swamp_script_analyzer/
lib.rs

1/*
2 * Copyright (c) Peter Bjorklund. All rights reserved. https://github.com/swamp/script
3 * Licensed under the MIT License. See LICENSE in the project root for license information.
4 */
5pub mod access;
6pub mod call;
7pub mod constant;
8pub mod def;
9pub mod err;
10pub mod internal;
11pub mod literal;
12pub mod operator;
13pub mod pattern;
14pub mod prelude;
15mod structure;
16pub mod types;
17pub mod variable;
18use crate::err::{Error, ErrorKind};
19use seq_map::SeqMap;
20use std::mem::take;
21use std::num::{ParseFloatError, ParseIntError};
22use std::rc::Rc;
23use swamp_script_semantic::modules::ModuleRef;
24use swamp_script_semantic::prelude::*;
25use swamp_script_semantic::symtbl::{FuncDef, Symbol, SymbolTable, SymbolTableRef};
26use swamp_script_semantic::{
27    AnonymousStructLiteral, ArgumentExpressionOrLocation, LocationAccess, LocationAccessKind,
28    MutOrImmutableExpression, NormalPattern, Postfix, PostfixKind, RangeMode,
29    SingleLocationExpression, SingleLocationExpressionKind, SingleMutLocationExpression,
30    TypeWithMut, WhenBinding, check_assignable_anonymous_struct_types, same_anon_struct_ref,
31};
32use swamp_script_source_map::SourceMap;
33use tracing::error;
34use tracing::info;
35
36#[must_use]
37pub fn convert_range_mode(range_mode: &swamp_script_ast::RangeMode) -> RangeMode {
38    match range_mode {
39        swamp_script_ast::RangeMode::Inclusive => RangeMode::Inclusive,
40        swamp_script_ast::RangeMode::Exclusive => RangeMode::Exclusive,
41    }
42}
43
44#[derive(Copy, Clone, Eq, PartialEq, Debug)]
45pub enum LocationSide {
46    Lhs,
47    Rhs,
48}
49
50#[derive(Debug)]
51pub struct AutoUseModules {
52    pub modules: Vec<SymbolTableRef>,
53}
54
55#[derive(Debug)]
56pub struct Program {
57    pub state: ProgramState,
58    pub modules: Modules,
59    pub auto_use_modules: AutoUseModules,
60}
61
62impl Default for Program {
63    fn default() -> Self {
64        Self::new()
65    }
66}
67
68impl Program {
69    #[must_use]
70    pub fn new() -> Self {
71        Self {
72            state: ProgramState::new(),
73            modules: Modules::new(),
74            auto_use_modules: AutoUseModules {
75                modules: Vec::new(),
76            },
77        }
78    }
79}
80
81#[must_use]
82pub const fn convert_span(without: &swamp_script_ast::SpanWithoutFileId, file_id: FileId) -> Span {
83    Span {
84        file_id,
85        offset: without.offset,
86        length: without.length,
87    }
88}
89
90pub const SPARSE_TYPE_ID: TypeNumber = 999;
91pub const SPARSE_ID_TYPE_ID: TypeNumber = 998;
92
93#[derive(Debug, Clone, Copy, PartialEq, Eq)]
94pub enum TypeContextScope {
95    InsideFunction, // Allow return, but not break
96    InsideLoop,     // Allow break and return
97    /// Inside both a function and a loop
98    /// Allows: return, break, and continue
99    InsideBothFunctionAndLoop,
100    ArgumentOrOutsideFunction, // Allow neither break nor return
101}
102
103impl TypeContextScope {
104    /// Returns true if return statements are allowed in this scope
105    #[must_use]
106    pub fn allows_return(&self) -> bool {
107        matches!(self, Self::InsideFunction | Self::InsideBothFunctionAndLoop)
108    }
109
110    /// Returns true if break statements are allowed in this scope
111    #[must_use]
112    pub fn allows_break(&self) -> bool {
113        matches!(self, Self::InsideLoop | Self::InsideBothFunctionAndLoop)
114    }
115
116    /// Returns true if continue statements are allowed in this scope
117    #[must_use]
118    pub fn allows_continue(&self) -> bool {
119        self.allows_break() // Same rules as break
120    }
121
122    /// Creates a new scope when entering a function
123    #[must_use]
124    pub fn enter_function(&self) -> Self {
125        match self {
126            Self::ArgumentOrOutsideFunction => Self::InsideFunction,
127            Self::InsideLoop => Self::InsideBothFunctionAndLoop,
