1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
use core::future::Future;
use syunit::*;
use crate::Setup;
// ####################
// # SUBMODULES #
// ####################
/// A module for async components like a basic DC-motor. These components cannot move certain distances or to absolute positions
pub mod asyn;
mod comps;
pub use comps::{Conveyor, Gear, LinearAxis};
/// A module for component groups, as they are used in various robots. The components are all sharing the same
/// [StepperConfig](crate::data::StepperConfig) and their movements are coordinated.
pub mod group;
pub use group::SyncActuatorGroup;
/// ALl the parent structures used
pub mod parent;
/// Stepper motors and their unique methods and traits
pub mod stepper;
pub use stepper::{StepperActuator, Stepper};
//
// #####################
// # Interruptor #
// #####################
/// A trait for structs that help interrupting or watching movement processes, the most common use are measurement systems
pub trait Interruptor {
/// Direction of the interruptor
/// - If `None` the interruptor is not dependent on a movement direction
/// - If `Some` the interruptor is only active when moving in the given direction
///
/// ### Temporary dependence
///
/// If an interruptor was previously triggered by a movement, the control applies a temporary direction that lasts as long as
/// the interruptor is triggered. Otherwise a not direction dependent switch would block movements completely
fn dir(&self) -> Option<Direction>;
/// Set temporary direction used to prevent locking of the axis
///
/// - A `Some` value sets the direction
/// - A `None` value resets the direction
///
/// See `dir` for information about temporary direction
fn set_temp_dir(&mut self, dir_opt : Option<Direction>);
/// Runs a check of the movement process and Interrupts if it has a reason to
fn check(&mut self, gamma : Gamma) -> Option<InterruptReason>;
}
/// Reasons why an interrupt was triggered
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
pub enum InterruptReason {
/// A virtual end or a switch has been reached
EndReached,
/// The component has been overloaded
Overload,
/// Another error has occured
Error
}
/// Represents an interruptible component, meaning `Interruptors` can be attached to modify the movement process
pub trait Interruptible {
/// Add an interruptor to the component, often used for measurements or other processes checking the movement
fn add_interruptor(&mut self, interruptor : Box<dyn Interruptor + Send>);
/// Calls `add_interruptor` on an owned object
fn add_interruptor_inline(mut self, interruptor : Box<dyn Interruptor + Send>) -> Self
where
Self : Sized
{
self.add_interruptor(interruptor);
self
}
/// Returns the interrupt reason if there is any (returns `None` otherwise)
///
/// # Note
///
/// Executing this function will replace the reason with `None`, so if you need to access the value multiple times, you have to store it yourself
fn intr_reason(&mut self) -> Option<InterruptReason>;
}
//
// ######################
// # SyncActuator #
// ######################
/// General Error type for `SyncActuators`
#[derive(Clone, Debug)]
pub enum SyncActuatorError {
/// The delta distance given is invalid
InvaldDeltaDistance(Delta),
// Motor specific errors
/// An error that occured with the `StepperBuilder` for a stepper motor
StepperBuilderError(crate::act::stepper::BuilderError),
/// An error that occured with the `StepperController` of a stepper motor
StepperCtrlError(crate::act::stepper::ControllerError),
}
impl core::fmt::Display for SyncActuatorError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("{:?}", self))
}
}
impl std::error::Error for SyncActuatorError { }
/// A `Future` for drive operations
pub enum SyncDriveFuture {
/// The movement is still in process
Driving,
/// The movement is done, eiter successfully or not
Done(Result<(), SyncActuatorError>)
}
impl Future for SyncDriveFuture {
type Output = Result<(), SyncActuatorError>;
fn poll(self: core::pin::Pin<&mut Self>, _cx: &mut core::task::Context<'_>) -> std::task::Poll<Self::Output> {
match self.get_mut() {
Self::Driving => core::task::Poll::Pending,
Self::Done(v) => core::task::Poll::Ready(v.clone())
}
}
}
/// Trait for defining controls and components of synchronous actuators
///
/// # Parent components
///
/// Components can have multiple layers, for example take a stepper motor with a geaerbox attached to it. The stepper motor and both combined will be a component, the later having
/// the stepper motor component defined as it's parent component. (See [Gear])
pub trait SyncActuator : Setup {
// Movement
/// Moves the component by the relative distance as fast as possible, halts the script until
/// the movement is finshed and returns the actual **relative** distance travelled
fn drive_rel(&mut self, delta : Delta, speed : Factor) -> SyncDriveFuture;
/// Moves the component to the given position as fast as possible, halts the script until the
/// movement is finished and returns the actual **relative** distance travelled.
