and base_word[-1] in 'bcdgklmnprstvwz' and base_word[-2] in 'aeiou' and base_word[-3] not in 'aeiou':
        forms.add(base_word + base_word[-1] + 'ed')
    else:
        forms.add(base_word + 'ed')
    
    # -er form (comparative/agent)
    if base_word.endswith('e'):
        forms.add(base_word + 'r')
    elif base_word.endswith('y') and len(base_word) > 2 and base_word[-2] not in 'aeiou':
        forms.add(base_word[:-1] + 'ier')
    elif len(base_word) >= 3 and base_word[-1] in 'bcdgklmnprstvwz' and base_word[-2] in 'aeiou' and base_word[-3] not in 'aeiou':
        forms.add(base_word + base_word[-1] + 'er')
    else:
        forms.add(base_word + 'er')
    
    # -est form
    if base_word.endswith('e'):
        forms.add(base_word + 'st')
    elif base_word.endswith('y') and len(base_word) > 2 and base_word[-2] not in 'aeiou':
        forms.add(base_word[:-1] + 'iest')
    elif len(base_word) >= 3 and base_word[-1] in 'bcdgklmnprstvwz' and base_word[-2] in 'aeiou' and base_word[-3] not in 'aeiou':
        forms.add(base_word + base_word[-1] + 'est')
    else:
        forms.add(base_word + 'est')
    
    # -ly form (adverb)
    if base_word.endswith('y'):
        forms.add(base_word[:-1] + 'ily')
    elif base_word.endswith('le'):
        forms.add(base_word[:-1] + 'y')
    else:
        forms.add(base_word + 'ly')
    
    # -ness form
    if base_word.endswith('y') and len(base_word) > 2 and base_word[-2] not in 'aeiou':
        forms.add(base_word[:-1] + 'iness')
    else:
        forms.add(base_word + 'ness')
    
    # -ful and -less
    forms.add(base_word + 'ful')
    forms.add(base_word + 'less')
    
    # Filter out forms that are too long or have weird patterns
    valid_forms = set()
    for form in forms:
        if 2 <= len(form) <= 12 and form.isalpha():
            valid_forms.add(form)
    
    return valid_forms

def main():
    print("Creating all-readable dictionary for three-word networking...")
    print("=" * 60)
    
    # Start with core everyday words that everyone knows
    core_words = [
        # Most common verbs
        "be", "have", "do", "say", "go", "get", "make", "know", "think", "take",
        "see", "come", "want", "use", "find", "give", "tell", "work", "call", "try",
        "ask", "need", "feel", "become", "leave", "put", "mean", "keep", "let", "begin",
        "seem", "help", "show", "hear", "play", "run", "move", "like", "live", "believe",
        "bring", "happen", "write", "provide", "sit", "stand", "lose", "pay", "meet", "include",
        "continue", "set", "learn", "change", "lead", "understand", "watch", "follow", "stop", "create",
        "speak", "read", "spend", "grow", "open", "walk", "win", "teach", "offer", "remember",
        "love", "consider", "appear", "buy", "wait", "serve", "die", "send", "expect", "stay",
        "fall", "cut", "reach", "kill", "raise", "pass", "sell", "require", "report", "decide",
        "pull", "carry", "break", "hope", "develop", "drive", "return", "hold", "turn", "start",
        "agree", "support", "hit", "eat", "cover", "catch", "draw", "choose", "cause", "point",
        "produce", "build", "join", "plan", "save", "pick", "wear", "form", "present", "fire",
        
        # Technology verbs
        "click", "type", "search", "browse", "download", "upload", "install", "update", "delete", "copy",
        "paste", "save", "load", "run", "debug", "compile", "code", "program", "hack", "surf",
        "email", "text", "call", "post", "share", "like", "follow", "tweet", "snap", "stream",
        "sync", "backup", "restore", "reboot", "login", "logout", "shutdown", "startup", "configure", "setup",
        
