tensorlogic-oxirs-bridge
Lightweight RDF/SHACL → TensorLogic integration using oxrdf.
Overview
Bridges semantic web technologies (RDF, RDFS, OWL, SHACL) with TensorLogic tensor-based reasoning:
- RDF Schema → SymbolTable: Extract domains (classes) and predicates (properties)
- SHACL → TLExpr: Compile constraints to logical rules (future)
- Provenance Tracking: Map RDF entities to tensor indices with RDF*
Quick Start
use SchemaAnalyzer;
let mut analyzer = new;
// Load RDF schema in Turtle format
analyzer.load_turtle?;
// Analyze schema
analyzer.analyze?;
// Convert to SymbolTable
let table = analyzer.to_symbol_table?;
assert_eq!;
assert_eq!;
Key Features
- ✅ Lightweight: Uses oxrdf (no heavy oxirs-core dependencies)
- ✅ Turtle Parser: Load RDF schemas from Turtle files
- ✅ Multiple Formats: N-Triples and JSON-LD serialization support
- ✅ Class Extraction: RDF classes → TensorLogic domains
- ✅ Property Extraction: RDF properties → TensorLogic predicates
- ✅ Provenance Tracking: Bidirectional entity ↔ tensor mapping
- ✅ RDF Export*: Generate provenance statements with metadata
- ✅ SHACL Support: Advanced constraint compilation with 15+ constraint types
- ✅ GraphQL Integration: Convert GraphQL schemas to TensorLogic symbol tables
- ✅ SPARQL 1.1 Compilation: Comprehensive query support (SELECT, ASK, DESCRIBE, CONSTRUCT) with OPTIONAL, UNION patterns
- ✅ OWL Reasoning: RDFS/OWL inference with class hierarchies and property characteristics
- ✅ Validation Reports: SHACL-compliant validation report generation with Turtle/JSON export
- ✅ 9 Examples: Comprehensive examples demonstrating all major features
Architecture
RDF Schema (Turtle)
↓ [oxttl parser]
oxrdf::Graph
↓ [SchemaAnalyzer]
Extract: Classes, Properties, Domains, Ranges
↓
SymbolTable (tensorlogic-adapters)
↓
Compiler → Tensors → Backend
↑
ProvenanceTracker
↓
RDF* / JSON provenance export
Provenance Tracking
Track tensor computations back to RDF entities:
use ProvenanceTracker;
let mut tracker = new;
// Track entity-to-tensor mappings
tracker.track_entity;
tracker.track_entity;
// Track rule-to-shape mappings
tracker.track_shape;
// Export as RDF* (quoted triples)
let rdf_star = tracker.to_rdf_star;
// << <http://example.org/Person> <http://tensorlogic.org/tensor> "0" >>
// <http://tensorlogic.org/computedBy> <http://tensorlogic.org/engine> .
// Export as JSON
let json = tracker.to_json?;
Schema Analysis
The SchemaAnalyzer extracts semantic information from RDF:
let mut analyzer = new;
analyzer.load_turtle?;
analyzer.analyze?;
// Access extracted classes
for in &analyzer.classes
// Access extracted properties
for in &analyzer.properties
IRI Handling
Convert IRIs to local names automatically:
use SchemaAnalyzer;
assert_eq!;
assert_eq!;
SHACL Support
Compile SHACL shapes to TLExpr rules:
use ShaclConverter;
let converter = new;
let rules = converter.convert_to_rules?;
Supported SHACL Constraints
Cardinality Constraints:
sh:minCount N→ ∃y. property(x, y) (at least N values)sh:maxCount 1→ Uniqueness constraint (at most one value)
Value Constraints:
sh:class C→ property(x, y) → hasType(y, C)sh:datatype D→ property(x, y) → hasDatatype(y, D)sh:pattern P→ property(x, y) → matchesPattern(y, P)sh:minLength N→ property(x, y) → lengthAtLeast(y, N)sh:maxLength N→ property(x, y) → lengthAtMost(y, N)sh:minInclusive N→ property(x, y) → greaterOrEqual(y, N)sh:maxInclusive N→ property(x, y) → lessOrEqual(y, N)sh:in (v1 v2 v3)→ property(x, y) → (y = v1 ∨ y = v2 ∨ y = v3)
Logical Constraints:
sh:and (S1 S2)→ All shapes must be satisfied (conjunction)sh:or (S1 S2)→ At least one shape must be satisfied (disjunction)sh:not S→ Shape must not be satisfied (negation)sh:xone (S1 S2)→ Exactly one shape must be satisfied (exclusive-or)
Shape References:
sh:node S→ property(x, y) → nodeConformsTo(y, S)
Example:
let shacl_turtle = r#"
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix ex: <http://example.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ex:PersonShape a sh:NodeShape ;
sh:targetClass ex:Person ;
sh:property [
sh:path ex:age ;
sh:datatype xsd:integer ;
sh:minInclusive 0 ;
sh:maxInclusive 150 ;
] ;
sh:property [
sh:path ex:email ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:pattern "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$" ;
] .
