use crate::{
ColumnStats, FeatureGroup, LinearModelTrainOptions, StatsSettings, TrainGridItemOutput,
TreeModelTrainOptions,
};
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct BinaryClassifier {
#[buffalo(id = 0, required)]
pub target_column_name: String,
#[buffalo(id = 1, required)]
pub negative_class: String,
#[buffalo(id = 2, required)]
pub positive_class: String,
#[buffalo(id = 3, required)]
pub train_row_count: u64,
#[buffalo(id = 4, required)]
pub test_row_count: u64,
#[buffalo(id = 5, required)]
pub overall_row_count: u64,
#[buffalo(id = 6, required)]
pub stats_settings: StatsSettings,
#[buffalo(id = 7, required)]
pub overall_column_stats: Vec<ColumnStats>,
#[buffalo(id = 8, required)]
pub overall_target_column_stats: ColumnStats,
#[buffalo(id = 9, required)]
pub train_column_stats: Vec<ColumnStats>,
#[buffalo(id = 10, required)]
pub train_target_column_stats: ColumnStats,
#[buffalo(id = 11, required)]
pub test_column_stats: Vec<ColumnStats>,
#[buffalo(id = 12, required)]
pub test_target_column_stats: ColumnStats,
#[buffalo(id = 13, required)]
pub baseline_metrics: BinaryClassificationMetrics,
#[buffalo(id = 14, required)]
pub comparison_metric: BinaryClassificationComparisonMetric,
#[buffalo(id = 15, required)]
pub train_grid_item_outputs: Vec<TrainGridItemOutput>,
#[buffalo(id = 16, required)]
pub best_grid_item_index: u64,
#[buffalo(id = 17, required)]
pub model: BinaryClassificationModel,
#[buffalo(id = 18, required)]
pub test_metrics: BinaryClassificationMetrics,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "static", value_size = 0)]
pub enum BinaryClassificationComparisonMetric {
#[buffalo(id = 0)]
Aucroc,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct BinaryClassificationMetrics {
#[buffalo(id = 0, required)]
pub auc_roc: f32,
#[buffalo(id = 1, required)]
pub default_threshold: BinaryClassificationMetricsForThreshold,
#[buffalo(id = 2, required)]
pub thresholds: Vec<BinaryClassificationMetricsForThreshold>,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct BinaryClassificationMetricsForThreshold {
#[buffalo(id = 0, required)]
pub threshold: f32,
#[buffalo(id = 1, required)]
pub true_positives: u64,
#[buffalo(id = 2, required)]
pub false_positives: u64,
#[buffalo(id = 3, required)]
pub true_negatives: u64,
#[buffalo(id = 4, required)]
pub false_negatives: u64,
#[buffalo(id = 5, required)]
pub accuracy: f32,
#[buffalo(id = 6, required)]
pub precision: Option<f32>,
#[buffalo(id = 7, required)]
pub recall: Option<f32>,
#[buffalo(id = 8, required)]
pub f1_score: Option<f32>,
#[buffalo(id = 9, required)]
pub true_positive_rate: f32,
#[buffalo(id = 10, required)]
pub false_positive_rate: f32,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "static", value_size = 8)]
pub enum BinaryClassificationModel {
#[buffalo(id = 0)]
Linear(LinearBinaryClassifier),
#[buffalo(id = 1)]
Tree(TreeBinaryClassifier),
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct LinearBinaryClassifier {
#[buffalo(id = 0, required)]
pub model: tangram_linear::serialize::BinaryClassifier,
#[buffalo(id = 1, required)]
pub train_options: LinearModelTrainOptions,
#[buffalo(id = 2, required)]
pub feature_groups: Vec<FeatureGroup>,
#[buffalo(id = 3, required)]
pub losses: Option<Vec<f32>>,
#[buffalo(id = 4, required)]
pub feature_importances: Vec<f32>,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct TreeBinaryClassifier {
#[buffalo(id = 0, required)]
pub model: tangram_tree::serialize::BinaryClassifier,
#[buffalo(id = 1, required)]
pub train_options: TreeModelTrainOptions,
#[buffalo(id = 2, required)]
pub feature_groups: Vec<FeatureGroup>,
#[buffalo(id = 3, required)]
pub losses: Option<Vec<f32>>,
#[buffalo(id = 4, required)]
pub feature_importances: Vec<f32>,
}