1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
// Copyright 2019. The Tari Project
// SPDX-License-Identifier: BSD-3-Clause
//! # The Hashing API
//!
//! ## A brief justification for this API
//!
//! The use of hash functions in cryptographic protocols typically assumes and requires that
//! these functions be randomly and independently sampled from an idealized set of all such functions, and have no
//! meaningful correlations to others.
//!
//! In reality, there are a limited number of modern cryptographic hash functions in common use: the SHA-2 family,
//! the SHA-3 family, Blake2b/s, Blake3, and so on. To use a single hash function for producing a sampling of multiple
//! independent hash functions, it's common to employ domain separation.
//!
//! This approach requires care to be done securely, but here's an example. If we want to use a single high-quality
//! cryptographic hash function `D` to produce independent hash functions `D_1` and `D_2`, we give each a unique and
//! meaningful label. We can then define the hash of some message `m` for each of our new hash functions:
//!
//! ```text
//! D_1 = D("label for D_1", msg)
//! D_2 = D("label for D_2", msg)
//! ```
//!
//! Provided the method used for including the label and message in `D` is secure (simple concatenation, for example,
//! is not sufficient), `D_1` and `D_2` behave as independent high-quality cryptographic hash functions, and generally
//! retain the useful properties of `D`.
//!
//! [hmac]: https://en.wikipedia.org/wiki/HMAC#Design_principles "HMAC: Design principles"
use alloc::string::String;
use core::{marker::PhantomData, ops::Deref};
use blake2::{Blake2b, Blake2bVar};
use digest::{consts::U32, Digest, FixedOutput, FixedOutputReset, Output, OutputSizeUser, Update};
use sha3::Sha3_256;
use tari_utilities::ByteArray;
use crate::{
alloc::string::ToString,
errors::{HashingError, SliceError},
keys::SecretKey,
};
/// The `DomainSeparation` trait is used to inject domain separation tags into the [`DomainSeparatedHasher`] in a
/// way that can be applied consistently, but without hard-coding anything into the hasher itself.
///
/// Using a trait is more flexible than const strings, and lets us leverage the type system to have more fine-grained
/// control over allowable use cases.
///
/// For example, not all digest functions are suitable for use with the MAC generator provided in this crate. We can
/// indicate this at _compile time_ by adding a trait bound that prevents a client using these functions. See
/// [`MacDomain`] for details.
pub trait DomainSeparation {
/// Returns the version number for the metadata tag
fn version() -> u8;
/// Returns the category label for the metadata tag. For example, `tari_hmac`
fn domain() -> &'static str;
/// The domain separation tag is defined as `{domain}.v{version}.{label}`, where the version and tag are
/// typically hard-coded into the implementing type, and the label is provided per specific application of the
/// domain
fn domain_separation_tag<S: AsRef<str>>(label: S) -> String {
if !label.as_ref().is_empty() {
return format!("{}.v{}.{}", Self::domain(), Self::version(), label.as_ref());
}
format!("{}.v{}", Self::domain(), Self::version())
}
/// Adds the domain separation tag to the given digest. The domain separation tag is defined as
/// `{domain}.v{version}.{label}`, where the version and tag are typically hard-coded into the implementing
/// type, and the label is provided per specific application of the domain.
fn add_domain_separation_tag<S: AsRef<[u8]>, D: Digest>(digest: &mut D, label: S) {
let label = if label.as_ref().is_empty() { &[] } else { label.as_ref() };
let domain = Self::domain();
let (version_offset, version) = byte_to_decimal_ascii_bytes(Self::version());
let len = if label.is_empty() {
// 2 additional bytes are 1 x '.' delimiters and 'v' tag for version
domain.len() + (3 - version_offset) + 2
} else {
// 3 additional bytes are 2 x '.' delimiters and 'v' tag for version
domain.len() + (3 - version_offset) + label.len() + 3
};
let len = (len as u64).to_le_bytes();
digest.update(len);
digest.update(domain);
digest.update(b".v");
digest.update(&version[version_offset..]);
if !label.is_empty() {
digest.update(b".");
digest.update(label);
}
}
}
/// Converts a byte value to ASCII bytes that represent its value in big-endian order. This function returns a tuple
/// containing the inclusive index of the most significant decimal value byte, and the 3 ASCII bytes (big-endian). For
/// example, byte_to_decimal_ascii_bytes(0) returns (2, [0, 0, 48]).
/// byte_to_decimal_ascii_bytes(42) returns (1, [0, 52, 50]).
