1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
mod slot_stack;
mod bulk_delete;
mod unsafe_stack;
mod base_repr;
mod node;
pub mod util;
pub mod drivers;
pub mod sink;
pub use self::slot_stack::*;
pub use self::bulk_delete::*;
pub use self::unsafe_stack::*;
pub use self::drivers::*;
pub use self::base_repr::*;
pub use self::node::*;
use std::ptr;
pub trait Sink<T> {
fn consume(&mut self, x: T);
}
pub trait TeardownTreeRefill {
fn refill(&mut self, master: &Self);
}
impl<N: Node> TeardownTreeRefill for TreeRepr<N> where N::K: Copy, N::V: Copy {
fn refill(&mut self, master: &TreeRepr<N>) {
let len = self.data.len();
debug_assert!(len == master.data.len());
unsafe {
ptr::copy_nonoverlapping(master.data.as_ptr(), self.data.as_mut_ptr(), len);
ptr::copy_nonoverlapping(master.mask.as_ptr(), self.mask.as_mut_ptr(), len);
}
self.size = master.size;
}
}
#[inline(always)]
pub fn parenti(idx: usize) -> usize {
(idx-1) >> 1
}
#[inline(always)]
pub fn lefti(idx: usize) -> usize {
(idx<<1) + 1
}
#[inline(always)]
pub fn righti(idx: usize) -> usize {
(idx<<1) + 2
}
pub trait ItemFilter<K: Key> {
#[inline(always)] fn accept(&mut self, key: &K) -> bool;
#[inline(always)] fn is_noop() -> bool {
false
}
}
#[derive(Clone, Debug)]
pub struct NoopFilter;
impl<K: Key> ItemFilter<K> for NoopFilter {
#[inline(always)] fn accept(&mut self, _: &K) -> bool { true }
#[inline(always)] fn is_noop() -> bool { true }
}
#[cfg(test)]
pub mod validation {
use rand::{Rng, XorShiftRng};
use std::fmt::Debug;
use base::{Key, TreeRepr, Node, lefti, righti, parenti};
type Tree<N> = TreeRepr<N>;
pub fn check_bst<'a, N: Node>(tree: &'a Tree<N>, idx: usize) -> Result<Option<(&'a N::K, &'a N::K)>, (usize, N::K, N::K)> {
let node = tree.node_opt(idx);
if node.is_none() {
return Ok(None);
} else {
let key = node.unwrap().key();
let left = check_bst(tree, lefti(idx))?;
let right = check_bst(tree, righti(idx))?;
let min =
if let Some((lmin, lmax)) = left {
if key < lmax {
return Err((idx, lmax.clone(), key.clone()))
}
lmin
} else {
key
};
let max =
if let Some((rmin, rmax)) = right {
if rmin < key {
return Err((idx, rmin.clone(), key.clone()))
}
rmax
} else {
key
};
return Ok(Some((min, max)));
}
}
pub fn check_bst_del_range<Flt, N: Node, Search, Out>(search: &Search, tree: &Tree<N>, output: &Out, tree_orig: &Tree<N>, filter: &Flt)
where N: Debug, N::K: Debug, Search: Debug, Out: Debug, Flt: Debug
{
if let Err((idx, maxmin, key)) = check_bst(tree, 0) {
if key < maxmin {
debug_assert!(false, "key<lmax! idx={}, lmax={:?}, key={:?}, search={:?}, filter: {:?}, tree: {:?}, output: {:?}, tree_orig: {:?}, {}", idx, maxmin, key, search, filter, tree, output, tree_orig, tree_orig);
} else {
debug_assert!(false, "rmin<key! idx={}, rmin={:?}, key={:?}, search={:?}, filter: {:?}, tree: {:?}, output: {:?}, tree_orig: {:?}, {}", idx, maxmin, key, search, filter, tree, output, tree_orig, tree_orig);
}
}
}
pub fn check_integrity<N: Node>(tree: &Tree<N>) -> Result<(), isize> {
let mut noccupied = 0;
for i in 0..tree.data.len() {
if tree.mask[i] {
if i != 0 && !tree.mask[parenti(i)] {
return Err(i as isize);
}
noccupied += 1;
}
}
if noccupied == tree.size() {
Ok(())
} else {
Err(0)
}
}
pub fn check_integrity_del_range<Flt, N: Node, Search, Out>(search: &Search, tree: &Tree<N>, output: &Out, tree_orig: &Tree<N>, filter: &Flt)
where Flt: Debug, N: Debug, Search: Debug, Out: Debug
{
if check_integrity(tree).is_err() {
debug_assert!(false, "search={:?}, output={:?}, tree={:?}, flt={:?}, orig={:?}, {}", search, output, tree, filter, tree_orig, tree_orig);
}
}
pub fn gen_tree_keys<T: Key>(items: Vec<T>, rng: &mut XorShiftRng) -> Vec<Option<T>> {
let mut shaped = vec![None; 1 << 18];
gen_subtree_keys(&items, 0, &mut shaped, rng);
let mut items = shaped.into_iter()
.rev()
.skip_while(|opt| opt.is_none())
.collect::<Vec<_>>();
items.reverse();
items
}
fn gen_subtree_keys<T: Key>(items: &[T], idx: usize, output: &mut Vec<Option<T>>, rng: &mut XorShiftRng) {
if items.len() == 0 {
return;
}
if idx >= output.len() {
return;
}
let root = rng.gen_range(0, items.len());
output[idx] = Some(items[root].clone());
gen_subtree_keys(&items[..root], lefti(idx), output, rng);
gen_subtree_keys(&items[root+1..], righti(idx), output, rng);
}
}