tetanes 0.7.0

A NES Emulator written in Rust with SDL2 and WebAssembly support
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
//! Picture Processing Unit
//!
//! [http://wiki.nesdev.com/w/index.php/PPU]()

use crate::{
    common::{Addr, Byte, Clocked, NesFormat, Powered},
    mapper::{Mapper, MapperType},
    memory::{MemRead, MemWrite},
    serialization::Savable,
    NesResult,
};
use frame::Frame;
use nametable::{ATTRIBUTE_START, NT_START};
use oam::{Oam, OAM_SIZE};
use palette::{PALETTE_END, PALETTE_SIZE, PALETTE_START, SYSTEM_PALETTE, SYSTEM_PALETTE_SIZE};
use ppu_regs::{PpuRegs, COARSE_X_MASK, COARSE_Y_MASK, NT_X_MASK, NT_Y_MASK};
use sprite::Sprite;
use std::{
    fmt,
    io::{Read, Write},
};
use vram::Vram;

mod frame;
mod nametable;
mod oam;
mod palette;
mod ppu_regs;
mod sprite;
mod vram;

// Screen/Render
pub const RENDER_WIDTH: u32 = 256;
pub const RENDER_HEIGHT: u32 = 240;
const _TOTAL_CYCLES: u32 = 341;
const _TOTAL_SCANLINES: u32 = 262;
const RENDER_PIXELS: usize = (RENDER_WIDTH * RENDER_HEIGHT) as usize;
const RENDER_SIZE: usize = 4 * RENDER_PIXELS;

// Cycles
const IDLE_CYCLE: u16 = 0; // PPU is idle this cycle
const VISIBLE_CYCLE_START: u16 = 1; // Tile data fetching starts
const VISIBLE_CYCLE_END: u16 = 256; // 2 cycles each for 4 fetches = 32 tiles
const SPRITE_PREFETCH_CYCLE_START: u16 = 257; // Sprites for next scanline fetch starts
const SPRITE_PREFETCH_CYCLE_END: u16 = 320; // 2 cycles each for 4 fetches = 8 sprites
const COPY_Y_CYCLE_START: u16 = 280; // Copy Y scroll start
const COPY_Y_CYCLE_END: u16 = 304; // Copy Y scroll stop
const INC_Y_CYCLE: u16 = 256; // Increase Y scroll when it reaches end of the screen
const COPY_X_CYCLE: u16 = 257; // Copy X scroll when starting a new scanline
const PREFETCH_CYCLE_START: u16 = 321; // Tile data for next scanline fetched
const PREFETCH_CYCLE_END: u16 = 336; // 2 cycles each for 4 fetches = 2 tiles
const DUMMY_CYCLE_START: u16 = 337; // Dummy fetches - use is unknown
const SKIP_CYCLE: u16 = 339; // Odd frames skip the last cycle
const CYCLE_END: u16 = 340; // 2 cycles each for 2 fetches
const POWER_ON_CYCLES: usize = 29658 * 3; // https://wiki.nesdev.com/w/index.php/PPU_power_up_state

// Scanlines
const _VISIBLE_SCANLINE_START: u16 = 0; // Rendering graphics for the screen
const VISIBLE_SCANLINE_END: u16 = 239; // Rendering graphics for the screen
const _POSTRENDER_SCANLINE: u16 = 240; // Idle scanline
const VBLANK_SCANLINE: u16 = 241; // Vblank set at tick 1 (the second tick)
const PRERENDER_SCANLINE: u16 = 261;

#[derive(Clone)]
pub struct Ppu {
    pub cycle: u16,         // (0, 340) 341 cycles happen per scanline
    pub cycle_count: usize, // Total number of PPU cycles run
    frame_cycles: u32,      // Total number of PPU cycles run per frame
    pub scanline: u16,      // (0, 261) 262 total scanlines per frame
    scanline_phase: u32,    // Phase at the start of this scanline
    pub nmi_pending: bool,  // Whether the CPU should trigger an NMI next cycle
    vram: Vram,             // $2007 PPUDATA
    pub regs: PpuRegs,      // Registers
    oamdata: Oam,           // $2004 OAMDATA read/write - Object Attribute Memory for Sprites
    frame: Frame,           // Frame data keeps track of data and shift registers between frames
    pub frame_complete: bool,
    pub ntsc_video: bool,
    nes_format: NesFormat,
    clock_remainder: u8,
    debug: bool,
    nt_scanline: u16,
    pat_scanline: u16,
    pub nametables: Vec<Vec<Byte>>,
    pub nametable_ids: Vec<u8>,
    pub pattern_tables: Vec<Vec<Byte>>,
    pub palette: Vec<Byte>,
    pub palette_ids: Vec<u8>,
}

impl Ppu {
    pub fn new() -> Self {
        Self {
            cycle: 0,
            cycle_count: 0,
            frame_cycles: 0,
            scanline: 0,
            scanline_phase: 0,
            nmi_pending: false,
            regs: PpuRegs::new(),
            oamdata: Oam::new(),
            vram: Vram::new(),
            frame: Frame::new(),
            frame_complete: false,
            ntsc_video: true,
            nes_format: NesFormat::Ntsc,
            clock_remainder: 0,
            debug: false,
            nt_scanline: 0,
            pat_scanline: 0,
            nametables: vec![
                vec![0; RENDER_SIZE],
                vec![0; RENDER_SIZE],
                vec![0; RENDER_SIZE],
                vec![0; RENDER_SIZE],
            ],
            nametable_ids: vec![0; 4 * 0x0400],
            pattern_tables: vec![vec![0; RENDER_SIZE / 2], vec![0; RENDER_SIZE / 2]],
            palette: vec![0; (PALETTE_SIZE + 4) * 4],
            palette_ids: vec![0; (PALETTE_SIZE + 4) * 4],
        }
    }