128            _ => *self,
129        }
130    }
131
132    /// Creates a new scope when entering a loop
133    #[must_use]
134    pub fn enter_loop(&self) -> Self {
135        match self {
136            Self::ArgumentOrOutsideFunction => Self::InsideLoop,
137            Self::InsideFunction => Self::InsideBothFunctionAndLoop,
138            _ => *self,
139        }
140    }
141}
142
143/// Type checking context
144#[derive(Debug, Clone)]
145pub struct TypeContext<'a> {
146    /// Expected type for the current expression
147    pub expected_type: Option<&'a Type>,
148
149    /// Return type of the enclosing function
150    pub return_type: Option<&'a Type>,
151
152    pub scope: TypeContextScope,
153
154    pub is_in_compare_like: bool,
155}
156
157impl TypeContext<'_> {
158    pub(crate) fn allows_continue(&self) -> bool {
159        self.scope.allows_continue() && self.is_in_compare_like
160    }
161}
162
163impl TypeContext<'_> {
164    pub(crate) fn allows_return(&self) -> bool {
165        self.scope.allows_return() && self.is_in_compare_like
166    }
167}
168
169impl TypeContext<'_> {
170    pub(crate) fn allows_break(&self) -> bool {
171        self.scope.allows_break()
172    }
173}
174
175impl<'a> TypeContext<'a> {
176    #[must_use]
177    pub const fn new(
178        expected_type: Option<&'a Type>,
179        return_type: Option<&'a Type>,
180        scope: TypeContextScope,
181    ) -> Self {
182        Self {
183            expected_type,
184            return_type,
185            scope,
186            is_in_compare_like: false,
187        }
188    }
189
190    pub const fn new_argument(required_type: &'a Type) -> Self {
191        Self {
192            expected_type: Some(required_type),
193            return_type: None,
194            scope: TypeContextScope::ArgumentOrOutsideFunction,
195            is_in_compare_like: false,
196        }
197    }
198
199    #[must_use]
200    pub const fn new_unsure_argument(expected_type: Option<&'a Type>) -> Self {
201        Self {
202            expected_type,
203            return_type: None,
204            scope: TypeContextScope::ArgumentOrOutsideFunction,
205            is_in_compare_like: false,
206        }
207    }
208
209    #[must_use]
210    pub const fn new_anything_argument() -> Self {
211        Self {
212            expected_type: None,
213            return_type: None,
214            scope: TypeContextScope::ArgumentOrOutsideFunction,
215            is_in_compare_like: false,
216        }
217    }
218
219    #[must_use]
220    pub const fn new_function(required_type: &'a Type) -> Self {
221        Self {
222            expected_type: Some(required_type),
223            return_type: Some(required_type),
224            scope: TypeContextScope::InsideFunction,
225            is_in_compare_like: false,
226        }
227    }
228
229    #[must_use]
230    pub const fn with_expected_type(&self, expected_type: Option<&'a Type>) -> Self {
231        Self {
232            expected_type,
233            return_type: self.return_type,
234            scope: self.scope,
235            is_in_compare_like: self.is_in_compare_like,
236        }
237    }
238
239    pub(crate) const fn we_know_expected_type(&self, found_type: &'a Type) -> Self {
240        self.with_expected_type(Some(found_type))
241    }
242
243    /// # Panics
244    ///
245    #[must_use]
246    pub const fn for_return(&self) -> Self {
247        Self {
248            expected_type: Some(self.return_type.unwrap()),
249            return_type: Some(self.return_type.unwrap()),
250            scope: TypeContextScope::ArgumentOrOutsideFunction,
251            is_in_compare_like: false,
252        }
253    }
254
255    #[must_use]
256    pub fn enter_function(&self, required_type: &'a Type) -> Self {
257        Self {
258            expected_type: Some(required_type),
259            return_type: Some(required_type),
260            scope: self.scope.enter_function(),
