1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//! Damerau-Levenshtein distance
use crate::{Algorithm, Result};
use std::collections::HashMap;
use std::hash::Hash;

/// [Damerau-Levenshtein distance] is an edit distance between two sequences.
///
/// It is an improved version of [Levenshtein](crate::Levenshtein) that also includes
/// transpositions.
///
/// It is the minimum number of operations (consisting of insertions, deletions or
/// substitutions of a single character, or transposition of two adjacent characters)
/// required to change one text into the other.
///
/// [Damerau-Levenshtein distance]: https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
pub struct DamerauLevenshtein {
    /// If false (default), allow adjacent transpositions.
    pub restricted: bool,

    /// The cost of removing a character.
    pub del_cost: usize,

    /// The cost of adding a new character.
    pub ins_cost: usize,

    /// The cost of replacing a character with another one.
    pub sub_cost: usize,

    /// The cost of swapping two adjacent characters.
    pub trans_cost: usize,
}

impl Default for DamerauLevenshtein {
    fn default() -> Self {
        Self {
            restricted: false,
            del_cost: 1,
            ins_cost: 1,
            sub_cost: 1,
            trans_cost: 1,
        }
    }
}

impl DamerauLevenshtein {
    fn get_unrestricted<E: Eq + Hash>(&self, s1: &[E], s2: &[E]) -> Result<usize> {
        let l1 = s1.len();
        let l2 = s2.len();
        let max_dist = l2 + l1;

        let mut mat: Vec<Vec<usize>> = vec![vec![0; l2 + 2]; l1 + 2];
        mat[0][0] = max_dist;
        for i in 0..(l1 + 1) {
            mat[i + 1][0] = max_dist;
            mat[i + 1][1] = i;
        }
        for i in 0..(l2 + 1) {
            mat[0][i + 1] = max_dist;
            mat[1][i + 1] = i;
        }

        let mut char_map: HashMap<&E, usize> = HashMap::new();
        for (i1, c1) in s1.iter().enumerate() {
            let mut db = 0;
            let i1 = i1 + 1;

            for (i2, c2) in s2.iter().enumerate() {
                let i2 = i2 + 1;
                let last = *char_map.get(&c2).unwrap_or(&0);

                let sub_cost = if c1 == c2 { 0 } else { self.sub_cost };
                mat[i1 + 1][i2 + 1] = min4(
                    mat[i1][i2] + sub_cost,                                    // substitution
                    mat[i1 + 1][i2] + self.del_cost,                           // deletion
                    mat[i1][i2 + 1] + self.ins_cost,                           // insertion
                    mat[last][db] + i1 + i2 - 2 + self.trans_cost - last - db, // transposition
                );

                if c1 == c2 {
                    db = i2;
                }
            }

            char_map.insert(c1, i1);
        }

        Result {
            is_distance: true,
            abs: mat[l1 + 1][l2 + 1],
            max: l1.max(l2),
            len1: l1,
            len2: l2,
        }
    }

    #[allow(clippy::needless_range_loop)]
    fn get_restricted<E: Eq + Hash>(&self, s1: &[E], s2: &[E]) -> Result<usize> {
        let l1 = s1.len();
        let l2 = s2.len();

        let mut mat: Vec<Vec<usize>> = vec![vec![0; l2 + 2]; l1 + 2];
        for i in 0..(l1 + 1) {
            mat[i][0] = i;
        }
        for i in 0..(l2 + 1) {
            mat[0][i] = i;
        }

        for (i1, c1) in s1.iter().enumerate() {
            for (i2, c2) in s2.iter().enumerate() {
                let sub_cost = if c1 == c2 { 0 } else { self.sub_cost };
                mat[i1 + 1][i2 + 1] = min3(
                    mat[i1][i2 + 1] + self.del_cost, // deletion
                    mat[i1 + 1][i2] + self.ins_cost, // insertion
                    mat[i1][i2] + sub_cost,          // substitution
                );