#[inline]
fn drive_abs(&mut self, gamma : Gamma, speed : Factor) -> SyncDriveFuture {
let delta = gamma - self.gamma();
self.drive_rel(delta, speed)
}
//
// Position
/// Returns the **absolute** position of the component.
///
/// ```rust
/// use syact::prelude::*;
///
/// // Position of components
/// const POS : Gamma = Gamma(10.0);
///
/// // Create a new cylinder (implements SyncComp)
/// let mut cylinder = LinearAxis::new(
/// // Stepper Motor as subcomponent (also implements SyncComp)
/// Stepper::new_gen().unwrap(),
/// 0.5); // Ratio is set to 0.5, which means for each radian the motor moves, the cylinder moves for 0.5 mm
///
/// cylinder.set_gamma(POS);
///
/// assert!((cylinder.gamma() - POS).abs() < Delta(0.05)); // Check with small tolerance
/// ```
fn gamma(&self) -> Gamma;
/// Overwrite the current **absolute** position of the component without triggering actual movements.
///
/// Be aware that only full steps can be written in distance, meaning that for position comparision a
/// small tolerance has to be considered, as the value written won't be the exact gamma value given.
///
/// ```rust
/// use syact::prelude::*;
///
/// // Position of components
/// const POS : Gamma = Gamma(10.0);
///
/// // Create a new cylinder (implements SyncComp)
/// let mut cylinder = LinearAxis::new(
/// // Stepper Motor as subcomponent (also implements SyncComp)
/// Stepper::new_gen().unwrap(),
/// 0.5); // Ratio is set to 0.5, which means for each radian the motor moves, the cylinder moves for 0.5 mm
///
/// cylinder.set_gamma(POS);
///
/// assert!((cylinder.gamma() - POS).abs() < Delta(0.05)); // Check with small tolerance
/// ```
fn set_gamma(&mut self, gamma : Gamma);
/// Returns the maximum velocity of the component. It can be set using `SyncComp::set_velocity_max()`.
/// The component cannot move faster than the velocity given (valid for all movement operations)
///
/// # Panics
///
/// - Panics if no parent component or an override is provided
fn velocity_max(&self) -> Velocity;
/// Set the maximum velocity of the component, current maximum velocity can be access with `SyncComp::velocity_max()`
///
/// # Panics
///
/// - Panics if no parent component or an override is provided
/// - Panics if the velocity given is higher than the maximum velocity recommended (e.g. `StepperConst::velocity_max()`)
fn set_velocity_max(&mut self, velocity_max : Velocity);
/// Returns if any limit positions have been reached. The value returned can either be radians or millimeters,
/// depending on the type of component.
///
/// # Limits
///
/// If the return value
/// - greater than 0, the maximum has been reached by the returned amount
/// - is smaller than 0, the minimum has been reached by the returned amount
/// - equal to 0, no limit has been reached
/// - NaN, no limit has been set yet
///
/// # Example
///
/// ```rust
/// use syact::prelude::*;
///
/// // Limits
/// const LIM_MAX : Gamma = Gamma(1.0);
/// const LIM_MIN : Gamma = Gamma(-2.0);
///
/// const LIM_MIN_LOWER : Gamma = Gamma(-3.0);
///
/// // Create a new gear bearing (implements SyncComp)
/// let mut gear = Gear::new(
/// // Stepper Motor as subcomponent (also implements SyncComp)
/// Stepper::new_gen().unwrap(),
/// 0.5); // Ratio is set to 0.5, which means for each radian the motor moves, the bearing moves for half a radian
///
/// gear.set_limits(Some(LIM_MIN), Some(LIM_MAX));
///
/// assert_eq!(gear.limits_for_gamma(Gamma(1.5)), Delta(0.5)); // Over the maximum
/// assert_eq!(gear.limits_for_gamma(Gamma(0.5)), Delta::ZERO); // In range