        # Common nouns
        "time", "person", "year", "way", "day", "thing", "man", "world", "life", "hand",
        "part", "child", "eye", "woman", "place", "work", "week", "case", "point", "government",
        "company", "number", "group", "problem", "fact", "money", "lot", "right", "study", "book",
        "job", "word", "business", "issue", "side", "kind", "head", "house", "service", "friend",
        "father", "power", "hour", "game", "line", "end", "member", "law", "car", "city",
        "community", "name", "president", "team", "minute", "idea", "kid", "body", "information", "back",
        "parent", "face", "others", "level", "office", "door", "health", "person", "art", "war",
        "history", "party", "result", "change", "morning", "reason", "research", "girl", "guy", "moment",
        "air", "teacher", "force", "education", "foot", "boy", "age", "policy", "process", "music",
        "market", "sense", "nation", "plan", "college", "interest", "death", "experience", "effect", "use",
        "class", "control", "care", "field", "development", "role", "effort", "rate", "heart", "drug",
        "show", "leader", "light", "voice", "wife", "whole", "police", "mind", "finally", "pull",
        "return", "free", "military", "price", "report", "less", "according", "decision", "explain", "son",
        "hope", "even", "develop", "view", "relationship", "carry", "town", "road", "drive", "arm",
        "true", "federal", "break", "better", "difference", "thank", "receive", "value", "international", "building",
        
        # Technology nouns
        "computer", "phone", "internet", "website", "email", "password", "username", "account", "file", "folder",
        "screen", "keyboard", "mouse", "printer", "camera", "video", "photo", "image", "text", "data",
        "software", "hardware", "app", "program", "code", "bug", "error", "system", "network", "server",
        "database", "cloud", "storage", "memory", "disk", "drive", "port", "cable", "wire", "device",
        "gadget", "tool", "machine", "robot", "drone", "laptop", "desktop", "tablet", "mobile", "cell",
        
        # Common adjectives
        "good", "new", "first", "last", "long", "great", "little", "own", "other", "old",
        "right", "big", "high", "different", "small", "large", "next", "early", "young", "important",
        "few", "public", "bad", "same", "able", "human", "sure", "best", "low", "black",
        "white", "red", "blue", "green", "yellow", "brown", "gray", "dark", "light", "bright",
        "hot", "cold", "warm", "cool", "fast", "slow", "quick", "easy", "hard", "soft",
        "heavy", "full", "empty", "clean", "dirty", "wet", "dry", "open", "close", "near",
        "far", "left", "top", "bottom", "front", "back", "side", "middle", "inside", "outside",
        
        # Common everyday words
        "yes", "no", "maybe", "please", "thanks", "sorry", "hello", "goodbye", "welcome", "okay",
        "here", "there", "where", "when", "what", "who", "why", "how", "which", "this",
        "that", "these", "those", "some", "any", "all", "many", "much", "more", "most",
        "very", "really", "quite", "just", "only", "also", "too", "either", "neither", "both",
        "each", "every", "any", "some", "none", "one", "two", "three", "four", "five",
        "six", "seven", "eight", "nine", "ten", "twenty", "thirty", "forty", "fifty", "hundred",
        "thousand", "million", "billion", "first", "second", "third", "fourth", "fifth", "once", "twice",
        
        # Nature and environment
        "tree", "flower", "grass", "plant", "leaf", "root", "seed", "fruit", "forest", "wood",
        "field", "mountain", "hill", "valley", "river", "lake", "sea", "ocean", "beach", "island",
        "rock", "stone", "sand", "dirt", "mud", "water", "fire", "ice", "snow", "rain",
        "wind", "storm", "cloud", "sky", "sun", "moon", "star", "earth", "land", "ground",
        
        # Animals
        "dog", "cat", "bird", "fish", "horse", "cow", "pig", "sheep", "chicken", "duck",
        "rabbit", "mouse", "rat", "bear", "lion", "tiger", "elephant", "monkey", "snake", "frog",
        "turtle", "whale", "shark", "dolphin", "eagle", "owl", "wolf", "fox", "deer", "moose",
        
        # Food and drink
        "food", "meal", "breakfast", "lunch", "dinner", "snack", "bread", "meat", "fish", "chicken",
        "beef", "pork", "egg", "milk", "cheese", "butter", "sugar", "salt", "pepper", "sauce",
        "soup", "salad", "fruit", "apple", "orange", "banana", "grape", "berry", "vegetable", "potato",
        "carrot", "corn", "bean", "rice", "pasta", "pizza", "burger", "sandwich", "cake", "cookie",
        "ice", "cream", "coffee", "tea", "juice", "soda", "water", "wine", "beer", "drink",
        
        # Home and furniture
        "house", "home", "room", "kitchen", "bedroom", "bathroom", "living", "dining", "garage", "yard",
        "door", "window", "wall", "floor", "ceiling", "roof", "stairs", "table", "chair", "desk",
        "bed", "couch", "sofa", "lamp", "light", "tv", "radio", "clock", "picture", "mirror",
        "shelf", "drawer", "closet", "cabinet", "sink", "toilet", "shower", "bath", "towel", "sheet",
        
