system-analysis 0.2.0

A comprehensive Rust library for analyzing system capabilities, workload requirements, and optimal resource allocation
# 🚀 NEW API FEATURES ENABLED BY HARDWARE-QUERY INTEGRATION


## **REVOLUTIONARY API ENHANCEMENTS**


The integration of `hardware-query` enables **game-changing new functionality** that transforms system-analysis from basic hardware detection to comprehensive AI-focused system analysis.

## 🔥 **NEW API CAPABILITIES**


### **1. Enhanced SystemProfile with AI Accelerator Scoring**


**BEFORE (Basic Scoring):**

```rust
pub struct SystemProfile {
    pub cpu_score: f64,
    pub gpu_score: f64, 
    pub memory_score: f64,
    pub storage_score: f64,
    pub network_score: f64,
    pub overall_score: f64,
    // ...
}
```

**AFTER (AI-Focused Scoring):**

```rust
pub struct SystemProfile {
    // Traditional scores
    pub cpu_score: f64,
    pub gpu_score: f64,
    pub memory_score: f64,
    pub storage_score: f64,
    pub network_score: f64,
    
    // 🚀 NEW: AI Accelerator Scores
    pub npu_score: f64,                    // Neural Processing Units
    pub tpu_score: f64,                    // Tensor Processing Units  
    pub fpga_score: f64,                   // FPGA Accelerators
    pub ai_accelerator_score: f64,         // Combined AI score
    pub arm_optimization_score: f64,       // ARM/Edge optimization
    
    // 🚀 NEW: Specialized Workload Scores
    pub ai_workload_score: f64,            // AI workload suitability
    pub edge_computing_score: f64,         // Edge computing suitability
    pub overall_score: f64,                // Enhanced overall scoring
    // ...
}
```

### **2. AI Accelerator Analysis Methods**


**🔥 NEW API METHODS:**

```rust
impl SystemProfile {
    // AI Capability Assessment
    pub fn ai_workload_score(&self) -> f64
    pub fn edge_computing_score(&self) -> f64
    pub fn ai_accelerator_score(&self) -> f64
    pub fn has_ai_accelerators(&self) -> bool
    pub fn total_tops_performance(&self) -> f64
    
    // ARM System Detection
    pub fn is_arm_system(&self) -> bool
    pub fn arm_system_type(&self) -> Option<&str>
    
    // Workload Suitability Analysis
    pub fn is_suitable_for_ai_workload(&self, workload_type: &str) -> bool
}
```

### **3. Enhanced AI-Focused Workload Types**


**BEFORE (Limited Types):**

```rust
pub enum WorkloadType {
    AIInference,
    AITraining,
    DataProcessing,
    // ... basic types
}
```

**AFTER (Comprehensive AI Workloads):**

```rust
pub enum WorkloadType {
    // Traditional AI
    AIInference,
    AITraining,
    
    // 🚀 NEW: Accelerator-Specific Workloads
    NPUInference,                          // NPU-optimized inference
    TPUTraining,                           // TPU-optimized training
    FPGAInference,                         // FPGA-accelerated inference
    EdgeAI,                                // ARM-optimized edge AI
    
    // 🚀 NEW: AI Application Workloads
    ComputerVision,                        // Computer vision tasks
    NaturalLanguageProcessing,             // NLP workloads
    LLMInference,                          // Large language model inference
    LLMTraining,                           // Large language model training
    Robotics,                              // Robotics (ARM + AI accelerators)
    IoTEdge,                               // IoT edge processing
    
    // Traditional workloads
    DataProcessing,
    // ...
}
```

### **4. AI Hardware Information Types**


**🔥 COMPLETELY NEW TYPES:**

```rust
// Neural Processing Unit Information
pub struct NpuInfo {
    pub vendor: String,
    pub model_name: String,
    pub tops_performance: Option<f64>,     // Performance in TOPS
    pub supported_frameworks: Vec<String>,
    pub supported_dtypes: Vec<String>,
}

// Tensor Processing Unit Information
pub struct TpuInfo {
    pub vendor: String,
    pub model_name: String,
    pub architecture: String,
    pub tops_performance: Option<f64>,
    pub supported_frameworks: Vec<String>,
    pub supported_dtypes: Vec<String>,
}

// FPGA Accelerator Information
pub struct FpgaInfo {
    pub vendor: String,
    pub family: String,
    pub model_name: String,
    pub logic_elements: Option<u64>,
    pub memory_blocks: Option<u64>,
    pub dsp_blocks: Option<u64>,           // DSP blocks for AI
}

// ARM-Specific Hardware Information
pub struct ArmInfo {
    pub system_type: String,               // Pi, Jetson, Apple Silicon
    pub board_model: String,
    pub cpu_architecture: String,
    pub acceleration_features: Vec<String>,
    pub ml_capabilities: HashMap<String, String>,
    pub interfaces: Vec<String>,           // GPIO, I2C, etc.
}
```