/// byte_to_decimal_ascii_bytes(255) returns (0, [50, 53, 53]).
fn byte_to_decimal_ascii_bytes(mut byte: u8) -> (usize, [u8; 3]) {
const ZERO_ASCII_CHAR: u8 = 48;
// A u8 can only ever be a 3 char number.
let mut bytes = [0u8, 0u8, ZERO_ASCII_CHAR];
let mut pos = 3usize;
if byte == 0 {
return (2, bytes);
}
while byte > 0 {
let rem = byte % 10;
byte /= 10;
bytes[pos - 1] = ZERO_ASCII_CHAR + rem;
pos -= 1;
}
(pos, bytes)
}
//-------------------------------------- Domain Separated Hash ---------------------------------------------------
/// A hash value, guaranteed, as far as possible, to have been created using a hash function that has been randomly and
/// independently sampled from an idealized set of hash functions.
///
/// This is modelled via the strategy of applying a
/// domain separation tag that is unique for this hashing application (assuming clients make proper use of a unique
/// label for every discrete hashing use-case in their applications).
///
/// `DomainSeparatedHash` implements `AsRef<u8>`, so it is easy to use this type as a slice.
///
/// The domain separation information is retained with the hash, and can be queried using
/// [`DomainSeparatedHash::domain_separation_tag("<tag>")`].
///
/// To preserve the guarantee that the hash is properly domain separated, you cannot create an instance of this struct
/// directly. It is the result of using [`DomainSeparatedHasher`].
///
/// For details and examples, see [`DomainSeparatedHasher`].
pub struct DomainSeparatedHash<D: Digest> {
output: Output<D>,
}
impl<D: Digest> DomainSeparatedHash<D> {
// This constructor is intentionally private. It should be impossible to create an instance of this struct without
// the guarantees that the data represents a hash containing the domain separation label provided in `M`
fn new(output: Output<D>) -> Self {
Self { output }
}
}
impl<D: Digest> AsRef<[u8]> for DomainSeparatedHash<D> {
fn as_ref(&self) -> &[u8] {
self.output.as_slice()
}
}
//-------------------------------------- Domain Separated Hasher ---------------------------------------------------
/// A wrapper for hash digest algorithms that produces [`DomainSeparatedHash`] instances.
///
/// The [module documentation](crate::hashing) has details on why this is helpful.
///
/// The API tries to be as helpful and unobtrusive as possible. Firstly, domain tags have several levels of granularity.
/// 1. The version number is fixed for a given schema of the domain tag.
/// 2. The domain represents a broad class of use cases for the hashing, e.g. MACs, or key derivation.
/// 3. The label is used to differentiate different applications of a use case. e.g. there might be two places key
/// derivation is used in your application: for wallet derived keys, and communication derived keys. These might have
/// the label "wallet-key" and "comms-key" respectively.
///
/// [`DomainSeparatedHasher`] is useful for more generic use-cases that aren't covered by the two primary use cases
/// covered in this API (MAcs and key derivation).
///
/// ## Examples
///
/// Using a hash as an object ID, based on the fields of the object.
///
/// ```
/// # use sha2::Sha256;
/// # use tari_crypto::{hash_domain, hashing::{ DomainSeparatedHash, DomainSeparatedHasher, DomainSeparation}};
/// # use tari_utilities::hex::{to_hex, Hex};
/// # use blake2::Blake2b;
///
/// hash_domain!(CardHashDomain, "com.cards");
///
/// struct Card {
/// name: &'static str,
/// strength: u8,
/// }
///
/// fn card_id(card: &Card) -> DomainSeparatedHash<Sha256> {
/// DomainSeparatedHasher::<Sha256, CardHashDomain>::new_with_label("card_id")
/// .chain(card.name.as_bytes())
/// .chain(&[card.strength])
/// .finalize()
/// }
///
/// assert_eq!(CardHashDomain::domain_separation_tag(""), "com.cards.v1");
/// assert_eq!(CardHashDomain::domain_separation_tag("card_id"), "com.cards.v1.card_id");
/// let card = Card {
/// name: "Rincewind",
/// strength: 8,
/// };
///
/// let id = card_id(&card);
/// assert_eq!(
/// to_hex(id.as_ref()),
/// "b6d1ccd5e6e7eacedd5f3382b8567878419163257f4910f1f9f6265281b836ec"
