1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
//! Contains utilities for parsing a WASM module to retrieve the information needed by [`super::WasmObject`]
use super::WasmError;
use crate::base::{ObjectKind, Symbol};
use wasmparser::{ImportSectionEntryType, Payload, Validator};
impl<'data> super::WasmObject<'data> {
/// Tries to parse a WASM from the given slice.
pub fn parse(data: &'data [u8]) -> Result<Self, WasmError> {
let mut code_offset = 0;
let mut build_id = None;
let mut dwarf_sections = Vec::new();
let mut kind = ObjectKind::Debug;
// In "normal" wasm modules the only types will be function signatures, but in the future it
// could contain types used for module linking, but we don't actually care about the types,
// just that the function references a valid signature, so we just keep a bitset of the function
// signatures to verify that
let mut func_sigs = bitvec::vec::BitVec::<usize, bitvec::order::Lsb0>::new();
let mut validator = Validator::new();
let mut funcs = Vec::<Symbol>::new();
let mut num_imported_funcs = 0u32;
// Parse the wasm file to pull out the function and their starting address, size, and name
// Note that the order of the payloads here are the order that they will appear in (valid)
// wasm binaries, other than the sections that we need to parse to validate the module, which
// are at the end
for payload in wasmparser::Parser::new(0).parse_all(data) {
let payload = payload?;
match payload {
// This should always be first, and is necessary to prepare the validator since the
// version determines which parts of the spec can be used
Payload::Version { num, range } => {
validator.version(num, &range)?;
}
// The type section contains, well, types, specifically, function signatures that are
// later referenced by the function section.
Payload::TypeSection(tsr) => {
validator.type_section(&tsr)?;
func_sigs.resize(tsr.get_count() as usize, false);
let fs = func_sigs.as_mut_bitslice();
for (i, ty) in tsr.into_iter().enumerate() {
if let wasmparser::TypeDef::Func(_) = ty? {
fs.set(i, true);
}
}
}
// Imported functions and local functions both use the same ID space, but imported
// functions are never exposed, so we just need to account for the id offset later
// when parsing the local functions
Payload::ImportSection(isr) => {
validator.import_section(&isr)?;
for import in isr {
let import = import?;
if let ImportSectionEntryType::Function(id) = import.ty {
if !func_sigs
.as_bitslice()
.get(id as usize)
.as_deref()
.unwrap_or(&false)
{
return Err(WasmError::UnknownFunctionType);
}
num_imported_funcs += 1;
}
}
}
// The function section declares all of the local functions present in the module
Payload::FunctionSection(fsr) => {
validator.function_section(&fsr)?;
if fsr.get_count() > 0 {
kind = ObjectKind::Library;
}
funcs.reserve(fsr.get_count() as usize);
// We actually don't care about the type signature of the function, other than that
// they exist
for id in fsr {
if !func_sigs
.as_bitslice()
.get(id? as usize)
.as_deref()
.unwrap_or(&false)
{
return Err(WasmError::UnknownFunctionType);
}
}
}
// The code section contains the actual function bodies, this payload is emitted at
// the beginning of the section. This one is important as the code section offset is
// used to calculate relative addresses in a `DwarfDebugSession`
Payload::CodeSectionStart { range, count, .. } => {
code_offset = range.start as u64;
validator.code_section_start(count, &range)?;
}
// We get one of these for each local function body
Payload::CodeSectionEntry(body) => {
let validator = validator.code_section_entry()?;
let (address, size) = get_function_info(body, validator)?;
// Though we have an accurate? size of the function body, the old method of symbol
// iterating with walrus extends the size of each body to be contiguous with the
// next function, so we do the same, other than the final function
if let Some(prev) = funcs.last_mut() {
prev.size = address - prev.address;
}
funcs.push(Symbol {
name: None,
address,
size,
});
}
Payload::ModuleSectionStart { count, range, .. } => {
validator.module_section_start(count, &range)?;
}
Payload::DataSection(dsr) => {
validator.data_section(&dsr)?;
}
// There are several custom sections that we need
Payload::CustomSection {
name,
data,
data_offset,
..
} => {
match name {
// this section is not defined yet
// see https://github.com/WebAssembly/tool-conventions/issues/133
"build_id" => {
build_id = Some(data);
}
// All of the dwarf debug sections (.debug_frame, .debug_info etc) start with a `.`, and
// are the only ones we need for walking the debug info
debug if debug.starts_with('.') => {
dwarf_sections.push((name, data));
}
// The name section contains the symbol names for items, notably functions
"name" => {
let nsr = wasmparser::NameSectionReader::new(data, data_offset)?;
for name in nsr {
if let wasmparser::Name::Function(fnames) = name? {
let mut map = fnames.get_map()?;
for _ in 0..map.get_count() {
let fname = map.read()?;
// The names for imported functions are also in this table, but
// we don't care about them
if fname.index >= num_imported_funcs {
if let Some(func) = funcs.get_mut(
(fname.index - num_imported_funcs) as usize,
) {
func.name =
Some(std::borrow::Cow::Borrowed(fname.name));
}
}
}
}
}
}
_ => {}
}
}
// Final
Payload::End => validator.end()?,
// The following sections are not used by this crate, but some (eg table/memory/global)
// are needed to validate the sections that we do care about, so we just validate all
// of the sections we don't use to be sure
Payload::TableSection(tsr) => {
validator.table_section(&tsr)?;
}
Payload::MemorySection(msr) => {
validator.memory_section(&msr)?;
}
Payload::TagSection(tsr) => {
validator.tag_section(&tsr)?;
}
Payload::GlobalSection(gsr) => {
validator.global_section(&gsr)?;
}
Payload::ExportSection(esr) => {
validator.export_section(&esr)?;
}
Payload::StartSection { func, range } => {
validator.start_section(func, &range)?;
}
Payload::ElementSection(esr) => {
validator.element_section(&esr)?;
}
Payload::DataCountSection { count, range } => {
validator.data_count_section(count, &range)?;
}
Payload::UnknownSection { id, range, .. } => {
validator.unknown_section(id, &range)?;
}
_ => {}
}
}
Ok(Self {
dwarf_sections,
funcs,
build_id,
data,
code_offset,
kind,
})
}
}
fn get_function_info(
body: wasmparser::FunctionBody,
mut validator: wasmparser::FuncValidator<wasmparser::ValidatorResources>,
) -> Result<(u64, u64), WasmError> {
let mut body = body.get_binary_reader();
let function_address = body.original_position() as u64;
// locals, we _can_ just skip this, but might as well validate while we're here
{
for _ in 0..body.read_var_u32()? {
let pos = body.original_position();
let count = body.read_var_u32()?;
let ty = body.read_type()?;
validator.define_locals(pos, count, ty)?;
}
}
while !body.eof() {
let pos = body.original_position();
let inst = body.read_operator()?;
validator.op(pos, &inst)?;
}
validator.finish(body.original_position())?;
Ok((
function_address,
body.original_position() as u64 - function_address,
))
}