261            is_in_compare_like: false,
262        }
263    }
264
265    /// Creates a new scope when entering a loop
266    #[must_use]
267    pub fn enter_loop(&self) -> Self {
268        Self {
269            expected_type: self.expected_type,
270            return_type: self.return_type,
271            scope: self.scope.enter_loop(),
272            is_in_compare_like: self.is_in_compare_like,
273        }
274    }
275
276    /// Creates a new scope when entering a loop
277    #[must_use]
278    pub fn enter_compare(&self) -> Self {
279        Self {
280            expected_type: self.expected_type,
281            return_type: self.return_type,
282            scope: self.scope.enter_loop(),
283            is_in_compare_like: true,
284        }
285    }
286}
287
288#[derive(Debug, Eq, PartialEq)]
289pub enum BlockScopeMode {
290    Open,
291    Closed,
292}
293
294#[derive(Debug)]
295pub struct BlockScope {
296    mode: BlockScopeMode,
297    variables: SeqMap<String, VariableRef>,
298}
299
300impl Default for BlockScope {
301    fn default() -> Self {
302        Self::new()
303    }
304}
305
306impl BlockScope {
307    #[must_use]
308    pub fn new() -> Self {
309        Self {
310            mode: BlockScopeMode::Open,
311            variables: SeqMap::new(),
312        }
313    }
314}
315
316pub struct SharedState<'a> {
317    pub state: &'a mut ProgramState,
318    pub lookup_table: SymbolTable,
319    pub definition_table: SymbolTable,
320    pub modules: &'a Modules,
321    pub source_map: &'a SourceMap,
322    pub file_id: FileId,
323}
324
325impl<'a> SharedState<'a> {
326    #[must_use]
327    pub fn get_symbol_table(&'a self, path: &[String]) -> Option<&'a SymbolTable> {
328        if path.is_empty() {
329            return Some(&self.lookup_table);
330        }
331        self.get_module(path)
332            .map_or(None, |module| Some(&module.namespace.symbol_table))
333    }
334
335    #[must_use]
336    pub fn get_module(&'a self, path: &[String]) -> Option<&'a ModuleRef> {
337        let resolved_path = {
338            self.lookup_table.get_package_version(&path[0]).map_or_else(
339                || path.to_vec(),
340                |found_version| {
341                    let mut new_path = path.to_vec();
342                    let complete_name = format!("{}-{found_version}", path[0]);
343                    info!(path=?path[0], found_version, complete_name, "switched out version");
344                    new_path[0] = complete_name;
345                    new_path
346                },
347            )
348        };
349
350        if path.len() == 1 {
351            if let Some(module_ref) = self.lookup_table.get_module_link(&path[0]) {
352                return Some(module_ref);
353            }
354        }
355
356        if let Some(x) = self.modules.get(&resolved_path) {
357            return Some(x);
358        }
359
360        None
361    }
362}
363
364pub struct FunctionScopeState {
365    pub block_scope_stack: Vec<BlockScope>,
366    pub return_type: Type,
367}
368
369impl FunctionScopeState {
370    #[must_use]
371    pub fn new(return_type: Type) -> Self {
372        Self {
373            block_scope_stack: vec![BlockScope::new()],
374            return_type,
375        }
376    }
377}
378
379pub struct Analyzer<'a> {
380    pub shared: SharedState<'a>,
381    scope: FunctionScopeState,
382    global: FunctionScopeState,
383}
384
385impl<'a> Analyzer<'a> {
386    pub fn new(
387        state: &'a mut ProgramState,
388        modules: &'a Modules,
389        source_map: &'a SourceMap,
390        file_id: FileId,
391    ) -> Self {
392        let shared = SharedState {
393            state,
394            lookup_table: SymbolTable::default(),
395            definition_table: SymbolTable::default(),
396            modules,
397            source_map,
398            file_id,
399        };
400        Self {
401            scope: FunctionScopeState::new(Type::Unit),