/// );
/// ```
///
/// Calculating a signature challenge
///
/// ```
/// # use tari_utilities::hex::{to_hex, Hex};
/// use blake2::{Blake2b, Digest};
/// use digest::consts::U32;
/// use tari_crypto::{
/// hash_domain,
/// hashing::{DomainSeparatedHash, DomainSeparatedHasher, DomainSeparation},
/// };
///
/// hash_domain!(CardHashDomain, "com.cards");
///
/// struct Card {
/// name: &'static str,
/// strength: u8,
/// }
///
/// fn calculate_challenge(msg: &str) -> DomainSeparatedHash<Blake2b<U32>> {
/// DomainSeparatedHasher::<Blake2b<U32>, CardHashDomain>::new_with_label("schnorr_challenge")
/// .chain_update(msg.as_bytes())
/// .finalize()
/// }
///
/// assert_eq!(
/// CardHashDomain::domain_separation_tag("schnorr_challenge"),
/// "com.cards.v1.schnorr_challenge"
/// );
/// let challenge = calculate_challenge("All is well.");
/// assert_eq!(
/// to_hex(challenge.as_ref()),
/// "c84b95fd7134ef3e717fe9aece1de46fa88e13ee9f1eaa2e473263d27137bc87"
/// );
/// ```
#[derive(Debug, Clone, Default)]
pub struct DomainSeparatedHasher<D, M> {
inner: D,
label: &'static str,
_dst: PhantomData<M>,
}
impl<D: Digest, M: DomainSeparation> DomainSeparatedHasher<D, M> {
/// Create a new instance of [`DomainSeparatedHasher`] without an additional label (to correspond to 'D::new()').
pub fn new() -> Self {
Self::new_with_label("")
}
/// Create a new instance of [`DomainSeparatedHasher`] for the given label.
pub fn new_with_label(label: &'static str) -> Self {
let mut inner = D::new();
M::add_domain_separation_tag(&mut inner, label);
Self {
inner,
label,
_dst: PhantomData,
}
}
/// Adds the data to the digest function by first appending the length of the data in the byte array, and then
/// supplying the data itself.
pub fn update(&mut self, data: impl AsRef<[u8]>) {
let len = (data.as_ref().len() as u64).to_le_bytes();
self.inner.update(len);
self.inner.update(data);
}
/// Does the same thing as [`Self::update`], but returns the hasher instance to support fluent syntax.
#[must_use]
pub fn chain(mut self, data: impl AsRef<[u8]>) -> Self {
self.update(data);
self
}
/// Finalize the hasher and return the hash result.
pub fn finalize(self) -> DomainSeparatedHash<D> {
let output = self.inner.finalize();
DomainSeparatedHash::new(output)
}
/// A convenience function to update, then finalize the hasher and return the hash result.
pub fn digest(mut self, data: &[u8]) -> DomainSeparatedHash<D> {
self.update(data);
self.finalize()
}
}
impl<D: Digest, M: DomainSeparation> PartialEq for DomainSeparatedHasher<D, M> {
fn eq(&self, other: &Self) -> bool {
self.label == other.label
}
}
impl<D: Digest, M: DomainSeparation> Eq for DomainSeparatedHasher<D, M> {}
/// Convert a finalized hash into a fixed size buffer.
pub trait AsFixedBytes<const I: usize>: AsRef<[u8]> {
/// A convenience function to convert a finalized hash into a fixed size buffer.
fn as_fixed_bytes(&self) -> Result<[u8; I], SliceError> {
let hash_vec = self.as_ref();
if hash_vec.is_empty() || hash_vec.len() < I {
let hash_vec_length = if hash_vec.is_empty() { 0 } else { hash_vec.len() };
return Err(SliceError::CopyFromSlice {
target: I,
provided: hash_vec_length,
});
}
let mut buffer: [u8; I] = [0; I];
buffer.copy_from_slice(&hash_vec[..I]);
Ok(buffer)
}
}
impl<TInnerDigest: OutputSizeUser, TDomain: DomainSeparation> OutputSizeUser
for DomainSeparatedHasher<TInnerDigest, TDomain>
{
type OutputSize = TInnerDigest::OutputSize;
}
impl<TInnerDigest: Update, TDomain: DomainSeparation> Update for DomainSeparatedHasher<TInnerDigest, TDomain> {
fn update(&mut self, data: &[u8]) {
self.inner.update(data);
}
}
impl<const I: usize, D: Digest> AsFixedBytes<I> for DomainSeparatedHash<D> {}
impl<TInnerDigest: FixedOutput, TDomain: DomainSeparation> FixedOutput
for DomainSeparatedHasher<TInnerDigest, TDomain>
{
fn finalize_into(self, out: &mut Output<Self>) {
self.inner.finalize_into(out);
}
}
impl<D: FixedOutputReset, M: DomainSeparation> DomainSeparatedHasher<D, M> {
/// Finalize and reset the hasher and return the hash result.