    pub fn load_mapper(&mut self, mapper: &mut MapperType) {
        self.vram.mapper = &mut *mapper as *mut MapperType;
    }

    pub fn set_debug(&mut self, val: bool) {
        self.debug = val;
    }

    pub fn set_nt_scanline(&mut self, scanline: u16) {
        self.nt_scanline = scanline;
    }

    pub fn set_pat_scanline(&mut self, scanline: u16) {
        self.pat_scanline = scanline;
    }

    pub fn update_debug(&mut self) {
        self.load_nametables();
        self.load_pattern_tables();
        self.load_palettes();
    }

    // Returns a fully rendered frame of RENDER_SIZE RGB colors
    pub fn frame(&self) -> &Vec<Byte> {
        &self.frame.pixels
    }

    fn load_nametables(&mut self) {
        for i in 0..4 {
            let base_addr = NT_START + i * 0x0400;
            for addr in base_addr..(base_addr + 0x0400 - 64) {
                let x_scroll = addr & COARSE_X_MASK;
                let y_scroll = (addr & COARSE_Y_MASK) >> 5;

                let nt_base_addr = NT_START + (addr & (NT_X_MASK | NT_Y_MASK));
                let tile = self.vram.peek(addr);
                let tile_addr = self.regs.background_select() + Addr::from(tile) * 16;
                let supertile_num = (x_scroll / 4) + (y_scroll / 4) * 8;
                let attr = Addr::from(self.vram.peek(nt_base_addr + 0x3C0 + supertile_num));
                let corner = ((x_scroll % 4) / 2 + (y_scroll % 4) / 2 * 2) << 1;
                let mask = 0x03 << corner;
                let palette = (attr & mask) >> corner;

                let tile_num = x_scroll + y_scroll * 32;
                let tile_x = (tile_num % 32) * 8;
                let tile_y = (tile_num / 32) * 8;

                self.nametable_ids[(addr - NT_START) as usize] = tile;
                for y in 0..8 {
                    let lo = Addr::from(self.vram.peek(tile_addr + y));
                    let hi = Addr::from(self.vram.peek(tile_addr + y + 8));
                    for x in 0..8 {
                        let pix_type = ((lo >> x) & 1) + (((hi >> x) & 1) << 1);
                        let palette_idx =
                            self.vram.peek(PALETTE_START + palette * 4 + pix_type) as usize;
                        let x = tile_x + (7 - x);
                        let y = tile_y + y;
                        Self::put_pixel(
                            palette_idx,
                            x.into(),
                            y.into(),
                            RENDER_WIDTH,
                            &mut self.nametables[i as usize],
                        );
                    }
                }
            }
        }
    }

    fn load_pattern_tables(&mut self) {
        let width = RENDER_WIDTH / 2;
        for table in 0..2 {
            let start = table as Addr * 0x1000;
            let end = start + 0x1000;
            for tile_addr in (start..end).step_by(16) {
                let tile_x = ((tile_addr % 0x1000) % 256) / 2;
                let tile_y = ((tile_addr % 0x1000) / 256) * 8;
                for y in 0..8 {
                    let lo = Addr::from(self.vram.peek(tile_addr + y));
                    let hi = Addr::from(self.vram.peek(tile_addr + y + 8));
                    for x in 0..8 {
                        let pix_type = ((lo >> x) & 1) + (((hi >> x) & 1) << 1);
                        let palette_idx = self.vram.peek(PALETTE_START + pix_type) as usize;
                        let x = tile_x + (7 - x);
                        let y = tile_y + y;
                        Self::put_pixel(
                            palette_idx,
                            x.into(),
                            y.into(),
                            width,
                            &mut self.pattern_tables[table as usize],
                        );
                    }
                }
            }
        }
    }

    fn load_palettes(&mut self) {
        // Global  // BG 0 ----------------------------------  // Unused    // SPR 0 -------------------------------
        // 0x3F00: 0,0  0x3F01: 1,0  0x3F02: 2,0  0x3F03: 3,0  0x3F10: 5,0  0x3F11: 6,0  0x3F12: 7,0  0x3F13: 8,0
        // Unused  // BG 1 ----------------------------------  // Unused    // SPR 1 -------------------------------
        // 0x3F04: 0,1  0x3F05: 1,1  0x3F06: 2,1  0x3F07: 3,1  0x3F14: 5,1  0x3F15: 6,1  0x3F16: 7,1  0x3F17: 8,1
        // Unused  // BG 2 ----------------------------------  // Unused    // SPR 2 -------------------------------
        // 0x3F08: 0,2  0x3F09: 1,2  0x3F0A: 2,2  0x3F0B: 3,2  0x3F18: 5,2  0x3F19: 6,2  0x3F1A: 7,2  0x3F1B: 8,2
        // Unused  // BG 3 ----------------------------------  // Unused    // SPR 3 -------------------------------
        // 0x3F0C: 0,3  0x3F0D: 1,3  0x3F0E: 2,3  0x3F0F: 3,3  0x3F1C: 5,3  0x3F1D: 6,3  0x3F1E: 7,3  0x3F1F: 8,3
        let width = 16;
        for addr in PALETTE_START..PALETTE_END {
            let x = (addr - PALETTE_START) % 16;
            let y = (addr - PALETTE_START) / 16;
            let palette_idx = self.vram.peek(addr);
            self.palette_ids[y as usize * width + x as usize] = palette_idx;
            Self::put_pixel(
                palette_idx as usize,
                x.into(),
                y.into(),
                width as u32,
                &mut self.palette,
            );
        }
    }

    fn run_cycle(&mut self) {
        self.tick();

