use std::fmt::{self, Write};
use std::str::FromStr;
use secp256k1::{self, Secp256k1};
use secp256k1::key::{PublicKey, SecretKey};
use util::address::Address;
use consensus::encode;
use network::constants::Network;
use util::base58;
#[derive(Clone, PartialEq, Eq)]
pub struct Privkey {
pub compressed: bool,
pub network: Network,
pub key: SecretKey
}
impl Privkey {
#[inline]
pub fn from_secret_key(key: SecretKey, compressed: bool, network: Network) -> Privkey {
Privkey {
compressed: compressed,
network: network,
key: key,
}
}
pub fn public_key<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
PublicKey::from_secret_key(secp, &self.key)
}
#[inline]
pub fn to_address<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> Address {
Address::p2wpkh(&self.public_key(secp), self.network)
}
#[inline]
pub fn to_legacy_address<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> Address {
if self.compressed {
Address::p2pkh(&self.public_key(secp), self.network)
}
else {
Address::p2upkh(&self.public_key(secp), self.network)
}
}
#[inline]
pub fn secret_key(&self) -> &SecretKey {
&self.key
}
#[inline]
pub fn into_secret_key(self) -> SecretKey {
self.key
}
#[inline]
pub fn network(&self) -> Network {
self.network
}
#[inline]
pub fn is_compressed(&self) -> bool {
self.compressed
}
pub fn fmt_wif(&self, fmt: &mut fmt::Write) -> fmt::Result {
let mut ret = [0; 34];
ret[0] = match self.network {
Network::Bitcoin => 128,
Network::Testnet | Network::Regtest => 239,
};
ret[1..33].copy_from_slice(&self.key[..]);
let privkey = if self.compressed {
ret[33] = 1;
base58::check_encode_slice(&ret[..])
} else {
base58::check_encode_slice(&ret[..33])
};
fmt.write_str(&privkey)
}
#[inline]
pub fn to_wif(&self) -> String {
let mut buf = String::new();
buf.write_fmt(format_args!("{}", self)).unwrap();
buf.shrink_to_fit();
buf
}
pub fn from_wif(wif: &str) -> Result<Privkey, encode::Error> {
let data = base58::from_check(wif)?;
let compressed = match data.len() {
33 => false,
34 => true,
_ => { return Err(encode::Error::Base58(base58::Error::InvalidLength(data.len()))); }
};
let network = match data[0] {
128 => Network::Bitcoin,
239 => Network::Testnet,
x => { return Err(encode::Error::Base58(base58::Error::InvalidVersion(vec![x]))); }
};
let key = SecretKey::from_slice(&data[1..33])
.map_err(|_| base58::Error::Other("Secret key out of range".to_owned()))?;
Ok(Privkey {
compressed: compressed,
network: network,
key: key
})
}
}
impl fmt::Display for Privkey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.fmt_wif(f)
}
}
impl fmt::Debug for Privkey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[private key data]")
}
}
impl FromStr for Privkey {
type Err = encode::Error;
fn from_str(s: &str) -> Result<Privkey, encode::Error> {
Privkey::from_wif(s)
}
}
#[cfg(test)]
mod tests {
use super::Privkey;
use secp256k1::Secp256k1;
use std::str::FromStr;
use network::constants::Network::Testnet;
use network::constants::Network::Bitcoin;
#[test]
fn test_key_derivation() {
let sk = Privkey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(sk.network(), Testnet);
assert_eq!(sk.is_compressed(), true);
assert_eq!(&sk.to_wif(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let secp = Secp256k1::new();
let pk = sk.to_legacy_address(&secp);
assert_eq!(&pk.to_string(), "mqwpxxvfv3QbM8PU8uBx2jaNt9btQqvQNx");
assert_eq!(&sk.to_string(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let sk_str =
Privkey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(&sk.to_wif(), &sk_str.to_wif());
let sk = Privkey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
assert_eq!(sk.network(), Bitcoin);
assert_eq!(sk.is_compressed(), false);
assert_eq!(&sk.to_wif(), "5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3");
let secp = Secp256k1::new();
let pk = sk.to_legacy_address(&secp);
assert_eq!(&pk.to_string(), "1GhQvF6dL8xa6wBxLnWmHcQsurx9RxiMc8");
}
}