pub fn finalize_into_reset(&mut self, out: &mut Output<Self>) {
self.inner.finalize_into_reset(out);
}
}
// Implements Digest so that it can be used for other crates
impl<TInnerDigest: Digest + FixedOutputReset, TDomain: DomainSeparation> Digest
for DomainSeparatedHasher<TInnerDigest, TDomain>
{
fn new() -> Self {
DomainSeparatedHasher::<TInnerDigest, TDomain>::new()
}
// Create new hasher instance which has processed the provided data.
fn new_with_prefix(data: impl AsRef<[u8]>) -> Self {
let hasher = DomainSeparatedHasher::<TInnerDigest, TDomain>::new();
hasher.chain_update(data)
}
fn update(&mut self, data: impl AsRef<[u8]>) {
self.update(data);
}
fn chain_update(self, data: impl AsRef<[u8]>) -> Self
where Self: Sized {
self.chain(data)
}
fn finalize(self) -> Output<Self> {
self.finalize().output
}
fn finalize_reset(&mut self) -> Output<Self> {
let value = self.inner.finalize_reset();
TDomain::add_domain_separation_tag(&mut self.inner, self.label);
value
}
fn finalize_into_reset(&mut self, out: &mut Output<Self>) {
Digest::finalize_into_reset(&mut self.inner, out);
}
// Write result into provided array and consume the hasher instance.
fn finalize_into(self, out: &mut Output<Self>) {
Digest::finalize_into(self.inner, out);
}
fn reset(&mut self) {
Digest::reset(&mut self.inner);
TDomain::add_domain_separation_tag(&mut self.inner, self.label);
}
fn output_size() -> usize {
<TInnerDigest as Digest>::output_size()
}
fn digest(data: impl AsRef<[u8]>) -> Output<Self> {
let mut hasher = Self::new();
hasher.update(data);
hasher.finalize().output
}
}
//---------------------------------------- Extra marker traits ----------------------------------------------
/// A marker trait for Digest algorithms that are not susceptible to length-extension attacks.
///
/// Notably, the SHA-2 family does *not* have this trait.
pub trait LengthExtensionAttackResistant {}
impl LengthExtensionAttackResistant for Blake2bVar {}
impl LengthExtensionAttackResistant for Sha3_256 {}
impl LengthExtensionAttackResistant for Blake2b<U32> {}
//------------------------------------------------ HMAC ------------------------------------------------------------
/// A domain separation tag for use in MAC derivation algorithms.
pub struct MacDomain;
impl DomainSeparation for MacDomain {
fn version() -> u8 {
1
}
fn domain() -> &'static str {
"com.tari.mac"
}
}
/// A domain separated MAC using a simple approach to code derivation.
///
/// The MAC is a hash of `H(domain, key, message)` but some safeguards are in place:
/// - Only digest functions that are resistant to length extension attacks are permitted.
/// - The hash function uses a suitable domain separation strategy, with a user-provided label.
/// - The key and message are encoded along with their length
///
/// # Examples
///
/// You cannot use a vulnerable digest function to generate a MAC:
/// ```text
/// use sha2::Sha256;
/// let _ = Mac::generate::<Sha256, _, _>(b"secret key", "a message", "invalid digest");
/// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `LengthExtensionAttackResistant` is not implemented for `Sha256`
/// ```
///
/// ```
/// use sha3::Sha3_256;
/// use tari_crypto::hashing::{DomainSeparation, Mac, MacDomain};
/// use tari_utilities::hex::to_hex;
///
/// fn generate_api_hmac(key: &[u8], msg: &[u8]) -> Mac<Sha3_256> {
/// Mac::<Sha3_256>::generate(key, msg, "api.auth")
/// }
///
/// assert_eq!(
/// MacDomain::domain_separation_tag("api.auth"),
/// "com.tari.mac.v1.api.auth"
/// );
/// let mac = generate_api_hmac(b"a secret shared key", b"a message");
/// assert_eq!(
/// to_hex(mac.as_ref()),
/// "796eb496b6672b1b7c4021e603d6b833121d35cd282a1555e3f9dd2eda5658b8"
/// );
/// ```
pub struct Mac<D: Digest> {
hmac: DomainSeparatedHash<D>,
}
impl<D> Mac<D>
where D: Digest + Update + LengthExtensionAttackResistant
{
/// Generate a MAC with the given (length extension attack resistant) digest function, shared key, message and
/// application label.