        # Clothing
        "clothes", "shirt", "pants", "dress", "skirt", "jacket", "coat", "shoe", "sock", "hat",
        "glove", "scarf", "tie", "belt", "watch", "ring", "bag", "purse", "wallet", "pocket",
        
        # Body parts
        "head", "face", "eye", "ear", "nose", "mouth", "tooth", "tongue", "lip", "chin",
        "neck", "shoulder", "arm", "elbow", "wrist", "hand", "finger", "thumb", "chest", "stomach",
        "back", "hip", "leg", "knee", "ankle", "foot", "toe", "skin", "hair", "nail",
        
        # Emotions and feelings
        "happy", "sad", "angry", "scared", "worried", "excited", "bored", "tired", "hungry", "thirsty",
        "love", "hate", "like", "fear", "hope", "joy", "pain", "pleasure", "fun", "funny",
        
        # Actions and activities
        "eat", "drink", "sleep", "wake", "wash", "clean", "cook", "shop", "buy", "sell",
        "pay", "cost", "spend", "save", "earn", "owe", "lend", "borrow", "give", "take",
        "send", "receive", "bring", "carry", "push", "pull", "throw", "catch", "drop", "pick",
        "lift", "put", "place", "move", "stay", "go", "come", "leave", "arrive", "return",
        "enter", "exit", "open", "close", "start", "stop", "begin", "end", "finish", "continue"
    ]
    
    # Generate all forms
    all_words = set()
    for base in core_words:
        forms = generate_all_forms(base)
        all_words.update(forms)
    
    print(f"Generated {len(all_words)} words from {len(core_words)} base words")
    
    # Add compound words and variations
    compounds = []
    prefixes = ["up", "down", "out", "over", "under", "back", "fore", "pre", "post", "re", "un", "in", "non", "anti", "auto", "co", "de", "dis", "inter", "micro", "mini", "multi", "over", "semi", "sub", "super", "ultra"]
    
    # Generate some compounds but keep them reasonable
    for prefix in prefixes[:10]:  # Just use first 10 prefixes
        for base in core_words[:100]:  # Just first 100 base words
            compound = prefix + base
            if 4 <= len(compound) <= 10:
                compounds.append(compound)
    
    all_words.update(compounds[:5000])  # Add up to 5000 compounds
    
    # Convert to list and sort by length then alphabetically
    word_list = sorted(list(all_words), key=lambda x: (len(x), x))
    
    # If we still need more words, generate some number combinations
    if len(word_list) < 65536:
        needed = 65536 - len(word_list)
        print(f"Need {needed} more words, generating friendly combinations...")
        
        # First, add all number-based words
        numbers = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",
                  "eleven", "twelve", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety",
                  "hundred", "thousand", "million", "billion", "zero"]
        all_words.update(numbers)
        
        # Add ordinals
        ordinals = ["first", "second", "third", "fourth", "fifth", "sixth", "seventh", "eighth", "ninth", "tenth",
                   "eleventh", "twelfth", "twentieth", "thirtieth", "fortieth", "fiftieth", "last"]
        all_words.update(ordinals)
        
        # Add months and days
        months = ["january", "february", "march", "april", "may", "june", "july", "august", "september", "october", "november", "december",
                 "jan", "feb", "mar", "apr", "jun", "jul", "aug", "sep", "sept", "oct", "nov", "dec"]
        days_full = ["monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday",
                    "mon", "tue", "wed", "thu", "fri", "sat", "sun"]
        all_words.update(months)
        all_words.update(days_full)
        
        # Add common first names (short ones)
        names = ["john", "jane", "bob", "alice", "tom", "mary", "david", "sarah", "mike", "lisa",
                "jim", "amy", "joe", "anna", "ben", "emma", "sam", "kate", "alex", "lucy",
                "max", "lily", "jack", "rose", "luke", "grace", "mark", "claire", "paul", "helen",
                "adam", "diana", "ryan", "nina", "eric", "ruby", "alan", "iris", "carl", "maya"]
        all_words.update(names)
        
        # Add city names (short, common ones)
        cities = ["london", "paris", "tokyo", "berlin", "rome", "madrid", "moscow", "beijing", "delhi", "dubai",
                 "miami", "boston", "dallas", "denver", "austin", "seattle", "portland", "phoenix", "detroit", "atlanta"]
        all_words.update(cities)
        
        # Add common tech terms
        tech = ["app", "web", "net", "dot", "com", "org", "http", "https", "ftp", "ssh",
               "api", "sdk", "ide", "cpu", "gpu", "ram", "rom", "ssd", "hdd", "usb",
               "pdf", "doc", "txt", "jpg", "png", "gif", "mp3", "mp4", "zip", "exe"]
        all_words.update(tech)
        