        // Idle cycles/scanline
        if self.cycle == IDLE_CYCLE {
            return;
        }

        let visible_cycle = self.cycle >= VISIBLE_CYCLE_START && self.cycle <= VISIBLE_CYCLE_END;
        let prefetch_cycle = self.cycle >= PREFETCH_CYCLE_START && self.cycle <= PREFETCH_CYCLE_END;
        let dummy_cycle = self.cycle >= DUMMY_CYCLE_START && self.cycle <= CYCLE_END;
        let fetch_cycle = prefetch_cycle || visible_cycle;
        let visible_scanline = self.scanline <= VISIBLE_SCANLINE_END;
        let prerender_scanline = self.scanline == PRERENDER_SCANLINE;
        let render_scanline = prerender_scanline || visible_scanline;

        // Pixels should be put even if rendering is disabled, as this is what blanks out the
        // screen. Rendering disabled just means we don't evaluate/read bg/sprite info
        self.render_pixel();

        if self.rendering_enabled() && render_scanline {
            // (1, 0) - (256, 239) - visible cycles/scanlines
            // (1, 261) - (256, 261) - prefetch scanline
            // (321, 0) - (336, 239) - next scanline fetch cycles
            if fetch_cycle {
                self.evaluate_background();
            } else if dummy_cycle {
                // Dummy byte fetches
                // (337, 0) - (337, 239)
                self.fetch_bg_nt_byte();
            }

            // Y scroll bits are supposed to be reloaded during this pixel range of PRERENDER
            // if rendering is enabled
            // http://wiki.nesdev.com/w/index.php/PPU_rendering#Pre-render_scanline_.28-1.2C_261.29
            let copy_y = self.cycle >= COPY_Y_CYCLE_START && self.cycle <= COPY_Y_CYCLE_END;
            if prerender_scanline && copy_y {
                self.regs.copy_y();
            }

            // Increment Coarse X every 8 cycles (e.g. 8 pixels) since sprites are 8x wide
            if fetch_cycle && self.cycle % 8 == 0 {
                self.regs.increment_x();
            }
            // Increment Fine Y when we reach the end of the screen
            if self.cycle == INC_Y_CYCLE {
                self.regs.increment_y();
            }
            // Copy X bits at the start of a new line since we're going to start writing
            // new x values to t
            if self.cycle == COPY_X_CYCLE {
                self.regs.copy_x();
            }

            // TODO - This should be split up instead of being done all at once
            // The code block below this simulates the reads required, but
            // its not ideal
            if self.cycle == SPRITE_PREFETCH_CYCLE_START {
                self.evaluate_sprites();
            }

            // HACK: This gets our IRQ timing properly for certain mappers (MMC3, MMC5)
            // because evaluation is done all on one cycle
            let sprite_prefetch = self.cycle >= SPRITE_PREFETCH_CYCLE_START
                && self.cycle <= SPRITE_PREFETCH_CYCLE_END;
            if sprite_prefetch {
                let sprite_idx = (self.cycle - SPRITE_PREFETCH_CYCLE_START) / 8;
                let sprite = self.frame.sprites[sprite_idx as usize];
                match self.cycle % 8 {
                    1 => self.fetch_bg_nt_byte(),   // Garbage NT fetch
                    3 => self.fetch_bg_attr_byte(), // Garbage attr fetch
                    5 => {
                        let _ = self.vram.read(sprite.tile_addr);
                    }
                    7 => {
                        let _ = self.vram.read(sprite.tile_addr + 8);
                    }
                    _ => (),
                }
            }
        }
    }

    fn fetch_bg_nt_byte(&mut self) {
        // Fetch BG nametable
        // https://wiki.nesdev.com/w/index.php/PPU_scrolling#Tile_and_attribute_fetching
        let nametable_addr_mask = 0x0FFF; // Only need lower 12 bits
        let addr = NT_START | (self.regs.v & nametable_addr_mask);
        self.frame.nametable = Addr::from(self.vram.read(addr));
    }

    fn fetch_bg_attr_byte(&mut self) {
        // Fetch BG attribute table
        // https://wiki.nesdev.com/w/index.php/PPU_scrolling#Tile_and_attribute_fetching
        // NN 1111 YYY XXX
        // || |||| ||| +++-- high 3 bits of coarse X (x/4)
        // || |||| +++------ high 3 bits of coarse Y (y/4)
        // || ++++---------- attribute offset (960 bytes)
        // ++--------------- nametable select
        let v = self.regs.v;
        let nametable_select = v & (NT_X_MASK | NT_Y_MASK);
        let y_bits = (v >> 4) & 0x38;
        let x_bits = (v >> 2) & 0x07;
        let addr = ATTRIBUTE_START | nametable_select | y_bits | x_bits;
        self.frame.attribute = self.vram.read(addr);
        // If the top bit of the low 3 bits is set, shift to next quadrant
        if self.regs.coarse_y() & 2 > 0 {
            self.frame.attribute >>= 4;
        }
        if self.regs.coarse_x() & 2 > 0 {
            self.frame.attribute >>= 2;
        }
        self.frame.attribute = (self.frame.attribute & 3) << 2;
    }

