use crate::{
ColumnStats, FeatureGroup, LinearModelTrainOptions, StatsSettings, TrainGridItemOutput,
TreeModelTrainOptions,
};
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct MulticlassClassifier {
#[buffalo(id = 0, required)]
pub target_column_name: String,
#[buffalo(id = 1, required)]
pub classes: Vec<String>,
#[buffalo(id = 2, required)]
pub train_row_count: u64,
#[buffalo(id = 3, required)]
pub test_row_count: u64,
#[buffalo(id = 4, required)]
pub overall_row_count: u64,
#[buffalo(id = 5, required)]
pub stats_settings: StatsSettings,
#[buffalo(id = 6, required)]
pub overall_column_stats: Vec<ColumnStats>,
#[buffalo(id = 7, required)]
pub overall_target_column_stats: ColumnStats,
#[buffalo(id = 8, required)]
pub train_column_stats: Vec<ColumnStats>,
#[buffalo(id = 9, required)]
pub train_target_column_stats: ColumnStats,
#[buffalo(id = 10, required)]
pub test_column_stats: Vec<ColumnStats>,
#[buffalo(id = 11, required)]
pub test_target_column_stats: ColumnStats,
#[buffalo(id = 12, required)]
pub baseline_metrics: MulticlassClassificationMetrics,
#[buffalo(id = 13, required)]
pub comparison_metric: MulticlassClassificationComparisonMetric,
#[buffalo(id = 14, required)]
pub train_grid_item_outputs: Vec<TrainGridItemOutput>,
#[buffalo(id = 15, required)]
pub best_grid_item_index: u64,
#[buffalo(id = 16, required)]
pub model: MulticlassClassificationModel,
#[buffalo(id = 17, required)]
pub test_metrics: MulticlassClassificationMetrics,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "static", value_size = 0)]
pub enum MulticlassClassificationComparisonMetric {
#[buffalo(id = 0)]
Accuracy,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct MulticlassClassificationMetrics {
#[buffalo(id = 0, required)]
pub class_metrics: Vec<ClassMetrics>,
#[buffalo(id = 1, required)]
pub accuracy: f32,
#[buffalo(id = 2, required)]
pub precision_unweighted: f32,
#[buffalo(id = 3, required)]
pub precision_weighted: f32,
#[buffalo(id = 4, required)]
pub recall_unweighted: f32,
#[buffalo(id = 5, required)]
pub recall_weighted: f32,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct ClassMetrics {
#[buffalo(id = 0, required)]
pub true_positives: u64,
#[buffalo(id = 1, required)]
pub false_positives: u64,
#[buffalo(id = 2, required)]
pub true_negatives: u64,
#[buffalo(id = 3, required)]
pub false_negatives: u64,
#[buffalo(id = 4, required)]
pub accuracy: f32,
#[buffalo(id = 5, required)]
pub precision: f32,
#[buffalo(id = 6, required)]
pub recall: f32,
#[buffalo(id = 7, required)]
pub f1_score: f32,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "static", value_size = 8)]
pub enum MulticlassClassificationModel {
#[buffalo(id = 0)]
Linear(LinearMulticlassClassifier),
#[buffalo(id = 1)]
Tree(TreeMulticlassClassifier),
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct LinearMulticlassClassifier {
#[buffalo(id = 0, required)]
pub model: tangram_linear::serialize::MulticlassClassifier,
#[buffalo(id = 1, required)]
pub train_options: LinearModelTrainOptions,
#[buffalo(id = 2, required)]
pub feature_groups: Vec<FeatureGroup>,
#[buffalo(id = 3, required)]
pub losses: Option<Vec<f32>>,
#[buffalo(id = 4, required)]
pub feature_importances: Vec<f32>,
}
#[derive(buffalo::Read, buffalo::Write)]
#[buffalo(size = "dynamic")]
pub struct TreeMulticlassClassifier {
#[buffalo(id = 0, required)]
pub model: tangram_tree::serialize::MulticlassClassifier,
#[buffalo(id = 1, required)]
pub train_options: TreeModelTrainOptions,
#[buffalo(id = 2, required)]
pub feature_groups: Vec<FeatureGroup>,
#[buffalo(id = 3, required)]
pub losses: Option<Vec<f32>>,
#[buffalo(id = 4, required)]
pub feature_importances: Vec<f32>,
}