402            global: FunctionScopeState::new(Type::Unit),
403            shared,
404        }
405    }
406
407    fn start_function(&mut self, return_type: Type) {
408        self.global.block_scope_stack = take(&mut self.scope.block_scope_stack);
409        self.scope = FunctionScopeState::new(return_type);
410    }
411
412    fn stop_function(&mut self) {
413        self.scope.block_scope_stack = take(&mut self.global.block_scope_stack);
414    }
415
416    fn analyze_if_expression(
417        &mut self,
418        condition: &swamp_script_ast::Expression,
419        true_expression: &swamp_script_ast::Expression,
420        maybe_false_expression: Option<&swamp_script_ast::Expression>,
421        context: &TypeContext,
422    ) -> Result<Expression, Error> {
423        let resolved_condition = self.analyze_bool_argument_expression(condition)?;
424
425        let branch_context = context.enter_compare();
426
427        let true_expr = self.analyze_expression(true_expression, &branch_context)?;
428        let resolved_true = Box::new(true_expr);
429
430        let mut detected = context.expected_type.cloned();
431        if detected.is_none() && !matches!(resolved_true.ty, Type::Never) {
432            detected = Some(resolved_true.ty.clone());
433        }
434
435        // Analyze the false branch if it exists
436        let else_statements = if let Some(false_expression) = maybe_false_expression {
437            let else_context = branch_context.with_expected_type(detected.as_ref());
438            let else_expr = self.analyze_expression(false_expression, &else_context)?;
439            if detected.is_none() && !matches!(else_expr.ty, Type::Never) {
440                detected = Some(else_expr.ty.clone());
441            }
442
443            Some(Box::new(else_expr))
444        } else {
445            None
446        };
447
448        Ok(self.create_expr(
449            ExpressionKind::If(resolved_condition, resolved_true, else_statements),
450            detected.unwrap(),
451            &condition.node,
452        ))
453    }
454
455    fn get_text(&self, ast_node: &swamp_script_ast::Node) -> &str {
456        let span = Span {
457            file_id: self.shared.file_id,
458            offset: ast_node.span.offset,
459            length: ast_node.span.length,
460        };
461        self.shared.source_map.get_span_source(
462            self.shared.file_id,
463            span.offset as usize,
464            span.length as usize,
465        )
466    }
467
468    fn get_text_resolved(&self, resolved_node: &Node) -> &str {
469        let span = Span {
470            file_id: self.shared.file_id,
471            offset: resolved_node.span.offset,
472            length: resolved_node.span.length,
473        };
474        self.shared.source_map.get_span_source(
475            self.shared.file_id,
476            span.offset as usize,
477            span.length as usize,
478        )
479    }
480
481    fn get_path(&self, ident: &swamp_script_ast::QualifiedTypeIdentifier) -> (Vec<String>, String) {
482        let path = ident
483            .module_path
484            .as_ref()
485            .map_or_else(Vec::new, |found_path| {
486                let mut v = Vec::new();
487                for p in &found_path.0 {
488                    v.push(self.get_text(p).to_string());
489                }
490                v
491            });
492        (path, self.get_text(&ident.name.0).to_string())
493    }
494
495    fn analyze_return_type(
496        &mut self,
497        function: &swamp_script_ast::Function,
498    ) -> Result<Type, Error> {
499        let ast_return_type = match function {
500            swamp_script_ast::Function::Internal(x) => &x.declaration.return_type,
501            swamp_script_ast::Function::External(x) => &x.return_type,
502        };
503
504        let resolved_return_type = match ast_return_type {
505            None => Type::Unit,