"#;
let symbol_table = new;
let converter = new;
let rules = converter.convert_to_rules?;
// Generates 5 TLExpr rules:
// 1. age constraint: hasDatatype(y, integer)
// 2. age constraint: greaterOrEqual(y, 0)
// 3. age constraint: lessOrEqual(y, 150)
// 4. email constraint: minCount (EXISTS quantifier)
// 5. email constraint: maxCount (uniqueness)
// 6. email constraint: pattern matching
GraphQL Integration
Convert GraphQL schemas to TensorLogic symbol tables:
use GraphQLConverter;
let schema = r#"
type Person {
id: ID!
name: String!
age: Int
friends: [Person!]
}
type Book {
title: String!
author: Person!
isbn: String
}
type Query {
person(id: ID!): Person
books: [Book!]
}
"#;
let mut converter = new;
let symbol_table = converter.parse_schema?;
// Generates:
// - Domains: Person, Book, String, Int, ID, etc.
// - Predicates: Person_name, Person_age, Book_title, Book_author, etc.
GraphQL Features
- Type Definitions: GraphQL types → TensorLogic domains
- Field Definitions: GraphQL fields → TensorLogic predicates
- Scalar Types: Built-in scalars (String, Int, Float, Boolean, ID)
- List Types: Array field support with
[Type]syntax - Required Fields: Non-null type support with
!syntax - Special Types: Automatic filtering of Query, Mutation, Subscription types
SHACL Validation Reports
Generate SHACL-compliant validation reports from tensor computations:
use ;
let validator = new;
// Validate specific constraints
if let Some = validator.validate_min_count
// Build a complete validation report
let mut report = new;
report.add_result;
// Export as Turtle (SHACL-compliant RDF)
let turtle = report.to_turtle;
// Export as JSON
let json = report.to_json?;
// Get summary
println!;
// Output: "Validation Report: VIOLATIONS - 1 violations, 0 warnings, 0 infos"
Validation Features
- SHACL-Compliant Reports: Generate validation reports conforming to W3C SHACL spec
- Multiple Severity Levels: Violation, Warning, Info
- Rich Result Details: Focus node, result path, value, source shape, constraint component
- Export Formats: Turtle (RDF), JSON
- Constraint Validators: Pre-built validators for minCount, maxCount, datatype, pattern, etc.
- Report Statistics: Track violations, warnings, checked shapes and constraints
Example: End-to-End Validation Pipeline
See examples/validation_pipeline.rs for a complete example that demonstrates:
- Loading RDF schema
- Parsing SHACL constraints
- Converting to TensorLogic rules
- Generating validation reports
- Exporting results in multiple formats
Design Decision: Lightweight oxrdf
This crate uses oxrdf + oxttl instead of full oxirs-core to avoid:
- Heavy build times (COOLJAPAN ecosystem builds are already slow)
- Complex transitive dependencies
- Memory overhead during compilation
For full SPARQL/federation/GraphQL support, use oxirs-core directly.