/// assert_eq!(gear.limits_for_gamma(Gamma(-4.0)), Delta(-2.0)); // Under the minimum
///
/// gear.set_limits(Some(LIM_MIN_LOWER), None); // Overwriting only `min` limit
///
/// assert_eq!(gear.limits_for_gamma(Gamma(1.5)), Delta(0.5)); // Over the maximum
/// assert_eq!(gear.limits_for_gamma(Gamma(0.5)), Delta::ZERO); // In range
/// assert_eq!(gear.limits_for_gamma(Gamma(-4.0)), Delta(-1.0)); // Under the minimum, but less
///
/// gear.overwrite_limits(Some(LIM_MIN_LOWER), None); // Overwriting only both limits with [overwrite_limits()]
///
/// assert_eq!(gear.limits_for_gamma(Gamma(1.5)), Delta::ZERO); // In range, as the `max` limit has been deleted
/// assert_eq!(gear.limits_for_gamma(Gamma(0.5)), Delta::ZERO); // In range
/// assert_eq!(gear.limits_for_gamma(Gamma(-4.0)), Delta(-1.0)); // Under the minimum, but less
/// ```
fn limits_for_gamma(&self, gamma : Gamma) -> Delta;
/// Sets an endpoint in the current direction by modifying the components limits. For example, when the component is moving
/// in the positive direction and the endpoint is set, this function will overwrite the current maximum limit with the current
/// gamma value. The component is then not allowed to move in the current direction anymore.
fn set_end(&mut self, set_gamma : Gamma);
/// Set the limits for the minimum and maximum angles that the component can reach, note that the limit will
/// be converted and transfered to the parent component if defined.
///
/// Unlike [SyncComp::overwrite_limits()], this function does not overwrite the current `min` or `max` limits if they
/// are set to `None`.
///
/// ```rust
/// use syact::prelude::*;
///
/// // Limits
/// const LIM_MAX : Gamma = Gamma(1.0);
/// const LIM_MIN : Gamma = Gamma(-2.0);
///
/// const LIM_MIN_LOWER : Gamma = Gamma(-3.0);
///
/// // Create a new gear bearing (implements SyncComp)
/// let mut gear = Gear::new(
/// // Stepper Motor as subcomponent (also implements SyncComp)
/// Stepper::new_gen().unwrap(),
/// 0.5); // Ratio is set to 0.5, which means for each radian the motor moves, the bearing moves for half a radian
///
/// gear.set_limits(Some(LIM_MIN), Some(LIM_MAX));
///
/// assert_eq!(gear.limits_for_gamma(Gamma(1.5)), Delta(0.5)); // Over the maximum
/// assert_eq!(gear.limits_for_gamma(Gamma(0.5)), Delta::ZERO); // In range
/// assert_eq!(gear.limits_for_gamma(Gamma(-4.0)), Delta(-2.0)); // Under the minimum
///
/// gear.set_limits(Some(LIM_MIN_LOWER), None); // Overwriting only `min` limit
///
/// assert_eq!(gear.limits_for_gamma(Gamma(1.5)), Delta(0.5)); // Over the maximum
/// assert_eq!(gear.limits_for_gamma(Gamma(0.5)), Delta::ZERO); // In range
/// assert_eq!(gear.limits_for_gamma(Gamma(-4.0)), Delta(-1.0)); // Under the minimum, but less
///
/// gear.overwrite_limits(Some(LIM_MIN_LOWER), None); // Overwriting only both limits with [overwrite_limits()]
///
/// assert_eq!(gear.limits_for_gamma(Gamma(1.5)), Delta::ZERO); // In range, as the `max` limit has been deleted
/// assert_eq!(gear.limits_for_gamma(Gamma(0.5)), Delta::ZERO); // In range
/// assert_eq!(gear.limits_for_gamma(Gamma(-4.0)), Delta(-1.0)); // Under the minimum, but less
/// ```
fn set_limits(&mut self, min : Option<Gamma>, max : Option<Gamma>);
/// Set the limits for the minimum and maximum angles that the component can reach, note that the limit will
/// be converted and transfered to the parent component if this component has one.
///
/// The difference to [SyncComp::set_limits()] is that this function **overwrites** the current limits set.