pub fn generate<K, S>(key: K, msg: S, label: &'static str) -> Self
where
K: AsRef<[u8]>,
S: AsRef<[u8]>,
{
let hmac = DomainSeparatedHasher::<D, MacDomain>::new_with_label(label)
.chain(key.as_ref())
.chain(msg.as_ref())
.finalize();
Self { hmac }
}
}
impl<D: Digest> Deref for Mac<D> {
type Target = DomainSeparatedHash<D>;
fn deref(&self) -> &Self::Target {
&self.hmac
}
}
//------------------------------------------------ KDF ------------------------------------------------------------
/// `DerivedKeyDomain` is a trait that allows one to safely and easily derive a secondary keys from a primary key.
///
/// For this algorithm to be secure, the primary key must have sufficient entropy, which we cannot check in general.
/// However, a necessary condition is that the primary key must be at least as long as the desired derived key.
///
/// That is to say, this algorithm is _not_ the same as password-based kdf, which uses
/// strategies like key stretching to derive a key from a low entropy input such as a short text password.
/// For this, use algorithms like argon2, pbkdf2, or scrypt instead.
///
/// Constraints:
/// * the length of `key` MUST be at least as long as the output size of the hash function being used (`D`).
/// * The digest output length MUST provide enough data to produce the desired SecretKey type.
///
/// ## Example
///
/// `RistrettoKdf` is an implementation of [`DerivedKeyDomain`] that generates Ristretto keys.
///
/// ```
/// # use tari_utilities::ByteArray;
/// # use tari_utilities::hex::Hex;
/// # use tari_crypto::errors::HashingError;
/// # use tari_crypto::hashing::{DerivedKeyDomain, MacDomain};
/// # use tari_crypto::keys::SecretKey;
/// # use tari_crypto::ristretto::ristretto_keys::RistrettoKdf;
/// # use tari_crypto::ristretto::RistrettoSecretKey;
/// # use digest::consts::U32;
/// # use blake2::Blake2b;
///
/// fn wallet_keys(
/// primary_key: &RistrettoSecretKey,
/// index: usize,
/// ) -> Result<RistrettoSecretKey, HashingError> {
/// RistrettoKdf::generate::<Blake2b<U32>>(
/// primary_key.as_bytes(),
/// &index.to_le_bytes(),
/// "wallet",
/// )
/// }
///
/// let key = RistrettoSecretKey::from_hex(
/// "b5bb9d8014a0f9b1d61e21e796d78dccdf1352f23cd32812f4850b878ae4944c",
/// )
/// .unwrap();
/// let key_1 = wallet_keys(&key, 1).unwrap();
/// assert_eq!(
/// key_1.to_hex(),
/// "b778b8b5041fbde6c78be5bafd6d62633824bf303c97736d7337b3f6f70c4e0b"
/// );
/// let key_64 = wallet_keys(&key, 64).unwrap();
/// assert_eq!(
/// key_64.to_hex(),
/// "09e5204c93406ef3334ff5f7a4d5d84199ceb9119fafcb98928fa95e95f0ae05"
/// );
/// ```
pub trait DerivedKeyDomain: DomainSeparation {
/// The associated derived secret key type
type DerivedKeyType: SecretKey;
/// Derive a key from the input key using a suitable domain separation tag and the given application label.
/// An error is returned if the supplied primary key isn't at least as long as the digest algorithm's output size.
/// If the digest's output size is not sufficient to generate the derived key type, then an error will be thrown.
fn generate<D>(primary_key: &[u8], data: &[u8], label: &'static str) -> Result<Self::DerivedKeyType, HashingError>
where
Self: Sized,
D: Digest + Update,
{
if primary_key.as_ref().len() < <D as Digest>::output_size() {
return Err(HashingError::InputTooShort {});
}
let hash = DomainSeparatedHasher::<D, Self>::new_with_label(label)
.chain(primary_key)
.chain(data)
.finalize();
let derived_key = Self::DerivedKeyType::from_bytes(hash.as_ref())
.map_err(|e| HashingError::ConversionFromBytes { reason: e.to_string() })?;
Ok(derived_key)
}
}
/// Creates a DomainSeparation struct for a given domain.