Testing
# 167 tests, all passing, zero warnings
Key test categories:
- RDF Schema Tests (7 tests): Schema parsing, class/property extraction, IRI handling
- N-Triples Tests (6 tests): Export, import, roundtrip, escaping
- JSON-LD Tests (11 tests): Export, context management, IRI compaction, namespace detection
- SHACL Tests (17 tests): All constraint types, logical combinations, complex shapes
- GraphQL Tests (7 tests): Type parsing, field extraction, scalar handling
- SPARQL 1.1 Tests (24 tests): Query types (SELECT/ASK/DESCRIBE/CONSTRUCT), OPTIONAL/UNION patterns, filter conditions, solution modifiers
- Validation Tests (10 tests): Report generation, severity levels, export formats
- RDF Tests* (18 tests): Provenance tracking, metadata, statistics
- OWL Tests (18 tests): Class hierarchies, property characteristics, restrictions
- Inference Tests (13 tests): RDFS reasoning, transitive closure
Notable tests:
test_schema_analyzer_with_simple_rdf: End-to-end RDF parsingtest_complex_combined_constraints: Multiple SHACL constraints in one shapetest_compile_union_pattern: SPARQL UNION pattern compilationtest_compile_optional_pattern: SPARQL OPTIONAL pattern compilationtest_parse_construct_query: SPARQL CONSTRUCT query parsingtest_complex_query_with_optional_and_filter: Complex SPARQL with multiple featurestest_roundtrip_ntriples: N-Triples export and importtest_to_jsonld_with_custom_context: JSON-LD context managementtest_complex_provenance_scenario: RDF* metadata trackingtest_complex_hierarchy_with_multiple_inheritance: OWL reasoning
Integration Example
See examples/03_rdf_integration/ (after compiler fixes complete):
// 1. Load RDF schema
let mut analyzer = new;
analyzer.load_turtle?;
// 2. Convert to SymbolTable
let table = analyzer.to_symbol_table?;
// 3. Define TLExpr rules
let rule = imply;
// 4. Compile to tensors
let graph = compile_to_einsum?;
// 5. Execute with SciRS2
let executor = new;
let outputs = executor.execute?;
// 6. Track provenance
let provenance = tracker.to_rdf_star;
Examples
The crate includes 9 comprehensive examples demonstrating different features:
# 1. Basic RDF schema analysis
# 2. SHACL constraints to TensorLogic rules
# 3. OWL reasoning and inference
# 4. GraphQL schema integration
# 5. RDF* provenance tracking
# 6. Complete validation pipeline
# 7. JSON-LD export
# 8. Performance features (caching, indexing, metadata)
# 9. Advanced SPARQL 1.1 queries (NEW!)
SPARQL 1.1 Support
Comprehensive SPARQL 1.1 query compilation to TensorLogic operations:
use SparqlCompiler;
let mut compiler = new;
compiler.add_predicate_mapping;
// SELECT query with OPTIONAL and FILTER
let query = r#"
SELECT DISTINCT ?x ?y WHERE {
?x <http://example.org/knows> ?y .
OPTIONAL { ?x <http://example.org/age> ?age }
FILTER(?x > 18)
} LIMIT 100 ORDER BY ?y
"#;
let sparql_query = compiler.parse_query?;
let tl_expr = compiler.compile_to_tensorlogic?;
// ASK query (boolean existence check)
let ask_query = r#"
ASK WHERE {
?x <http://example.org/knows> ?y .
}
"#;
// CONSTRUCT query (graph construction)
let construct_query = r#"
CONSTRUCT { ?x <http://example.org/friend> ?y }
WHERE { ?x <http://example.org/knows> ?y }
"#;
// DESCRIBE query (resource description)
let describe_query = r#"
DESCRIBE ?x WHERE {
?x <http://example.org/type> <http://example.org/Person> .