                // transposition
                if i1 == 0 || i2 == 0 {
                    continue;
                };
                if c1 != &s2[i2 - 1] {
                    continue;
                };
                if &s1[i1 - 1] != c2 {
                    continue;
                };
                let trans_cost = if c1 == c2 { 0 } else { self.trans_cost };
                mat[i1 + 1][i2 + 1] = mat[i1 + 1][i2 + 1].min(mat[i1 - 1][i2 - 1] + trans_cost);
            }
        }

        Result {
            is_distance: true,
            abs: mat[l1][l2],
            max: l1.max(l2),
            len1: l1,
            len2: l2,
        }
    }
}

impl Algorithm<usize> for DamerauLevenshtein {
    fn for_vec<E: Eq + Hash>(&self, s1: &[E], s2: &[E]) -> Result<usize> {
        if self.restricted {
            self.get_restricted(s1, s2)
        } else {
            self.get_unrestricted(s1, s2)
        }
    }
}

fn min4(a: usize, b: usize, c: usize, d: usize) -> usize {
    a.min(b).min(c).min(d)
}

fn min3(a: usize, b: usize, c: usize) -> usize {
    a.min(b).min(c)
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::str::{damerau_levenshtein, damerau_levenshtein_restricted};
    use assert2::assert;
    use proptest::prelude::*;
    use rstest::rstest;

    #[rstest]
    #[case("", "", 0)]
    #[case("", "\0", 1)]
    #[case("", "abc", 3)]
    #[case("abc", "", 3)]
    #[case("hannah", "hannha", 1)]
    #[case("FOO", "BOR", 2)]
    #[case("BAR", "BOR", 1)]
    #[case("hansi", "hasni", 1)]
    #[case("zzaabbio", "zzababoi", 2)]
    #[case("zzaabb", "zzabab", 1)]
    #[case("abcdef", "badcfe", 3)]
    #[case("klmb", "klm", 1)]
    #[case("klm", "klmb", 1)]
    #[case("test", "text", 1)]
    #[case("test", "tset", 1)]
    #[case("test", "qwy", 4)]
    #[case("test", "testit", 2)]
    #[case("test", "tesst", 1)]
    #[case("test", "tet", 1)]
    #[case("cat", "hat", 1)]
    #[case("Niall", "Neil", 3)]
    #[case("aluminum", "Catalan", 7)]
    #[case("ATCG", "TAGC", 2)]
    #[case("ab", "ba", 1)]
    #[case("ab", "cde", 3)]
    #[case("ab", "ac", 1)]
    #[case("ab", "bc", 2)]
    fn function_str(#[case] s1: &str, #[case] s2: &str, #[case] exp: usize) {
        let res1 = damerau_levenshtein(s1, s2);
        let res2 = damerau_levenshtein_restricted(s1, s2);
        assert!(res1 == res2);
        assert!(res1 == exp);
    }

    #[test]
    fn restricted() {
        let a = DamerauLevenshtein {
            restricted: true,
            ..Default::default()
        };
        assert!(a.for_str("ab", "bca").val() == 3);
        assert!(a.for_str("abcd", "bdac").val() == 4);
    }

    #[test]
    fn unrestricted() {
        let a = DamerauLevenshtein::default();
        assert!(a.for_str("ab", "bca").val() == 2);
        assert!(a.for_str("abcd", "bdac").val() == 3);
    }

    proptest! {
        #[test]
        fn prop_default(s1 in ".*", s2 in ".*") {
            let res = damerau_levenshtein(&s1, &s2);
            let res2 = damerau_levenshtein(&s2, &s1);
            prop_assert_eq!(res, res2);
            prop_assert!(res <= s1.len() || res <= s2.len());
        }

        #[test]
        fn prop_restricted(s1 in ".*", s2 in ".*") {
            let res = damerau_levenshtein_restricted(&s1, &s2);
            let res2 = damerau_levenshtein_restricted(&s2, &s1);
            prop_assert_eq!(res, res2);
            prop_assert!(res <= s1.len() || res <= s2.len());
        }
    }
}