        # Recreate word list
        word_list = sorted(list(all_words), key=lambda x: (len(x), x))
        
        # Now generate combinations if still needed
        if len(word_list) < 65536:
            # Add color + simple object combinations
            colors = ["red", "blue", "green", "black", "white", "gray", "pink", "gold", "silver"]
            objects = ["car", "ball", "box", "hat", "cup", "pen", "key", "dot", "bar", "tag"]
            
            for color in colors:
                for obj in objects:
                    if len(word_list) < 65536:
                        word_list.append(color + obj)
            
            # Add size + object combinations
            sizes = ["big", "small", "tiny", "huge", "mini", "mega", "super", "ultra"]
            for size in sizes:
                for obj in objects:
                    if len(word_list) < 65536:
                        word_list.append(size + obj)
            
            # Add direction + action combinations
            directions = ["up", "down", "left", "right", "north", "south", "east", "west"]
            actions = ["go", "run", "walk", "turn", "look", "move", "step", "jump"]
            
            for direction in directions:
                for action in actions:
                    if len(word_list) < 65536:
                        word_list.append(action + direction)
            
            # Add time-based combinations
            times = ["day", "night", "dawn", "dusk", "noon", "eve"]
            for num in ["one", "two", "three", "four", "five"]:
                for time in times:
                    if len(word_list) < 65536:
                        word_list.append(num + time)
            
            # Add simple emotion + action
            emotions = ["happy", "sad", "mad", "glad", "cool", "calm"]
            simple_verbs = ["go", "run", "walk", "talk", "look", "work"]
            
            for emotion in emotions:
                for verb in simple_verbs:
                    if len(word_list) < 65536:
                        word_list.append(emotion + verb)
            
            # Add nature combinations
            nature1 = ["sun", "moon", "star", "sky", "sea", "tree", "leaf", "rock", "hill", "lake"]
            nature2 = ["light", "shine", "glow", "rise", "set", "fall", "flow", "grow"]
            
            for n1 in nature1:
                for n2 in nature2:
                    if len(word_list) < 65536:
                        word_list.append(n1 + n2)
            
            # Add food combinations
            foods = ["hot", "cold", "sweet", "salt", "fresh", "good", "fast", "slow"]
            items = ["food", "meal", "dish", "soup", "cake", "pie", "tea", "milk"]
            
            for food in foods:
                for item in items:
                    if len(word_list) < 65536:
                        word_list.append(food + item)
    
    # If we still need more words, generate more natural combinations
    if len(word_list) < 65536:
        print(f"\nGenerating additional natural combinations (need {65536 - len(word_list)} more)...")
        
        # Add tech + action combinations
        tech_words = ["web", "net", "app", "tech", "cyber", "digital", "smart", "cloud", "data", "info"]
        actions = ["link", "sync", "scan", "view", "edit", "save", "load", "send", "share", "find"]
        
        for tech in tech_words:
            for action in actions:
                if len(word_list) < 65536:
                    word_list.append(tech + action)
                    word_list.append(action + tech)
        
        # Add common prefix combinations
        common_prefixes = ["home", "work", "life", "time", "best", "real", "true", "free", "easy", "safe"]
        common_suffixes = ["way", "day", "place", "thing", "side", "point", "line", "zone", "area", "spot"]
        
        for prefix in common_prefixes:
            for suffix in common_suffixes:
                if len(word_list) < 65536:
                    word_list.append(prefix + suffix)
        
        # Add animal + descriptive combinations
        animals = ["cat", "dog", "bird", "fish", "bear", "wolf", "fox", "owl", "bee", "ant"]
        descriptors = ["fast", "slow", "big", "small", "wild", "calm", "free", "wise", "brave", "cool"]
        
        for animal in animals:
            for desc in descriptors:
                if len(word_list) < 65536:
                    word_list.append(desc + animal)
        
        # Add action + place combinations
        actions2 = ["walk", "run", "jump", "swim", "fly", "ride", "climb", "slide", "dance", "sing"]
        places = ["home", "park", "beach", "hill", "path", "road", "trail", "track", "field", "court"]
        
        for action in actions2:
            for place in places:
                if len(word_list) < 65536:
                    word_list.append(action + place)
        
        # Add weather + time combinations
        weather = ["sun", "rain", "snow", "wind", "storm", "cloud", "fog", "mist", "ice", "heat"]
        times = ["dawn", "day", "dusk", "night", "hour", "time", "week", "year", "spring", "fall"]
        
        for w in weather:
            for t in times:
                if len(word_list) < 65536:
                    word_list.append(w + t)
        
