1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
//! # tensorgraph-math
//! Mathematics primitives used by tensorgraph.
//! Builds upon [tensorgraph-sys](https://docs.rs/tensorgraph-sys/latest/tensorgraph_sys/)
//! to support many BLAS backends and devices.
//!
//! ## Basic example using openblas:
//!
//! Enable features in the Cargo.toml:
//! ```toml
//! tensorgraph-math = { version = "LATEST_VERSION", features = ["openblas"] }
//! ```
//!
//! ```
//! use tensorgraph_math::{tensor::Tensor, sys::View};
//!
//! // 0 1
//! // A = 2 3
//! // 4 5
//!
//! // B = 0 1
//! // 2 3
//!
//! // column major (read each column first)
//! let a = [0., 2., 4., 1., 3., 5.];
//! let b = [0., 2., 1., 3.];
//!
//! let a = Tensor::from_shape([3, 2], a); // 3 rows x 2 cols
//! let b = Tensor::from_shape([2, 2], b); // 2 rows x 2 cols
//!
//! // 2 3
//! // C = AB = 6 11
//! // 10 19
//!
//! let c = a.matmul(b.view());
//! assert_eq!(c.into_inner().into_std(), [2., 6., 10., 3., 11., 19.]);
//! ```
//!
//! ## Intermediate example using cublas globals and openblas together:
//!
//! Enable features in the Cargo.toml:
//! ```toml
//! tensorgraph-math = { version = "LATEST_VERSION", features = ["openblas", "cublas"] }
//! ```
//!
//! ```
//! use tensorgraph_math::{
//! blas::{DefaultBLASContext, cublas::CublasContext, BLAS},
//! sys::{
//! device::{DefaultDeviceAllocator, cuda::{Context, Cuda, Stream}, cpu::Cpu},
//! DefaultVec, View,
//! },
//! tensor::Tensor,
//! };
//!
//! fn main() {
//! // init cuda context
//! let cuda_ctx = Context::quick_init().unwrap();
//!
//! // create cuda stream and configure it as the global
//! let stream = Stream::new(&cuda_ctx).unwrap();
//! let _handle = stream.as_global();
//!
//! // create cublas context, with the provided stream, and configure it as the global
//! let cublas_ctx = CublasContext::new();
//! let _handle = cublas_ctx.with_stream(Some(&stream)).as_global();
//!
//! // cublas is the default BLAS implementation for CUDA when the feature is enabled
//! run::<Cuda>();
//!
//! // openblas is the default BLAS implemenetation for CPU when the feature is enabled
//! run::<Cpu>();
//! }
//!
//! /// Generic code that runs on the specified device
//! /// using that devices default allocator and BLAS provider
//! fn run<D: DefaultDeviceAllocator + DefaultBLASContext>()
//! where
//! f32: BLAS<D::Context>,
//! {
//! // 0 1
//! // A = 2 3
//! // 4 5
//!
//! // B = 0 1
//! // 2 3
//!
//! // column major (read each column first)
//! let a = DefaultVec::<f32, D>::copy_from_host(&[0., 2., 4., 1., 3., 5.]);
//! let b = DefaultVec::<f32, D>::copy_from_host(&[0., 2., 1., 3.]);
//!
//! let a = Tensor::from_shape([3, 2], a); // 3 rows x 2 cols
//! let b = Tensor::from_shape([2, 2], b); // 2 rows x 2 cols
//!
//! // 2 3
//! // C = AB = 6 11
//! // 10 19
//!
//! let c = a.matmul(b.view());
//!
//! let mut out = [0.; 6];
//! c.into_inner().copy_to_host(&mut out);
//! assert_eq!(out, [2., 6., 10., 3., 11., 19.]);
//! }
//! ```
//!
//! ## Advanced example using openblas and cublas by passing blas contexts and allocators:
//!
//! Enable features in the Cargo.toml:
//! ```toml
//! tensorgraph-math = { version = "LATEST_VERSION", features = ["openblas", "cublas"] }
//! ```
//!
//! ```
//! #![feature(allocator_api)]
//! use std::{alloc::Global, ops::Deref};
//! use tensorgraph_math::{
//! blas::{BLASContext, cublas::{CublasContext}, BLAS},
//! sys::{
//! device::{cuda::{Context, Cuda, Stream}, cpu::Cpu, Device, DeviceAllocator},
//! Vec, View,
//! },
//! tensor::Tensor,
//! };
//!
//! fn main() {
//! // init cuda context
//! let cuda_ctx = Context::quick_init().unwrap();
//!
//! // create cuda stream
//! let stream = Stream::new(&cuda_ctx).unwrap();
//!
//! // create cublas context, with the provided stream
//! let cublas_ctx = CublasContext::new();
//! let cublas_ctx = cublas_ctx.with_stream(Some(&stream));
//!
//! // run using the CUDA stream as the allocator, and cublas
//! // as the BLAS provider
//! run(cublas_ctx, stream.deref());
//!
//! // run using the CPU default BLAS and Global allocator
//! run((), Global);
//! }
//!
//! fn run<C: BLASContext, A: DeviceAllocator<Device = C::Device> + Copy>(ctx: C, alloc: A)
//! where
//! f32: BLAS<C>,
//! {
//! // 0 1
//! // A = 2 3
//! // 4 5
//!
//! // B = 0 1
//! // 2 3
//!
//! // column major (read each column first)
//! let a = Vec::copy_from_host_in(&[0., 2., 4., 1., 3., 5.], alloc);
//! let b = Vec::copy_from_host_in(&[0., 2., 1., 3.0_f32], alloc);
//!
//! let a = Tensor::from_shape([3, 2], a); // 3 rows x 2 cols
//! let b = Tensor::from_shape([2, 2], b); // 2 rows x 2 cols
//!
//! // 2 3
//! // C = AB = 6 11
//! // 10 19
//!
//! let c = a.matmul_into(b.view(), ctx, alloc);
//!
//! let mut out = [0.; 6];
//! c.into_inner().copy_to_host(&mut out);
//! assert_eq!(out, [2., 6., 10., 3., 11., 19.]);
//! }
//! ```
pub use tensorgraph_sys as sys;
/// Traits and implementations of BLAS providers
/// Traits and implementations for basic dimension types
/// Traits and implementations for basic storage buffers
/// Implementations for tensor operations and structures