#[macro_export]
macro_rules! hash_domain {
($name:ident, $domain:expr, $version: expr) => {
/// A hashing domain instance
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct $name;
impl $crate::hashing::DomainSeparation for $name {
fn version() -> u8 {
$version
}
fn domain() -> &'static str {
$domain
}
}
};
($name:ident, $domain:expr) => {
hash_domain!($name, $domain, 1);
};
}
/// Creates a domain separated hasher type and domain in one
#[macro_export]
macro_rules! hasher {
($digest:ty, $name:ident, $domain:expr, $version: expr, $mod_name:ident) => {
mod $mod_name {
use $crate::hash_domain;
hash_domain!(__HashDomain, $domain, $version);
}
pub type $name = $crate::hashing::DomainSeparatedHasher<$digest, $mod_name::__HashDomain>;
};
($digest: ty, $name:ident, $domain:expr, $version: expr) => {
hasher!($digest, $name, $domain, $version, __inner_hasher_impl);
};
($digest: ty, $name:ident, $domain:expr) => {
hasher!($digest, $name, $domain, 1, __inner_hasher_impl);
};
}
/// Convenience function for creating a DomainSeparatedHasher with an added label
pub fn create_hasher_with_label<D: Digest, HD: DomainSeparation>(label: &'static str) -> DomainSeparatedHasher<D, HD> {
DomainSeparatedHasher::<D, HD>::new_with_label(label)
}
/// Convenience function for creating a DomainSeparatedHasher
pub fn create_hasher<D: Digest, HD: DomainSeparation>() -> DomainSeparatedHasher<D, HD> {
DomainSeparatedHasher::<D, HD>::new()
}
#[cfg(test)]
mod test {
use blake2::Blake2b;
use digest::{
consts::{U32, U64},
generic_array::GenericArray,
Digest,
Update,
};
use tari_utilities::hex::{from_hex, to_hex};
use crate::hashing::{
byte_to_decimal_ascii_bytes,
AsFixedBytes,
DomainSeparatedHasher,
DomainSeparation,
Mac,
MacDomain,
};
mod util {
use digest::Digest;
use tari_utilities::hex::to_hex;
pub(crate) fn hash_test<D: Digest>(data: &[u8], expected: &str) {
let mut hasher = D::new();
hasher.update(data);
let hash = hasher.finalize();
assert_eq!(to_hex(&hash), expected);
}
pub(crate) fn hash_from_digest<D: Digest>(mut hasher: D, data: &[u8], expected: &str) {
hasher.update(data);
let hash = hasher.finalize();
assert_eq!(to_hex(&hash), expected);
}
}
#[test]
fn hasher_macro_tests() {
{
hasher!(Blake2b<U32>, MyDemoHasher, "com.macro.test");
util::hash_from_digest(
MyDemoHasher::new(),
&[0, 0, 0],
"d4cbf5b6b97485a991973db8a6ce4d3fc660db5dff5f55f2b0cb363fca34b0a2",
);
}
{
hasher!(Blake2b<U32>, MyDemoHasher2, "com.macro.test", 1);
util::hash_from_digest(
MyDemoHasher2::new(),
&[0, 0, 0],
"d4cbf5b6b97485a991973db8a6ce4d3fc660db5dff5f55f2b0cb363fca34b0a2",
);
}
}
#[test]
// Regression test
fn mac_domain_metadata() {
assert_eq!(MacDomain::version(), 1);
assert_eq!(MacDomain::domain(), "com.tari.mac");
assert_eq!(MacDomain::domain_separation_tag(""), "com.tari.mac.v1");
assert_eq!(MacDomain::domain_separation_tag("test"), "com.tari.mac.v1.test");
}
#[test]
fn finalize_into() {
hash_domain!(TestHasher, "com.example.test");
let mut hasher = DomainSeparatedHasher::<Blake2b<U32>, TestHasher>::new();
hasher.update([0, 0, 0]);
let mut output = GenericArray::<u8, U32>::default();
hasher.finalize_into(&mut output);
}
#[test]
fn finalize_into_reset() {
hash_domain!(TestHasher, "com.example.test");
let mut hasher = DomainSeparatedHasher::<Blake2b<U32>, TestHasher>::new();
hasher.update([0, 0, 0]);
let mut output = GenericArray::<u8, U32>::default();