        # Add game-related combinations
        game_prefixes = ["play", "game", "fun", "win", "score", "team", "match", "sport", "race", "quest"]
        game_suffixes = ["ball", "board", "card", "dice", "coin", "prize", "goal", "point", "level", "stage"]
        
        for prefix in game_prefixes:
            for suffix in game_suffixes:
                if len(word_list) < 65536:
                    word_list.append(prefix + suffix)
        
        # Add business/work combinations
        biz_prefixes = ["work", "job", "task", "plan", "deal", "trade", "sales", "profit", "growth", "market"]
        biz_suffixes = ["flow", "plan", "goal", "team", "group", "force", "power", "drive", "push", "lead"]
        
        for prefix in biz_prefixes:
            for suffix in biz_suffixes:
                if len(word_list) < 65536:
                    word_list.append(prefix + suffix)
        
        # Add education combinations
        edu_prefixes = ["learn", "teach", "study", "read", "write", "think", "know", "test", "quiz", "exam"]
        edu_suffixes = ["book", "page", "note", "list", "guide", "help", "tip", "hint", "clue", "fact"]
        
        for prefix in edu_prefixes:
            for suffix in edu_suffixes:
                if len(word_list) < 65536:
                    word_list.append(prefix + suffix)
        
        # Add travel combinations
        travel_prefixes = ["road", "path", "way", "route", "trip", "tour", "ride", "drive", "sail", "flight"]
        travel_suffixes = ["map", "guide", "sign", "stop", "end", "start", "point", "mark", "spot", "place"]
        
        for prefix in travel_prefixes:
            for suffix in travel_suffixes:
                if len(word_list) < 65536:
                    word_list.append(prefix + suffix)
        
        # Add creative combinations
        creative_prefixes = ["art", "draw", "paint", "write", "sing", "dance", "play", "make", "build", "craft"]
        creative_suffixes = ["work", "piece", "show", "form", "style", "mode", "type", "kind", "sort", "class"]
        
        for prefix in creative_prefixes:
            for suffix in creative_suffixes:
                if len(word_list) < 65536:
                    word_list.append(prefix + suffix)
        
        # Add health/fitness combinations
        health_prefixes = ["fit", "health", "strong", "fast", "quick", "power", "energy", "vital", "active", "sport"]
        health_suffixes = ["run", "walk", "jump", "lift", "push", "pull", "move", "flex", "bend", "stretch"]
        
        for prefix in health_prefixes:
            for suffix in health_suffixes:
                if len(word_list) < 65536:
                    word_list.append(prefix + suffix)
        
        # Add science combinations
        sci_prefixes = ["bio", "geo", "astro", "nano", "micro", "mega", "ultra", "super", "hyper", "meta"]
        sci_suffixes = ["lab", "test", "data", "fact", "proof", "theory", "model", "system", "process", "method"]
        
        for prefix in sci_prefixes:
            for suffix in sci_suffixes:
                if len(word_list) < 65536:
                    word_list.append(prefix + suffix)
    
    # Remove duplicates and ensure exactly 65,536 words
    word_list = list(dict.fromkeys(word_list))  # Remove duplicates while preserving order
    
    if len(word_list) > 65536:
        word_list = word_list[:65536]
    else:
        # If still short, add numbered versions of common words
        while len(word_list) < 65536:
            base_words = ["data", "file", "user", "item", "node", "link", "page", "site", "form", "code"]
            num = len(word_list) - 65000
            base = base_words[num % len(base_words)]
            word_list.append(f"{base}{num:04d}")
    
    # Save the dictionary
    with open("data/all_readable_word_list_65k.txt", 'w') as f:
        f.write('\n'.join(word_list))
    
    print(f"\n✓ Saved {len(word_list)} words to data/all_readable_word_list_65k.txt")
    
    # Show statistics
    length_dist = defaultdict(int)
    for word in word_list:
        length_dist[len(word)] += 1
    
    print("\nWord length distribution:")
    for length in sorted(length_dist.keys()):
        print(f"  {length:2d} chars: {length_dist[length]:5d} words")
    
    # Show random samples from different positions
    print("\nRandom samples from different positions:")
    positions = [0, 1000, 5000, 10000, 20000, 30000, 40000, 50000, 60000, 65535]
    for pos in positions:
        if pos < len(word_list):
            print(f"  Position {pos:5d}: {word_list[pos]}")

if __name__ == "__main__":
    main()