    fn evaluate_background(&mut self) {
        self.frame.tile_data <<= 4;
        // Fetch 4 tiles and write out shift registers every 8th cycle
        // Each tile fetch takes 2 cycles
        match self.cycle % 8 {
            1 => self.fetch_bg_nt_byte(),
            3 => self.fetch_bg_attr_byte(),
            5 => {
                // Fetch BG tile lo bitmap
                let tile_addr =
                    self.regs.background_select() + self.frame.nametable * 16 + self.regs.fine_y();
                self.frame.tile_lo = self.vram.read(tile_addr);
            }
            7 => {
                // Fetch BG tile hi bitmap
                let tile_addr =
                    self.regs.background_select() + self.frame.nametable * 16 + self.regs.fine_y();
                self.frame.tile_hi = self.vram.read(tile_addr + 8);
            }
            0 => {
                // Cycles 9, 17, 25, ..., 257
                // Store tiles
                let mut data = 0u32;
                let a = self.frame.attribute;
                for _ in 0..8 {
                    let p1 = (self.frame.tile_lo & 0x80) >> 7;
                    let p2 = (self.frame.tile_hi & 0x80) >> 6;
                    self.frame.tile_lo <<= 1;
                    self.frame.tile_hi <<= 1;
                    data <<= 4;
                    data |= u32::from(a | p1 | p2);
                }
                self.frame.tile_data |= u64::from(data);
            }
            _ => (),
        }
    }

    fn evaluate_sprites(&mut self) {
        self.frame.sprite_count = 0;
        for i in 0..8 {
            let mut sprite = Sprite::new();
            let sprite_height = self.regs.sprite_height();
            let sprite_table = if sprite_height == 8 {
                self.regs.sprite_select()
            } else {
                // use bit 1 of tile index to determine pattern table
                0x1000 * (sprite.tile_index & 0x01)
            };

            sprite.tile_addr = sprite_table + sprite.tile_index * 16;
            self.frame.sprites[i] = sprite;
        }
        let sprite_height = self.regs.sprite_height();
        for i in 0..OAM_SIZE / 4 {
            let sprite_y = Addr::from(self.oamdata.read((i * 4) as Addr));
            let sprite_on_line = sprite_y <= self.scanline
                && self.scanline < sprite_y + sprite_height
                && self.scanline < 255;
            if !sprite_on_line {
                continue;
            }
            if i == 0 {
                self.frame.sprite_zero_on_line = true;
            }
            if self.frame.sprite_count < 8 {
                self.frame.sprites[self.frame.sprite_count as usize] = self.get_sprite(i * 4);
            }
            self.frame.sprite_count += 1;
            if self.frame.sprite_count > 8 {
                self.frame.sprite_count = 8;
                self.set_sprite_overflow(true);
            }
        }
    }

    #[allow(clippy::many_single_char_names)]
    fn render_pixel(&mut self) {
        let x = self.cycle - 1;
        let y = self.scanline;

        let mut bg_color = self.background_color();
        let (i, mut sprite_color) = self.sprite_color();

        let border_pixel = x < 8;
        let left_clip = !self.regs.show_left_background() && border_pixel;
        if left_clip {
            bg_color = 0;
        }
        if border_pixel && !self.regs.show_left_sprites() {
            sprite_color = 0;
        }
        let bg_opaque = bg_color % 4 != 0;
        let sprite_opaque = sprite_color % 4 != 0;
        let color = if !bg_opaque && !sprite_opaque {
            0
        } else if sprite_opaque && !bg_opaque {
            sprite_color | 0x10
        } else if bg_opaque && !sprite_opaque {
            bg_color
        } else {
            if self.is_sprite_zero(i)
                && self.frame.sprite_zero_on_line
                && self.rendering_enabled()
                && !self.sprite_zero_hit()
                && x > 0
                && x != 255
                && y <= VISIBLE_SCANLINE_END
                && bg_opaque
                && sprite_opaque
            {
                self.set_sprite_zero_hit(true);
            }
            if !self.frame.sprites[i].has_priority {
                sprite_color | 0x10
            } else {
                bg_color
            }
        };
        let mut palette = self.vram.read(Addr::from(color) + PALETTE_START);
        if self.regs.grayscale() {
            palette &= !0x0F; // Remove chroma
        }
        if self.ntsc_video {
            let format = self.nes_format;
            let pixel = ((self.regs.emphasis(format) as u32) << 6) | palette as u32;
            self.frame
                .put_ntsc_pixel(x.into(), self.scanline.into(), pixel, self.frame_cycles);
        } else {
            let color_idx = (palette as usize % SYSTEM_PALETTE_SIZE) * 3;
            let r = SYSTEM_PALETTE[color_idx];
            let g = SYSTEM_PALETTE[color_idx + 1];
            let b = SYSTEM_PALETTE[color_idx + 2];
            self.frame.put_pixel(x.into(), y.into(), r, g, b);
        }
    }

    fn put_pixel(palette_idx: usize, x: u32, y: u32, width: u32, pixels: &mut Vec<Byte>) {
        if x >= RENDER_WIDTH || y >= RENDER_HEIGHT {
            return;
        }
        let idx = (palette_idx % SYSTEM_PALETTE_SIZE) * 3;
        let red = SYSTEM_PALETTE[idx];
        let green = SYSTEM_PALETTE[idx + 1];
        let blue = SYSTEM_PALETTE[idx + 2];
        let idx = 4 * (x + y * width) as usize;
        pixels[idx] = red;
        pixels[idx + 1] = green;
        pixels[idx + 2] = blue;
        pixels[idx + 3] = 255;
    }