hasher.finalize_into_reset(&mut output);
}
#[test]
fn test_safe_array() {
use tari_utilities::{hidden::Hidden, hidden_type, safe_array::SafeArray};
use zeroize::Zeroize;
hash_domain!(TestHasher, "com.example.test");
let mut hasher = DomainSeparatedHasher::<Blake2b<U32>, TestHasher>::new();
hasher.update([0, 0, 0]);
hidden_type!(Key, SafeArray<u8, 32>);
let mut key = Key::from(SafeArray::default()); // all zeroes
hasher.finalize_into_reset(GenericArray::from_mut_slice(key.reveal_mut()));
}
#[test]
fn dst_hasher() {
hash_domain!(GenericHashDomain, "com.tari.generic");
assert_eq!(GenericHashDomain::domain_separation_tag(""), "com.tari.generic.v1");
let hash = DomainSeparatedHasher::<Blake2b<U32>, GenericHashDomain>::new_with_label("test_hasher")
.chain("some foo")
.finalize();
let mut hash2 = DomainSeparatedHasher::<Blake2b<U32>, GenericHashDomain>::new_with_label("test_hasher");
hash2.update("some foo");
let hash2 = hash2.finalize();
assert_eq!(hash.as_ref(), hash2.as_ref());
assert_eq!(
to_hex(hash.as_ref()),
"a8326620e305430a0b632a0a5e33c6c1124d7513b4bd84736faaa3a0b9ba557f"
);
let hash_1 =
DomainSeparatedHasher::<Blake2b<U32>, GenericHashDomain>::new_with_label("mynewtest").digest(b"rincewind");
let hash_2 = DomainSeparatedHasher::<Blake2b<U32>, GenericHashDomain>::new_with_label("mynewtest")
.chain(b"rincewind")
.finalize();
assert_eq!(hash_1.as_ref(), hash_2.as_ref());
}
#[test]
fn digest_is_the_same_as_standard_api() {
hash_domain!(MyDemoHasher, "com.macro.test");
assert_eq!(MyDemoHasher::domain_separation_tag(""), "com.macro.test.v1");
util::hash_test::<DomainSeparatedHasher<Blake2b<U32>, MyDemoHasher>>(
&[0, 0, 0],
"d4cbf5b6b97485a991973db8a6ce4d3fc660db5dff5f55f2b0cb363fca34b0a2",
);
let mut hasher = DomainSeparatedHasher::<Blake2b<U32>, MyDemoHasher>::new();
hasher.update([0, 0, 0]);
let hash = hasher.finalize();
assert_eq!(
to_hex(hash.as_ref()),
"d4cbf5b6b97485a991973db8a6ce4d3fc660db5dff5f55f2b0cb363fca34b0a2"
);
let mut hasher = DomainSeparatedHasher::<Blake2b<U32>, MyDemoHasher>::new_with_label("");
hasher.update([0, 0, 0]);
let hash = hasher.finalize();
assert_eq!(
to_hex(hash.as_ref()),
"d4cbf5b6b97485a991973db8a6ce4d3fc660db5dff5f55f2b0cb363fca34b0a2"
);
}
/// Test that it can be used as a standard digest
#[test]
fn can_be_used_as_digest() {
hash_domain!(MyDemoHasher, "com.macro.test");
assert_eq!(MyDemoHasher::domain_separation_tag(""), "com.macro.test.v1");
util::hash_test::<DomainSeparatedHasher<Blake2b<U32>, MyDemoHasher>>(
&[0, 0, 0],
"d4cbf5b6b97485a991973db8a6ce4d3fc660db5dff5f55f2b0cb363fca34b0a2",
);
hash_domain!(MyDemoHasher2, "com.macro.test", 2);
assert_eq!(MyDemoHasher2::domain_separation_tag(""), "com.macro.test.v2");
util::hash_test::<DomainSeparatedHasher<Blake2b<U32>, MyDemoHasher2>>(
&[0, 0, 0],
"ce327b02271d035bad4dcc1e69bc292392ee4ee497f1f8467d54bf4b4c72639a",
);
hash_domain!(TariHasher, "com.tari.hasher");
assert_eq!(TariHasher::domain_separation_tag(""), "com.tari.hasher.v1");
util::hash_test::<DomainSeparatedHasher<Blake2b<U32>, TariHasher>>(
&[0, 0, 0],
"ae359f05bb76c646c6767d25f53893fc38b0c7b56f8a74a1cbb008ea3ffc183f",
);
}
/// Test hash to fixed bytes conversion
#[test]
fn hash_to_fixed_bytes_conversion() {
hash_domain!(TestDomain, "com.tari.generic");
let hash = DomainSeparatedHasher::<Blake2b<U32>, TestDomain>::new_with_label("mytest")