506            Some(x) => self.analyze_type(x)?,
507        };
508
509        Ok(resolved_return_type)
510    }
511
512    fn analyze_function_body_expression(
513        &mut self,
514        expression: &swamp_script_ast::Expression,
515        return_type: &Type,
516    ) -> Result<Expression, Error> {
517        let context = TypeContext::new_function(return_type);
518        let resolved_statement = self.analyze_expression(expression, &context)?;
519
520        Ok(resolved_statement)
521    }
522
523    fn analyze_maybe_type(
524        &mut self,
525        maybe_type: Option<&swamp_script_ast::Type>,
526    ) -> Result<Type, Error> {
527        let found_type = match maybe_type {
528            None => Type::Unit,
529            Some(ast_type) => self.analyze_type(ast_type)?,
530        };
531        Ok(found_type)
532    }
533
534    fn analyze_for_pattern(
535        &mut self,
536        pattern: &swamp_script_ast::ForPattern,
537        key_type: Option<&Type>,
538        value_type: &Type,
539    ) -> Result<ForPattern, Error> {
540        match pattern {
541            swamp_script_ast::ForPattern::Single(var) => {
542                let variable_ref = self.create_local_variable(
543                    &var.identifier,
544                    Option::from(&var.is_mut),
545                    value_type,
546                )?;
547                Ok(ForPattern::Single(variable_ref))
548            }
549            swamp_script_ast::ForPattern::Pair(first, second) => {
550                let found_key = key_type.unwrap();
551                let first_var_ref = self.create_local_variable(
552                    &first.identifier,
553                    Option::from(&first.is_mut),
554                    found_key,
555                )?;
556                let second_var_ref = self.create_local_variable(
557                    &second.identifier,
558                    Option::from(&second.is_mut),
559                    value_type,
560                )?;
561                Ok(ForPattern::Pair(first_var_ref, second_var_ref))
562            }
563        }
564    }
565
566    fn analyze_parameters(
567        &mut self,
568        parameters: &Vec<swamp_script_ast::Parameter>,
569    ) -> Result<Vec<TypeForParameter>, Error> {
570        let mut resolved_parameters = Vec::new();
571        for parameter in parameters {
572            let param_type = self.analyze_type(&parameter.param_type)?;
573            resolved_parameters.push(TypeForParameter {
574                name: self.get_text(&parameter.variable.name).to_string(),
575                resolved_type: param_type,
576                is_mutable: parameter.variable.is_mutable.is_some(),
577                node: Some(ParameterNode {
578                    is_mutable: self.to_node_option(Option::from(&parameter.variable.is_mutable)),
579                    name: self.to_node(&parameter.variable.name),
580                }),
581            });
582        }
583        Ok(resolved_parameters)
584    }
585
586    /// # Errors
587    ///
588    pub fn analyze_immutable_argument(
589        &mut self,
590        ast_expression: &swamp_script_ast::Expression,
591        expected_type: &Type,
592    ) -> Result<Expression, Error> {
593        let context = TypeContext::new_argument(expected_type);
594        self.analyze_expression(ast_expression, &context)
595    }
596
597    /// # Errors
598    ///
599    pub fn analyze_start_chain_expression_get_mutability(
600        &mut self,
601        ast_expression: &swamp_script_ast::Expression,
602        expected_type: Option<&Type>,
603    ) -> Result<(Expression, bool), Error> {
604        let any_parameter_context = TypeContext::new_unsure_argument(expected_type);
605        let resolved = self.analyze_expression(ast_expression, &any_parameter_context)?;
606        let mutability = match resolved.kind {
607            ExpressionKind::VariableAccess(ref resolved_variable) => resolved_variable.is_mutable(),