    fn is_sprite_zero(&self, index: usize) -> bool {
        self.frame.sprites[index].index == 0
    }

    fn background_color(&self) -> Byte {
        if !self.regs.show_background() {
            return 0;
        }
        // 43210
        // |||||
        // |||++- Pixel value from tile data
        // |++--- Palette number from attribute table or OAM
        // +----- Background/Sprite select

        let tile_data = (self.frame.tile_data >> 32) as u32;
        let data = tile_data >> ((7 - self.regs.fine_x()) * 4);
        (data & 0x0F) as Byte
    }

    fn sprite_color(&self) -> (usize, Byte) {
        if !self.regs.show_sprites() {
            return (0, 0);
        }
        for i in 0..self.frame.sprite_count as usize {
            let offset = self.cycle as i16 - 1 - self.frame.sprites[i].x as i16;
            if offset < 0 || offset > 7 {
                continue;
            }
            let offset = 7 - offset;
            let color = ((self.frame.sprites[i].pattern >> (offset * 4) as Byte) & 0x0F) as Byte;
            if color % 4 == 0 {
                continue;
            }
            return (i, color);
        }
        (0, 0)
    }

    fn tick(&mut self) {
        // Clear open bus roughly once every frame
        if self.scanline == 0 {
            self.regs.open_bus = 0x0;
        }

        // Reached the end of a frame cycle
        // Jump to (0, 0) (Cycles, Scanline) and start on the next frame
        let should_skip =
            self.scanline == PRERENDER_SCANLINE && self.rendering_enabled() && self.frame.parity;
        let cycle_end = if should_skip { SKIP_CYCLE } else { CYCLE_END };
        self.cycle += 1;
        self.cycle_count = self.cycle_count.wrapping_add(1);
        self.frame_cycles = (self.frame_cycles + 1) % 3;
        if self.cycle > cycle_end {
            self.cycle = 0;
            self.scanline += 1;
            if self.scanline > PRERENDER_SCANLINE {
                self.scanline = 0;
                self.frame.increment();
                self.frame_complete = true;
            }
        }
    }

    // http://wiki.nesdev.com/w/index.php/PPU_OAM
    fn get_sprite(&mut self, i: usize) -> Sprite {
        // Get sprite info from OAMDATA
        // Each sprite takes 4 bytes
        let d = &mut self.oamdata;
        let addr = i as Addr;
        // attribute
        // 76543210
        // ||||||||
        // ||||||++- Palette (4 to 7) of sprite
        // |||+++--- Unimplemented
        // ||+------ Priority (0: in front of background; 1: behind background)
        // |+------- Flip sprite horizontally
        // +-------- Flip sprite vertically
        let attr = d.read(addr + 2);
        let mut sprite = Sprite {
            index: i as u8,
            x: d.read(addr + 3).into(),
            y: d.read(addr).into(),
            tile_index: d.read(addr + 1).into(),
            tile_addr: 0u16,
            palette: (attr & 3) + 4, // range 4 to 7
            pattern: 0,
            has_priority: (attr & 0x20) == 0x20,    // bit 5
            flip_horizontal: (attr & 0x40) == 0x40, // bit 6
            flip_vertical: (attr & 0x80) == 0x80,   // bit 7
        };

        // Now fetch sprite pattern graphics

        // Dummy sprite
        let dummy_sprite =
            sprite.x == 0xFF && sprite.y == 0xFF && sprite.tile_index == 0xFF && attr == 0xFF;

        let sprite_height = self.regs.sprite_height();
        let mut sprite_row = self.scanline - sprite.y;
        if sprite.flip_vertical {
            sprite_row = sprite_height - 1 - sprite_row;
        }
        let sprite_table = if sprite_height == 8 {
            self.regs.sprite_select()
        } else {
            // use bit 1 of tile index to determine pattern table
            0x1000 * (sprite.tile_index & 0x01)
        };
        if sprite_height == 16 {
            sprite.tile_index &= 0xFE;
            // Finished the top half, read from adjacent tile
            if sprite_row > 7 {
                sprite.tile_index += 1;
                sprite_row -= 8;
            }
        }

        if dummy_sprite {
            sprite_row = 0;
        }

        sprite.tile_addr = sprite_table + sprite.tile_index * 16 + sprite_row;

        // Flip bits for horizontal flipping
        let a = (sprite.palette - 4) << 2;
        let mut lo_tile = self.vram.peek(sprite.tile_addr);
        let mut hi_tile = self.vram.peek(sprite.tile_addr + 8);
        for _ in 0..8 {
            let (p1, p2);
            if sprite.flip_horizontal {
                p1 = lo_tile & 1;
                p2 = (hi_tile & 1) << 1;
                lo_tile >>= 1;
                hi_tile >>= 1;
            } else {
                p1 = (lo_tile & 0x80) >> 7;
                p2 = (hi_tile & 0x80) >> 6;
                lo_tile <<= 1;
                hi_tile <<= 1;
            }
            sprite.pattern <<= 4;
            sprite.pattern |= u32::from(a | p1 | p2);
        }
        sprite
    }

    pub fn rendering_enabled(&self) -> bool {
        self.regs.show_background() || self.regs.show_sprites()
    }