### **5. Enhanced SystemInfo Structure**


**BEFORE:**

```rust
pub struct SystemInfo {
    pub cpu_info: CpuInfo,
    pub gpu_info: Vec<GpuInfo>,
    pub memory_info: MemoryInfo,
    pub storage_info: Vec<StorageInfo>,
    pub network_info: NetworkInfo,
}
```

**AFTER:**

```rust
pub struct SystemInfo {
    // Traditional hardware
    pub cpu_info: CpuInfo,
    pub gpu_info: Vec<GpuInfo>,
    pub memory_info: MemoryInfo,
    pub storage_info: Vec<StorageInfo>,
    pub network_info: NetworkInfo,
    
    // 🚀 NEW: AI Accelerators
    pub npu_info: Vec<NpuInfo>,            // Neural Processing Units
    pub tpu_info: Vec<TpuInfo>,            // Tensor Processing Units
    pub fpga_info: Vec<FpgaInfo>,          // FPGA Accelerators
    pub arm_info: Option<ArmInfo>,         // ARM-specific hardware
}
```

## 🎯 **NEW USE CASES ENABLED**


### **1. AI Hardware Discovery**


```rust
let profile = analyzer.analyze_system().await?;

// Check for AI accelerators
if profile.has_ai_accelerators() {
    println!("TOPS Performance: {:.1}", profile.total_tops_performance());
    
    // Get specific accelerator info
    for npu in &profile.system_info.npu_info {
        println!("NPU: {} - {} TOPS", npu.model_name, npu.tops_performance.unwrap_or(0.0));
    }
}
```

### **2. AI Workload Matching**


```rust
// Match workload to optimal hardware
if profile.is_suitable_for_ai_workload("inference") {
    println!("System suitable for AI inference (score: {:.1})", profile.ai_workload_score());
}

if profile.is_suitable_for_ai_workload("edge") {
    println!("System suitable for edge computing (score: {:.1})", profile.edge_computing_score());
}
```

### **3. ARM System Optimization**


```rust
if profile.is_arm_system() {
    if let Some(system_type) = profile.arm_system_type() {
        match system_type {
            "Raspberry Pi" => println!("Optimize for Pi-specific features"),
            "NVIDIA Jetson" => println!("Leverage CUDA capabilities"),
            "Apple Silicon" => println!("Use Apple Neural Engine"),
            _ => println!("Generic ARM optimization"),
        }
    }
}
```

### **4. Performance-Based Hardware Selection**


```rust
// Find systems with specific capabilities
let workload = LLMInferenceWorkload::new(model_size_gb: 7.0);
let compatibility = analyzer.check_compatibility(&profile, &workload.requirements())?;

if compatibility.is_compatible {
    println!("System can run 7B parameter model");
    println!("Expected performance: {:?}", compatibility.performance_estimate);
}
```

## 🚀 **BREAKING CHANGES & MIGRATION**


### **SystemProfile Constructor Update**


**OLD:**

```rust
SystemProfile::new(cpu_score, gpu_score, memory_score, storage_score, network_score, system_info)
```

**NEW:**

```rust
SystemProfile::new(
    cpu_score, gpu_score, 
    npu_score, tpu_score, fpga_score, arm_optimization_score,
    memory_score, storage_score, network_score, 
    system_info
)
```

### **Enhanced Workload Requirements**


Workloads can now specify:

- Required AI accelerator types (NPU/TPU/FPGA)
- Minimum TOPS performance requirements
- ARM system optimizations
- Edge computing constraints

## 🎉 **TRANSFORMATION SUMMARY**


| **Capability** | **Before** | **After** | **Impact** |
|----------------|------------|-----------|------------|
| **AI Detection** | ❌ None | ✅ NPU/TPU/FPGA + TOPS | 🎆 **REVOLUTIONARY** |
| **Workload Types** | 6 basic types | 15+ AI-focused types | ⭐⭐⭐⭐⭐ |
| **Scoring** | 5 basic scores | 10+ AI-aware scores | ⭐⭐⭐⭐⭐ |
| **ARM Support** | ❌ None | ✅ Pi/Jetson/Apple Silicon | ⭐⭐⭐⭐⭐ |
| **Performance Metrics** | Generic | TOPS-based + specialized | ⭐⭐⭐⭐⭐ |

**🚀 Result: system-analysis transforms from basic hardware detection to the most comprehensive AI-focused system analysis library in Rust!**