608            _ => false,
609        };
610
611        Ok((resolved, mutability))
612    }
613
614    /// # Errors
615    ///
616    #[allow(clippy::too_many_lines)]
617    pub fn analyze_expression(
618        &mut self,
619        ast_expression: &swamp_script_ast::Expression,
620        context: &TypeContext,
621    ) -> Result<Expression, Error> {
622        let expr = self.analyze_expression_internal(ast_expression, context)?;
623
624        let encountered_type = expr.ty.clone();
625
626        if let Some(found_expected_type) = context.expected_type {
627            if found_expected_type.compatible_with(&encountered_type) {
628                return Ok(expr);
629            }
630
631            let result = self.coerce_expression(
632                expr,
633                found_expected_type,
634                &encountered_type,
635                &ast_expression.node,
636            )?;
637
638            return Ok(result);
639        }
640
641        Ok(expr)
642    }
643
644    /// # Errors
645    ///
646    #[allow(clippy::too_many_lines)]
647    pub fn analyze_expression_internal(
648        &mut self,
649        ast_expression: &swamp_script_ast::Expression,
650        context: &TypeContext,
651    ) -> Result<Expression, Error> {
652        let expression = match &ast_expression.kind {
653            swamp_script_ast::ExpressionKind::Break => {
654                self.analyze_break(context, &ast_expression.node)?
655            }
656            swamp_script_ast::ExpressionKind::Return(optional_expression) => self.analyze_return(
657                context,
658                optional_expression.as_deref(),
659                &ast_expression.node,
660            )?,
661
662            swamp_script_ast::ExpressionKind::Continue => {
663                self.analyze_continue(context, &ast_expression.node)?
664            }
665
666            // Lookups
667            swamp_script_ast::ExpressionKind::PostfixChain(postfix_chain) => {
668                self.analyze_postfix_chain(postfix_chain)?
669            }
670
671            swamp_script_ast::ExpressionKind::VariableDefinition(
672                variable,
673                coerce_type,
674                source_expression,
675            ) => self.analyze_create_variable(
676                variable,
677                Option::from(coerce_type),
678                source_expression,
679            )?,
680
681            swamp_script_ast::ExpressionKind::VariableAssignment(variable, source_expression) => {
682                self.analyze_variable_assignment(variable, source_expression)?
683            }
684            swamp_script_ast::ExpressionKind::DestructuringAssignment(variables, expression) => {
685                self.analyze_destructuring(&ast_expression.node, variables, expression)?
686            }
687
688            swamp_script_ast::ExpressionKind::StaticFunctionReference(qualified_identifier) => {
689                self.analyze_static_function_access(qualified_identifier)?
690            }
691            swamp_script_ast::ExpressionKind::IdentifierReference(variable) => {
692                self.analyze_identifier_reference(&variable.name)?
693            }
694
695            swamp_script_ast::ExpressionKind::StaticMemberFunctionReference(
696                type_identifier,
697                member_name,
698            ) => self.analyze_static_member_access(type_identifier, member_name)?,
699
700            swamp_script_ast::ExpressionKind::ConstantReference(constant_identifier) => {
701                self.analyze_constant_access(constant_identifier)?
702            }
703
704            swamp_script_ast::ExpressionKind::Assignment(location, source) => {
705                self.analyze_assignment(location, source)?
706            }
707            swamp_script_ast::ExpressionKind::CompoundAssignment(target, op, source) => {
708                self.analyze_assignment_compound(target, op, source)?