    // Register read/writes

    /*
     * $2000 PPUCTRL
     */

    pub fn nmi_enabled(&self) -> bool {
        self.regs.nmi_enabled()
    }
    fn write_ppuctrl(&mut self, val: Byte) {
        if self.cycle_count < POWER_ON_CYCLES {
            return;
        }
        let nmi_flag = val & 0x80 > 0;
        if nmi_flag && !self.nmi_enabled() && self.vblank_started()
        // FIXME This is a bit of a hack - VBL should clear on cycle 1,
        // but something is off with timing and cycle 1 causes
        // 03-vbl_clear_time.nes/4.vbl_clear_timing.nes to fail.
        // Changing it to 2 makes them pass, but then causes 07-nmi_on_timing.nes
        // to fail so this condition is added to correct it
        && (self.scanline != PRERENDER_SCANLINE || self.cycle == 0)
        {
            self.nmi_pending = true;
        }
        // Race condition
        if self.scanline == VBLANK_SCANLINE && !nmi_flag && self.cycle < 4 {
            self.nmi_pending = false;
        }
        self.regs.write_ctrl(val);
    }

    /*
     * $2001 PPUMASK
     */

    fn write_ppumask(&mut self, val: Byte) {
        if self.cycle_count < POWER_ON_CYCLES {
            return;
        }
        self.regs.write_mask(val);
    }

    /*
     * $2002 PPUSTATUS
     */

    pub fn read_ppustatus(&mut self) -> Byte {
        let mut status = self.regs.read_status();
        // Race conditions
        if self.scanline == VBLANK_SCANLINE {
            if self.cycle == 1 {
                status &= !0x80;
            }
            if self.cycle < 4 {
                self.nmi_pending = false;
            }
        }
        // read_status() modifies register, so make sure mapper is aware
        // of new status
        self.vram
            .mapper_mut()
            .ppu_write(0x2002, self.regs.peek_status());
        status
    }
    fn peek_ppustatus(&self) -> Byte {
        self.regs.peek_status()
    }
    fn sprite_zero_hit(&mut self) -> bool {
        self.regs.sprite_zero_hit()
    }
    fn set_sprite_zero_hit(&mut self, val: bool) {
        self.regs.set_sprite_zero_hit(val);
    }
    fn set_sprite_overflow(&mut self, val: bool) {
        self.regs.set_sprite_overflow(val);
    }
    fn start_vblank(&mut self) {
        self.regs.start_vblank();
        if self.nmi_enabled() {
            self.nmi_pending = true;
        }
        // Ensure our mapper knows vbl changed
        self.vram
            .mapper_mut()
            .ppu_write(0x2002, self.regs.peek_status());
    }
    fn stop_vblank(&mut self) {
        self.regs.stop_vblank();
        // Ensure our mapper knows vbl changed
        self.vram
            .mapper_mut()
            .ppu_write(0x2002, self.regs.peek_status());
    }
    pub fn vblank_started(&self) -> bool {
        self.regs.vblank_started()
    }

    /*
     * $2003 OAMADDR
     */

    pub fn read_oamaddr(&self) -> Byte {
        self.regs.oamaddr
    }

    fn write_oamaddr(&mut self, val: Byte) {
        self.regs.oamaddr = val;
    }

    /*
     * $2004 OAMDATA
     */

    fn read_oamdata(&mut self) -> Byte {
        if self.rendering_enabled() {
            match self.cycle {
                0..=63 => 0xFF,
                64..=255 => 0x00,
                256..=319 => 0xFF,
                _ => 0x00,
            }
        } else {
            self.oamdata.read(Addr::from(self.regs.oamaddr))
        }
    }
    fn peek_oamdata(&self) -> Byte {
        self.oamdata.peek(Addr::from(self.regs.oamaddr))
    }
    fn write_oamdata(&mut self, val: Byte) {
        self.oamdata.write(Addr::from(self.regs.oamaddr), val);
        self.regs.oamaddr = self.regs.oamaddr.wrapping_add(1);
    }

    /*
     * $2005 PPUSCROLL
     */

    fn write_ppuscroll(&mut self, val: Byte) {
        if self.cycle_count < POWER_ON_CYCLES {
            return;
        }
        self.regs.write_scroll(val);
    }

    /*
     * $2006 PPUADDR
     */

    pub fn read_ppuaddr(&self) -> Addr {
        self.regs.read_addr()
    }
    fn write_ppuaddr(&mut self, val: Addr) {
        if self.cycle_count < POWER_ON_CYCLES {
            return;
        }
        self.regs.write_addr(val);
        self.vram.mapper_mut().vram_change(self.regs.v);
    }