///
/// ```rust
/// use syact::prelude::*;
///
/// // Limits
/// const LIM_MAX : Gamma = Gamma(1.0);
/// const LIM_MIN : Gamma = Gamma(-2.0);
///
/// const LIM_MIN_LOWER : Gamma = Gamma(-3.0);
///
/// // Create a new gear bearing (implements SyncComp)
/// let mut gear = Gear::new(
/// // Stepper Motor as subcomponent (also implements SyncComp)
/// Stepper::new_gen().unwrap(),
/// 0.5); // Ratio is set to 0.5, which means for each radian the motor moves, the bearing moves for half a radian
///
/// gear.set_limits(Some(LIM_MIN), Some(LIM_MAX));
///
/// assert_eq!(gear.limits_for_gamma(Gamma(1.5)), Delta(0.5)); // Over the maximum
/// assert_eq!(gear.limits_for_gamma(Gamma(0.5)), Delta::ZERO); // In range
/// assert_eq!(gear.limits_for_gamma(Gamma(-4.0)), Delta(-2.0)); // Under the minimum
///
/// gear.set_limits(Some(LIM_MIN_LOWER), None); // Overwriting only `min` limit
///
/// assert_eq!(gear.limits_for_gamma(Gamma(1.5)), Delta(0.5)); // Over the maximum
/// assert_eq!(gear.limits_for_gamma(Gamma(0.5)), Delta::ZERO); // In range
/// assert_eq!(gear.limits_for_gamma(Gamma(-4.0)), Delta(-1.0)); // Under the minimum, but less
///
/// gear.overwrite_limits(Some(LIM_MIN_LOWER), None); // Overwriting only both limits with [overwrite_limits()]
///
/// assert_eq!(gear.limits_for_gamma(Gamma(1.5)), Delta::ZERO); // In range, as the `max` limit has been deleted
/// assert_eq!(gear.limits_for_gamma(Gamma(0.5)), Delta::ZERO); // In range
/// assert_eq!(gear.limits_for_gamma(Gamma(-4.0)), Delta(-1.0)); // Under the minimum, but less
/// ```
fn overwrite_limits(&mut self, min : Option<Gamma>, max : Option<Gamma>);
//
// Load calculation
/// Will always be positive
fn force_gen(&self) -> Force;
/// Positive means CW direction
fn force_dir(&self) -> Force;
/// Apply a load force to the component, slowing down movements
///
/// ### General force
///
/// Force value will always be made positive, as it will be subtracted in the calculation no matter how
///
/// ```rust
/// use syact::prelude::*;
///
/// // Force to act upon the component
/// const FORCE : Force = Force(0.2);
///
/// // Create a new gear bearing (implements SyncComp)
/// let mut gear = Gear::new(
/// // Stepper Motor as subcomponent (also implements SyncComp)
/// Stepper::new_gen().unwrap(),
/// 0.5); // Ratio is set to 0.5, which means for each radian the motor moves, the bearing moves for half a radian
///
/// gear.apply_gen_force(FORCE);
///
/// assert_eq!(Gamma(2.0), gear.gamma_for_child(Gamma(1.0)));
/// assert_eq!(Force(0.1), gear.child().force_gen()); // Forces get smaller for smaller gears
/// ```
fn apply_gen_force(&mut self, force : Force) -> Result<(), crate::Error>;
/// Value positive in CW direction
fn apply_dir_force(&mut self, force : Force) -> Result<(), crate::Error>;
// Inertia
/// Returns the inertia applied to the component
fn inertia(&self) -> Inertia;
/// Apply a load inertia to the component, slowing down movements
///
/// # Panics
///
/// Panics if no parent component or override of the function has been provided.
///
/// ```rust
/// use syact::prelude::*;
///
/// // Inertia to act upon the component
/// const INERTIA : Inertia = Inertia(4.0);
///
/// // Create a new gear bearing (implements SyncComp)
/// let mut gear = Gear::new(
/// // Stepper Motor as subcomponent (also implements SyncComp)
/// Stepper::new_gen().unwrap(),
/// 0.5); // Ratio is set to 0.5, which means for each radian the motor moves, the bearing moves for half a radian
///
/// // Applies the inertia to the gearbearing component
/// gear.apply_inertia(INERTIA);
///
/// assert_eq!(Gamma(2.0), gear.gamma_for_child(Gamma(1.0)));
/// assert_eq!(Inertia(1.0), gear.child().inertia());
/// ```
fn apply_inertia(&mut self, inertia : Inertia);
//
}
//