tea_rolling/binary.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
use tea_core::prelude::*;
/// Trait for performing rolling binary operations on valid elements in vectors.
///
/// This trait provides methods for calculating rolling covariance and correlation
/// between two vectors of potentially nullable elements.
pub trait RollingValidBinary<T: IsNone>: Vec1View<T> {
/// Calculates the rolling covariance between two vectors.
///
/// # Arguments
///
/// * `other` - The other vector to calculate covariance with.
/// * `window` - The size of the rolling window.
/// * `min_periods` - The minimum number of observations in window required to have a value.
/// * `out` - Optional output buffer to store the results.
///
/// # Returns
///
/// A vector containing the rolling covariance values.
#[no_out]
fn ts_vcov<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> O
where
T::Inner: Number,
T2::Inner: Number,
f64: Cast<U>,
{
let min_periods = min_periods.unwrap_or(window / 2).min(window);
let mut sum_a = 0.;
let mut sum_b = 0.;
let mut sum_ab = 0.;
let mut n = 0;
self.rolling2_apply(
other,
window,
|remove_values, (va, vb)| {
if va.not_none() && vb.not_none() {
n += 1;
let (va, vb) = (va.unwrap().f64(), vb.unwrap().f64());
sum_a += va;
sum_b += vb;
sum_ab += va * vb;
};
let res = if n >= min_periods {
(sum_ab - (sum_a * sum_b) / n.f64()) / (n - 1).f64()
} else {
f64::NAN
};
if let Some((va, vb)) = remove_values {
if va.not_none() && vb.not_none() {
n -= 1;
let (va, vb) = (va.unwrap().f64(), vb.unwrap().f64());
sum_a -= va;
sum_b -= vb;
sum_ab -= va * vb;
};
}
res.cast()
},
out,
)
}
/// Calculates the rolling correlation between two vectors.
///
/// # Arguments
///
/// * `other` - The other vector to calculate correlation with.
/// * `window` - The size of the rolling window.
/// * `min_periods` - The minimum number of observations in window required to have a value.
/// * `out` - Optional output buffer to store the results.
///
/// # Returns
///
/// A vector containing the rolling correlation values.
#[no_out]
fn ts_vcorr<O: Vec1<U>, U, V2: Vec1View<T2>, T2: IsNone>(
&self,
other: &V2,
window: usize,
min_periods: Option<usize>,
out: Option<O::UninitRefMut<'_>>,
) -> O
where
T::Inner: Number,
T2::Inner: Number,
f64: Cast<U>,
{
let mut sum_a = 0.;
let mut sum2_a = 0.;
let mut sum_b = 0.;
let mut sum2_b = 0.;
let mut sum_ab = 0.;
let mut n = 0;
let min_periods = min_periods.unwrap_or(window / 2).min(window);
self.rolling2_apply(
other,
window,
|remove_values, (va, vb)| {
if va.not_none() && vb.not_none() {
n += 1;
let (va, vb) = (va.unwrap().f64(), vb.unwrap().f64());
sum_a += va;
sum2_a += va * va;
sum_b += vb;
sum2_b += vb * vb;
sum_ab += va * vb;
};
let res = if n >= min_periods {
let n_f64 = n.f64();
let mean_a = sum_a / n_f64;
let mut var_a = sum2_a / n_f64;
let mean_b = sum_b / n_f64;
let mut var_b = sum2_b / n_f64;
var_a -= mean_a.powi(2);
var_b -= mean_b.powi(2);
if (var_a > EPS) & (var_b > EPS) {
let exy = sum_ab / n_f64;
let exey = sum_a * sum_b / n_f64.powi(2);
(exy - exey) / (var_a * var_b).sqrt()
} else {
f64::NAN
}
} else {
f64::NAN
};
if let Some((va, vb)) = remove_values {
if va.not_none() && vb.not_none() {
n -= 1;
let (va, vb) = (va.unwrap().f64(), vb.unwrap().f64());
sum_a -= va;
sum2_a -= va * va;
sum_b -= vb;
sum2_b -= vb * vb;
sum_ab -= va * vb;
};
}
res.cast()
},
out,
)
}
}
impl<T: IsNone, I: Vec1View<T>> RollingValidBinary<T> for I {}
#[cfg(test)]
mod tests {
use tea_core::testing::assert_vec1d_equal_numeric;
use super::*;
#[test]
fn test_cov() {
let data = vec![1, 5, 3, 2, 5];
let data2 = vec![2, 5, 4, 3, 6];
let out1: Vec<f64> = data.ts_vcov(&data2, 3, Some(2));
let out2: Vec<f64> = data
.rolling2_custom(&data2, 3, |v1, v2| v1.titer().vcov(v2.titer(), 2), None)
.unwrap();
assert_vec1d_equal_numeric(&out1, &out2, None);
assert_vec1d_equal_numeric(&out1, &vec![f64::NAN, 6., 3., 1.5, 2.333333333333332], None);
}
#[test]
fn test_corr() {
let data = vec![1, 5, 3, 2, 5];
let data2 = vec![2, 5, 4, 3, 6];
let out1: Vec<f64> = data.ts_vcorr(&data2, 3, Some(2));
let out2: Vec<f64> = data
.rolling2_custom(
&data2,
3,
|v1, v2| v1.titer().vcorr_pearson(v2.titer(), 2),
None,
)
.unwrap();
assert_vec1d_equal_numeric(&out1, &out2, None);
assert_vec1d_equal_numeric(
&out1,
&vec![f64::NAN, 1., 0.9819805060619652, 0.9819805060619652, 1.],
None,
);
}
}