    /*
     * $2007 PPUDATA
     */

    fn read_ppudata(&mut self) -> Byte {
        let val = self.vram.read(self.read_ppuaddr());
        // Buffering quirk resulting in a dummy read for the CPU
        // for reading pre-palette data in 0 - $3EFF
        // Keep addr within 15 bits
        let val = if self.read_ppuaddr() <= 0x3EFF {
            let buffer = self.vram.buffer;
            self.vram.buffer = val;
            buffer
        } else {
            // Set internal buffer with mirrors of nametable when reading palettes
            // Since we're reading from > 0x3EFF subtract 0x1000 to fill
            // buffer with nametable mirror data
            self.vram.buffer = self.vram.read(self.read_ppuaddr() - 0x1000);
            // Hi 2 bits of palette should be open bus
            val | (self.regs.open_bus & 0xC0)
        };
        // During rendering, v increments coarse X and coarse Y at the simultaneously
        if self.rendering_enabled()
            && (self.scanline == PRERENDER_SCANLINE || self.scanline <= VISIBLE_SCANLINE_END)
        {
            self.regs.increment_x();
            self.regs.increment_y();
        } else {
            self.regs.increment_v();
        }
        self.vram.mapper_mut().vram_change(self.regs.v);
        val
    }
    fn peek_ppudata(&self) -> Byte {
        let val = self.vram.peek(self.read_ppuaddr());
        if self.read_ppuaddr() <= 0x3EFF {
            self.vram.buffer
        } else {
            val
        }
    }
    fn write_ppudata(&mut self, val: Byte) {
        self.vram.write(self.read_ppuaddr(), val);
        // During rendering, v increments coarse X and coarse Y simultaneously
        if self.rendering_enabled()
            && (self.scanline == PRERENDER_SCANLINE || self.scanline <= VISIBLE_SCANLINE_END)
        {
            self.regs.increment_x();
            self.regs.increment_y();
        } else {
            self.regs.increment_v();
        }
        self.vram.mapper_mut().vram_change(self.regs.v);
    }
}

impl Clocked for Ppu {
    // http://wiki.nesdev.com/w/index.php/PPU_rendering
    fn clock(&mut self) -> usize {
        let clocks = match self.nes_format {
            NesFormat::Ntsc | NesFormat::Dendy => 3,
            NesFormat::Pal => {
                if self.clock_remainder == 5 {
                    self.clock_remainder = 0;
                    4
                } else {
                    self.clock_remainder += 1;
                    3
                }
            }
        };

        for _ in 0..clocks {
            self.run_cycle();

            if self.cycle == VISIBLE_CYCLE_START && self.scanline == VBLANK_SCANLINE {
                self.start_vblank();
            }
            // FIXME This is a bit of a hack - VBL should clear on cycle 1,
            // but something is off with timing and cycle 1 causes
            // 03-vbl_clear_time.nes/4.vbl_clear_timing.nes to fail.
            // Changing it to 2 makes them pass, but then causes 07-nmi_on_timing.nes
            // to fail so write_ppuctrl is changed as a result
            if self.cycle == VISIBLE_CYCLE_START + 1 && self.scanline == PRERENDER_SCANLINE {
                self.set_sprite_zero_hit(false);
                self.set_sprite_overflow(false);
                self.stop_vblank();
            }
            if self.debug && self.cycle == IDLE_CYCLE {
                if self.scanline == self.nt_scanline {
                    self.load_nametables();
                }
                if self.scanline == self.pat_scanline {
                    self.load_pattern_tables();
                    self.load_palettes();
                }
            }
        }
        clocks
    }
}

impl MemRead for Ppu {
    fn read(&mut self, addr: Addr) -> Byte {
        match addr {
            0x2000 => self.regs.open_bus, // PPUCTRL is write-only
            0x2001 => self.regs.open_bus, // PPUMASK is write-only
            0x2002 => {
                let val = self.read_ppustatus(); // PPUSTATUS
                self.regs.open_bus |= val & !0x1F;
                (val & !0x1F) | (self.regs.open_bus & 0x1F)
            }
            0x2003 => self.regs.open_bus, // OAMADDR is write-only
            0x2004 => {
                let val = self.read_oamdata(); // OAMDATA
                self.regs.open_bus = val;
                val
            }
            0x2005 => self.regs.open_bus, // PPUSCROLL is write-only
            0x2006 => self.regs.open_bus, // PPUADDR is write-only
            0x2007 => {
                let val = self.read_ppudata(); // PPUDATA
                self.regs.open_bus = val;
                val
            }
            _ => 0,
        }
    }

    fn peek(&self, addr: Addr) -> Byte {
        match addr {
            0x2000 => self.regs.open_bus,    // PPUCTRL is write-only
            0x2001 => self.regs.open_bus,    // PPUMASK is write-only
            0x2002 => self.peek_ppustatus(), // PPUSTATUS
            0x2003 => self.regs.open_bus,    // OAMADDR is write-only
            0x2004 => self.peek_oamdata(),   // OAMDATA
            0x2005 => self.regs.open_bus,    // PPUSCROLL is write-only
            0x2006 => self.regs.open_bus,    // PPUADDR is write-only
            0x2007 => self.peek_ppudata(),   // PPUDATA
            _ => 0,
        }
    }
}

impl MemWrite for Ppu {
    fn write(&mut self, addr: Addr, val: Byte) {
        self.regs.open_bus = val;
        match addr {
            0x2000 => self.write_ppuctrl(val),             // PPUCTRL
            0x2001 => self.write_ppumask(val),             // PPUMASK
            0x2002 => (),                                  // PPUSTATUS is read-only
            0x2003 => self.write_oamaddr(val),             // OAMADDR
            0x2004 => self.write_oamdata(val),             // OAMDATA
            0x2005 => self.write_ppuscroll(val),           // PPUSCROLL
            0x2006 => self.write_ppuaddr(Addr::from(val)), // PPUADDR
            0x2007 => self.write_ppudata(val),             // PPUDATA
            _ => (),
        }
    }
}