.chain("some data")
.finalize();
let hash_to_bytes_7: [u8; 7] = hash.as_fixed_bytes().unwrap();
assert_eq!(hash_to_bytes_7, hash.as_fixed_bytes().unwrap());
let hash_to_bytes_23: [u8; 23] = hash.as_fixed_bytes().unwrap();
assert_eq!(hash_to_bytes_23, hash.as_fixed_bytes().unwrap());
let hash_to_bytes_32: [u8; 32] = hash.as_fixed_bytes().unwrap();
assert_eq!(hash_to_bytes_32, hash.as_fixed_bytes().unwrap());
}
#[test]
fn deconstruction() {
hash_domain!(TestDomain, "com.tari.generic");
// Illustrate exactly what gets hashed and how we try and avoid collisions
let hash = DomainSeparatedHasher::<Blake2b<U32>, TestDomain>::new_with_label("mytest")
.chain("rincewind")
.chain("hex")
.finalize();
let expected = Blake2b::<U32>::new()
.chain(26u64.to_le_bytes())
.chain("com.tari.generic.v1.mytest".as_bytes())
.chain(9u64.to_le_bytes())
.chain("rincewind".as_bytes())
.chain(3u64.to_le_bytes())
.chain("hex".as_bytes())
.finalize();
assert_eq!(hash.as_ref(), expected.as_slice());
}
#[test]
fn domain_separation_tag_hashing() {
struct MyDemoHasher;
impl DomainSeparation for MyDemoHasher {
fn version() -> u8 {
42
}
fn domain() -> &'static str {
"com.discworld"
}
}
let domain = "com.discworld.v42.turtles";
assert_eq!(MyDemoHasher::domain_separation_tag("turtles"), domain);
let hash = DomainSeparatedHasher::<Blake2b<U32>, MyDemoHasher>::new_with_label("turtles").finalize();
let expected = Blake2b::<U32>::default()
.chain((domain.len() as u64).to_le_bytes())
.chain(domain)
.finalize();
assert_eq!(hash.as_ref(), expected.as_slice());
}
#[test]
fn update_domain_separation_tag() {
hash_domain!(TestDomain, "com.test");
let s_tag = TestDomain::domain_separation_tag("mytest");
let expected_hash = Blake2b::<U32>::default()
.chain(s_tag.len().to_le_bytes())
.chain(s_tag)
.finalize();
let mut digest = Blake2b::<U32>::default();
TestDomain::add_domain_separation_tag(&mut digest, "mytest");
assert_eq!(digest.finalize(), expected_hash);
}
#[test]
fn application_hasher() {
struct MyDemoHasher;
impl DomainSeparation for MyDemoHasher {
fn version() -> u8 {
42
}
fn domain() -> &'static str {
"com.discworld"
}
}
let hash = DomainSeparatedHasher::<Blake2b<U64>, MyDemoHasher>::new_with_label("turtles")
.chain("elephants")
.finalize();
assert_eq!(to_hex(hash.as_ref()), "64a89c7160a1076a725fac97d3f67803abd0991d82518a595072fa62df4c870bddee9160f591231c381087831bf6925616013de317ce0b02846585caf41942ac");
}
#[test]
fn incompatible_tags() {
// The compiler won't even let you write these tests :), so they're commented out.
let key = from_hex("b5bb9d8014a0f9b1d61e21e796d78dccdf1352f23cd32812f4850b878ae4944c").unwrap();
// let mac = Mac::generate::<Sha256, _, _>(&key, "test message", "test");
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `LengthExtensionAttackResistant` is not implemented for
// `Sha256`
let mac = Mac::<Blake2b<U32>>::generate(key, "test message", "test");
assert_eq!(MacDomain::domain_separation_tag("test"), "com.tari.mac.v1.test");
assert_eq!(
to_hex(mac.as_ref()),
"9bcfbe2bad73b14ac42f673ddca34e82ce03cbbac69d34526004f5d108dff061"
)
}
#[test]
fn check_bytes_to_decimal_ascii_bytes() {
assert_eq!(byte_to_decimal_ascii_bytes(0), (2, [0u8, 0, 48]));
assert_eq!(byte_to_decimal_ascii_bytes(42), (1, [0u8, 52, 50]));
assert_eq!(byte_to_decimal_ascii_bytes(255), (0, [50u8, 53, 53]));
}
}