# Tensorrs<img alt="LOGO" height="25" src="./assets/tensorsLogo.svg" width="25"/>
**Tensorrs** is a lightweight machine learning library written in Rust.
It provides a simple and efficient way to build and train neural networks with minimal dependencies.
## Alpha Notice
**Tensorrs is currently in alpha version.**
The API is unstable — function names, argument types, and behaviors may change at any time.
Use at your own risk and pin exact versions if needed.
## Dependencies
Tensorrs uses the following crates:
- [`rayon`](https://crates.io/crates/rayon) — for parallel CPU computations
- [`rand`](https://crates.io/crates/rand) — for random number generation
- [`serde`](https://crates.io/crates/serde) — for model serialization
- [`serde_json`](https://crates.io/crates/serde_json) — for model deserialization
## Installation
Add `tensorrs` to your project from [crates.io](https://crates.io/crates/tensorrs):
```toml
[dependencies]
tensorrs = "0.2.0"
```
## Example Usage
```rust
use tensorrs::activation::{Function, Sigmoid};
use tensorrs::{DataType, matrix};
use tensorrs::linalg::Matrix;
use tensorrs::loss::SSE;
use tensorrs::nn::{Linear, Sequential};
use tensorrs::optim::Adam;
// simple xor gate realization
fn main() {
//input data
let input = matrix![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
//output data
let output = matrix![[0.0], [1.0], [1.0], [0.0]];
// architecture of neural network
let layers: Vec<Box<dyn Function<f32>>> = vec![
Box::new(Linear::new(2, 2, true)),
Box::new(Sigmoid::new()),
Box::new(Linear::new(2, 1, true)),
Box::new(Sigmoid::new())
];
let mut optim = Adam::new(0.02f32, &layers);
let mut model = Sequential::new(layers);
let loss = SSE::new(DataType::f32());
let mut loss_num = 100f32;
println!("Initial output: {}", model.forward(input.clone()));
for i in 0..10000 {
if loss_num < 0.001 {
println!("i: {} LOSS: {}", i, loss_num);
break;
}
loss_num = model.train(
input.clone(),
output.clone(),
&mut optim,
&loss
);
if i % 1000 == 0 {
println!("Loss at iteration {}: {}", i, loss_num);
}
}
println!("Final output: {}", model.forward(input));
}
```
## Contributing
If you'd like to contribute to Tensors, please follow these steps:
1. Fork the repository.
2. Create a new branch for your feature or bugfix.
3. Submit a pull request with a detailed description of your changes.
See [CONTRIBUTING](assets/CONTRIBUTING.md) for more details
## License
Tensors is licensed under the MIT License. See [LICENSE](assets/LICENSE) for more details.
KOT
```
|\'/-..--.
/ _ _ , ;
`~=`Y'~_<._./
<`-....__.'
```