impl Powered for Ppu {
    fn reset(&mut self) {
        self.cycle = 0;
        self.frame_cycles = 0;
        self.scanline = 0;
        self.scanline_phase = 0;
        self.regs.w = false;
        self.frame.reset();
        self.vram.reset();
        self.set_sprite_zero_hit(false);
        self.set_sprite_overflow(false);
        self.write_ppuctrl(0);
        self.write_ppumask(0);
        self.write_ppuscroll(0);
    }
    fn power_cycle(&mut self) {
        self.cycle = 0;
        self.frame_cycles = 0;
        self.scanline = 0;
        self.scanline_phase = 0;
        self.regs.w = false;
        self.frame.power_cycle();
        self.vram.power_cycle();
        self.set_sprite_zero_hit(false);
        self.set_sprite_overflow(false);
        self.write_ppuctrl(0);
        self.write_ppumask(0);
        self.write_oamaddr(0);
        self.write_ppuscroll(0);
        self.write_ppuaddr(0);
        self.cycle_count = 0; // This has to reset after register writes
    }
}

impl Savable for Ppu {
    fn save<F: Write>(&self, fh: &mut F) -> NesResult<()> {
        self.cycle.save(fh)?;
        self.cycle_count.save(fh)?;
        self.frame_cycles.save(fh)?;
        self.scanline.save(fh)?;
        self.scanline_phase.save(fh)?;
        self.nmi_pending.save(fh)?;
        self.vram.save(fh)?;
        self.regs.save(fh)?;
        self.oamdata.save(fh)?;
        self.frame.save(fh)?;
        self.frame_complete.save(fh)?;
        self.ntsc_video.save(fh)?;
        self.nes_format.save(fh)?;
        self.clock_remainder.save(fh)?;
        // Ignore
        // debug
        // nt_scanline
        // pat_scanline
        // nametables
        // nametable_ids
        // pattern_tables
        // palette
        // palette_ids
        Ok(())
    }
    fn load<F: Read>(&mut self, fh: &mut F) -> NesResult<()> {
        self.cycle.load(fh)?;
        self.cycle_count.load(fh)?;
        self.frame_cycles.load(fh)?;
        self.scanline.load(fh)?;
        self.scanline_phase.load(fh)?;
        self.nmi_pending.load(fh)?;
        self.vram.load(fh)?;
        self.regs.load(fh)?;
        self.oamdata.load(fh)?;
        self.frame.load(fh)?;
        self.frame_complete.load(fh)?;
        self.ntsc_video.load(fh)?;
        self.nes_format.load(fh)?;
        self.clock_remainder.load(fh)?;
        Ok(())
    }
}

impl Default for Ppu {
    fn default() -> Self {
        Self::new()
    }
}

impl fmt::Debug for Ppu {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Ppu {{ }}")
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::mapper;

    #[test]
    fn ppu_scrolling_registers() {
        let mut ppu = Ppu::new();
        let mut mapper = Box::new(mapper::null());
        ppu.load_mapper(&mut mapper);
        while ppu.cycle_count < POWER_ON_CYCLES {
            ppu.clock();
        }

        let ppuctrl = 0x2000;
        let ppustatus = 0x2002;
        let ppuscroll = 0x2005;
        let ppuaddr = 0x2006;

        // Test write to ppuctrl
        let ctrl_write: Byte = 0b11; // Write two 1 bits
        let t_result: Addr = 0b11 << 10; // Make sure they're in the NN place of t
        ppu.write(ppuctrl, ctrl_write);
        assert_eq!(ppu.regs.t, t_result);
        assert_eq!(ppu.regs.v, 0);

        // Test read to ppustatus
        ppu.read(ppustatus);
        assert_eq!(ppu.regs.w, false);

        // Test 1st write to ppuscroll
        let scroll_write: Byte = 0b0111_1101;
        let t_result: Addr = 0b000_11_00000_01111;
        let x_result: Addr = 0b101;
        ppu.write(ppuscroll, scroll_write);
        assert_eq!(ppu.regs.t, t_result);
        assert_eq!(ppu.regs.x, x_result);
        assert_eq!(ppu.regs.w, true);

        // Test 2nd write to ppuscroll
        let scroll_write: Byte = 0b0101_1110;
        let t_result: Addr = 0b110_11_01011_01111;
        ppu.write(ppuscroll, scroll_write);
        assert_eq!(ppu.regs.t, t_result);
        assert_eq!(ppu.regs.x, x_result);
        assert_eq!(ppu.regs.w, false);

        // Test 1st write to ppuaddr
        let addr_write: Byte = 0b0011_1101;
        let t_result: Addr = 0b011_11_01011_01111;
        ppu.write(ppuaddr, addr_write);
        assert_eq!(ppu.regs.t, t_result);
        assert_eq!(ppu.regs.x, x_result);
        assert_eq!(ppu.regs.w, true);

        // Test 2nd write to ppuaddr
        let addr_write: Byte = 0b1111_0000;
        let t_result: Addr = 0b011_11_01111_10000;
        ppu.write(ppuaddr, addr_write);
        assert_eq!(ppu.regs.t, t_result);
        assert_eq!(ppu.regs.v, t_result);
        assert_eq!(ppu.regs.x, x_result);
        assert_eq!(ppu.regs.w, false);

        // Test a 2006/2005/2005/2006 write
        // http://forums.nesdev.com/viewtopic.php?p=78593#p78593
        ppu.write(ppuaddr, 0b0000_1000); // nametable select $10
        ppu.write(ppuscroll, 0b0100_0101); // $01 hi bits coarse Y scroll, $101 fine Y scroll
        ppu.write(ppuscroll, 0b0000_0011); // $011 fine X scroll
        ppu.write(ppuaddr, 0b1001_0110); // $100 lo bits coarse Y scroll, $10110 coarse X scroll
        let t_result: Addr = 0b101_10_01100_10110;
        assert_eq!(ppu.regs.v, t_result);
    }
}