}
"#;
Supported SPARQL 1.1 features:
Query Types:
- ✅ SELECT queries (with DISTINCT, LIMIT, OFFSET, ORDER BY)
- ✅ ASK queries (boolean existence checks)
- ✅ DESCRIBE queries (resource descriptions)
- ✅ CONSTRUCT queries (RDF graph construction)
Graph Patterns:
- ✅ Triple patterns with variables and IRIs
- ✅ Multiple patterns combined with AND
- ✅ OPTIONAL patterns (left-outer join semantics)
- ✅ UNION patterns (disjunction)
- ✅ Nested graph patterns with braces
Filter Conditions:
- ✅ Comparison operators:
>,<,>=,<=,=,!= - ✅ BOUND(?var) - check if variable is bound
- ✅ isIRI(?var) / isURI(?var) - check if value is IRI
- ✅ isLiteral(?var) - check if value is literal
- ✅ regex(?var, "pattern") - regular expression matching
Solution Modifiers:
- ✅ DISTINCT - remove duplicate solutions
- ✅ LIMIT N - limit number of results
- ✅ OFFSET N - skip first N results
- ✅ ORDER BY ?var - sort results
Planned (FUTURE):
- ⏳ FILTER advanced functions (str, lang, datatype, etc.)
- ⏳ Property paths (e.g.,
?x foaf:knows+ ?y) - ⏳ GRAPH patterns for named graphs
- ⏳ BIND and VALUES clauses
- ⏳ Aggregates (COUNT, SUM, AVG, etc.)
- ⏳ Subqueries
N-Triples Support
Export and import RDF data in N-Triples format:
use SchemaAnalyzer;
let mut analyzer = new;
analyzer.load_turtle?;
analyzer.analyze?;
// Export to N-Triples
let ntriples = analyzer.to_ntriples;
println!;
// Import from N-Triples
let mut analyzer2 = new;
analyzer2.load_ntriples?;
analyzer2.analyze?;
JSON-LD Support
Full bidirectional JSON-LD support for web integration:
Export to JSON-LD
use ;
let mut analyzer = new;
analyzer.load_turtle?;
analyzer.analyze?;
// Export with default context
let jsonld = analyzer.to_jsonld?;
println!;
// Export with custom context
let mut context = new;
context.add_prefix;
let jsonld_custom = analyzer.to_jsonld_with_context?;
Import from JSON-LD
use SchemaAnalyzer;
let jsonld = r#"{
"@context": {
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"ex": "http://example.org/"
},
"@graph": [
{
"@id": "ex:Person",
"@type": "rdfs:Class",
"rdfs:label": "Person",
"rdfs:comment": "A human being"
}
]
}"#;
let mut analyzer = new;
analyzer.load_jsonld?;
analyzer.analyze?;
JSON-LD features:
- @context: Namespace prefixes and type coercion
- @graph: Multiple resources in one document
- IRI Compaction/Expansion: Automatic namespace handling
- Language Tags: Support for multilingual literals
- Roundtrip Conversion: Export and import with full fidelity
- Valid JSON: Compatible with standard JSON parsers
- Web-friendly: Integrates with REST APIs and JavaScript
Limitations
Current limitations:
- SPARQL: Advanced features not yet implemented (property paths, aggregates, subqueries)
- N-Triples: Simplified parser, doesn't handle all edge cases
- GraphQL parsing is simplified (use dedicated parser for production)
- RDF list parsing may not work with all Turtle variants
Planned features (FUTURE):
- ⏳ SPARQL property paths (e.g.,
?x foaf:knows+ ?y) - ⏳ SPARQL aggregates (COUNT, SUM, AVG, etc.) and GROUP BY
- ⏳ SPARQL BIND and VALUES clauses
- ⏳ SPARQL subqueries and named graphs
- ⏳ GraphQL directives → constraint rules
- ⏳ GraphQL interfaces → domain hierarchies
- ⏳ RDF/XML format support
- ⏳ N-Quads support
License
Apache-2.0
Part of the TensorLogic ecosystem: tensorlogic
Status: 🎉 Production Ready (v0.1.0-beta.1) Last Updated: 2025-01-17 (Session 8) Tests: 167/167 passing (100%) Examples: 9 comprehensive examples Features: Full SPARQL 1.1 query support (SELECT/ASK/DESCRIBE/CONSTRUCT + OPTIONAL/UNION) Part of: TensorLogic Ecosystem