tenflowers 0.1.0-beta.1

Pure Rust implementation of TensorFlow - A comprehensive deep learning framework
Documentation
# TenfloweRS

[![Crates.io](https://img.shields.io/crates/v/tenflowers.svg)](https://crates.io/crates/tenflowers)
[![Documentation](https://docs.rs/tenflowers/badge.svg)](https://docs.rs/tenflowers)
[![License](https://img.shields.io/badge/license-Apache--2.0-blue.svg)](../README.md#license)
[![Rust](https://img.shields.io/badge/rust-1.70%2B-orange.svg)](https://www.rust-lang.org)

A pure Rust implementation of TensorFlow, providing a comprehensive deep learning framework with Rust's safety and performance guarantees.

## Overview

TenfloweRS is the main convenience crate that re-exports all TenfloweRS subcrates, providing a unified API for deep learning in Rust. Built on the robust [SciRS2](https://github.com/cool-japan/scirs) ecosystem, it offers:

- **Production-Ready**: Full-featured neural networks, training, and deployment
- **High Performance**: GPU acceleration, SIMD optimization, mixed precision
- **Type Safety**: Rust's type system prevents common ML bugs at compile time
- **Cross-Platform**: CPU, GPU (CUDA, Metal, Vulkan), and WebGPU support
- **Ecosystem Integration**: Seamless integration with SciRS2, NumRS2, and OptiRS

## Quick Start

Add TenfloweRS to your `Cargo.toml`:

```toml
[dependencies]
tenflowers = "0.1.0-beta.1"
```

### Basic Example

```rust
use tenflowers::prelude::*;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create tensors
    let a = Tensor::<f32>::zeros(&[2, 3]);
    let b = Tensor::<f32>::ones(&[2, 3]);

    // Arithmetic operations
    let c = ops::add(&a, &b)?;

    // Matrix multiplication
    let x = Tensor::<f32>::ones(&[2, 3]);
    let y = Tensor::<f32>::ones(&[3, 4]);
    let z = ops::matmul(&x, &y)?;

    Ok(())
}
```

### Build a Neural Network

```rust
use tenflowers::prelude::*;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create a simple feedforward network
    let mut model = Sequential::new();
    model.add(Dense::new(784, 128)?);
    model.add_activation(ActivationFunction::ReLU);
    model.add(Dense::new(128, 10)?);
    model.add_activation(ActivationFunction::Softmax);

    // Forward pass
    let input = Tensor::zeros(&[32, 784]);
    let output = model.forward(&input)?;

    Ok(())
}
```

### Train a Model

```rust
use tenflowers::prelude::*;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let mut model = Sequential::new();
    model.add(Dense::new(10, 64)?);
    model.add(Dense::new(64, 3)?);

    let x_train = Tensor::zeros(&[100, 10]);
    let y_train = Tensor::zeros(&[100, 3]);

    // Quick training
    let results = quick_train(
        model,
        &x_train,
        &y_train,
        Box::new(SGD::new(0.01)),
        categorical_cross_entropy,
        10,  // epochs
        32,  // batch_size
    )?;

    Ok(())
}
```

## Features

TenfloweRS provides several optional features:

### Default Features
- `std`: Standard library support
- `parallel`: Parallel execution via Rayon

### GPU Acceleration
- `gpu`: GPU acceleration via WGPU (Metal, Vulkan, DirectX, WebGPU)
- `cuda`: CUDA support (Linux/Windows only)
- `cudnn`: cuDNN support (requires CUDA)
- `opencl`: OpenCL support
- `metal`: Metal support (macOS only)
- `rocm`: ROCm support (AMD GPUs)
- `nccl`: NCCL for distributed GPU training

### BLAS Acceleration
- `blas`: Generic BLAS support
- `blas-openblas`: OpenBLAS acceleration
- `blas-mkl`: Intel MKL acceleration
- `blas-accelerate`: Apple Accelerate framework (macOS only)

### Performance & Optimization
- `simd`: SIMD vectorization optimizations

### Serialization & I/O
- `serialize`: Serialization support (JSON, MessagePack)
- `compression`: Compression support for checkpoints
- `onnx`: ONNX model import/export

### Platform Support
- `wasm`: WebAssembly support

### Development
- `autograd`: Automatic differentiation support
- `benchmark`: Benchmarking utilities

### Language Bindings
- `python`: Python bindings via PyO3 ⚠️ Temporarily excluded in beta.1 (requires Python environment)

### Convenience
- `full`: Enable most features (gpu, blas-openblas, simd, serialize, compression, onnx, autograd)

### Enable GPU Support

```toml
[dependencies]
tenflowers = { version = "0.1.0-beta.1", features = ["gpu"] }
```

### Enable All Features

```toml
[dependencies]
tenflowers = { version = "0.1.0-beta.1", features = ["full"] }
```

## Architecture

TenfloweRS is organized into focused subcrates:

- **[tenflowers-core]../crates/tenflowers-core**: Core tensor operations and device management
- **[tenflowers-autograd]../crates/tenflowers-autograd**: Automatic differentiation engine
- **[tenflowers-neural]../crates/tenflowers-neural**: Neural network layers and models
- **[tenflowers-dataset]../crates/tenflowers-dataset**: Data loading and preprocessing
- **[tenflowers-ffi]../crates/tenflowers-ffi**: Python bindings (optional)

This meta crate re-exports all public APIs for convenience.

## SciRS2 Integration

TenfloweRS is built on the SciRS2 scientific computing ecosystem:

```
TenfloweRS (Deep Learning Framework - TensorFlow-compatible API)
    ↓ builds upon
OptiRS (ML Optimization Specialization)
    ↓ builds upon
SciRS2 (Scientific Computing Foundation)
    ↓ builds upon
ndarray, num-traits, etc. (Core Rust Scientific Stack)
```

This architecture provides:
- Advanced numerical operations via `scirs2-core`
- Automatic differentiation via `scirs2-autograd`
- Neural network abstractions via `scirs2-neural`
- Optimized algorithms via `optirs`

## Examples

See the [examples](../examples) directory for more comprehensive examples:

- [MNIST Classification]../examples/mnist.rs
- [Custom Layers]../examples/custom_layer.rs
- [GPU Acceleration]../examples/gpu_demo.rs
- [Advanced Training]../examples/advanced_training.rs

## Documentation

- [API Documentation]https://docs.rs/tenflowers
- [Architecture Guide]../ARCHITECTURE.md
- [Performance Tuning]../PERFORMANCE_TUNING.md
- [Capabilities Overview]../CAPABILITIES.md

## Contributing

Contributions are welcome! Please see [CONTRIBUTING.md](../CONTRIBUTING.md) for guidelines.

## License

Licensed under the Apache License, Version 2.0 ([LICENSE](../LICENSE) or http://www.apache.org/licenses/LICENSE-2.0).

## Status

TenfloweRS is currently in beta (v0.1.0-beta.1). The core API is stabilizing for 1.0 release. All 2357 tests passing, zero security vulnerabilities.

## Links

- [GitHub Repository]https://github.com/cool-japan/tenflowers
- [Issue Tracker]https://github.com/cool-japan/tenflowers/issues
- [SciRS2 Project]https://github.com/cool-japan/scirs
- [NumRS2 Project]https://github.com/cool-japan/numrs
- [OptiRS Project]https://github.com/cool-japan/optirs