709            }
710
711            // Operator
712            swamp_script_ast::ExpressionKind::BinaryOp(resolved_a, operator, resolved_b) => {
713                let (resolved_op, result_type) =
714                    self.analyze_binary_op(resolved_a, operator, resolved_b)?;
715
716                self.create_expr(
717                    ExpressionKind::BinaryOp(resolved_op),
718                    result_type,
719                    &ast_expression.node,
720                )
721            }
722            swamp_script_ast::ExpressionKind::UnaryOp(operator, expression) => {
723                let (resolved_op, result_type) = self.analyze_unary_op(operator, expression)?;
724                self.create_expr(
725                    ExpressionKind::UnaryOp(resolved_op),
726                    result_type,
727                    &ast_expression.node,
728                )
729            }
730
731            swamp_script_ast::ExpressionKind::Block(expressions) => {
732                let (block, resulting_type) =
733                    self.analyze_block(&ast_expression.node, context, expressions)?;
734                self.create_expr(
735                    ExpressionKind::Block(block),
736                    resulting_type,
737                    &ast_expression.node,
738                )
739            }
740
741            swamp_script_ast::ExpressionKind::With(variable_bindings, expression) => {
742                self.analyze_with_expr(context, variable_bindings, expression)?
743            }
744
745            swamp_script_ast::ExpressionKind::When(variable_bindings, true_expr, else_expr) => {
746                self.analyze_when_expr(context, variable_bindings, true_expr, else_expr.as_deref())?
747            }
748
749            swamp_script_ast::ExpressionKind::InterpolatedString(string_parts) => {
750                let kind = ExpressionKind::InterpolatedString(
751                    self.analyze_interpolated_string(string_parts)?,
752                );
753
754                self.create_expr(kind, Type::String, &ast_expression.node)
755            }
756
757            // Creation
758            swamp_script_ast::ExpressionKind::StructLiteral(
759                struct_identifier,
760                fields,
761                has_rest,
762            ) => self.analyze_struct_instantiation(struct_identifier, fields, *has_rest)?,
763
764            swamp_script_ast::ExpressionKind::AnonymousStructLiteral(
765                fields,
766                rest_was_specified,
767            ) => self.analyze_anonymous_struct_literal(
768                &ast_expression.node,
769                fields,
770                *rest_was_specified,
771                context,
772            )?,
773
774            swamp_script_ast::ExpressionKind::Range(min_value, max_value, range_mode) => {
775                let range = self.analyze_range(min_value, max_value, range_mode)?;
776                self.create_expr(
777                    ExpressionKind::Range(Box::from(range.min), Box::from(range.max), range.mode),
778                    Type::Iterable(Box::from(Type::Int)),
779                    &ast_expression.node,
780                )
781            }
782
783            swamp_script_ast::ExpressionKind::Literal(literal) => {
784                let (literal, resolved_type) =
785                    self.analyze_literal(&ast_expression.node, literal, context)?;
786                self.create_expr(
787                    ExpressionKind::Literal(literal),
788                    resolved_type,
789                    &ast_expression.node,
790                )
791            }
792
793            swamp_script_ast::ExpressionKind::ForLoop(pattern, iterable_expression, statements) => {
794                let resolved_iterator =
795                    self.analyze_iterable(pattern.any_mut(), &iterable_expression.expression)?;
796
797                self.push_block_scope("for_loop");
798                let pattern = self.analyze_for_pattern(
799                    pattern,
800                    resolved_iterator.key_type.as_ref(),
801                    &resolved_iterator.value_type,
802                )?;
803                let resolved_statements =
804                    self.analyze_expression(statements, &context.enter_loop())?;
805                self.pop_block_scope("for_loop");
806                let resolved_type = resolved_statements.ty.clone();
807                self.create_expr(
808                    ExpressionKind::ForLoop(
809                        pattern,
810                        resolved_iterator,
811                        Box::from(resolved_statements),
812                    ),
813                    resolved_type,
814                    &ast_expression.node,
815                )
816            }
817            swamp_script_ast::ExpressionKind::WhileLoop(expression, statements) => {
818                let condition = self.analyze_bool_argument_expression(expression)?;
819                //self.push_block_scope("while_loop");
820                let resolved_statements =
821                    self.analyze_expression(statements, &context.enter_loop())?;
822                let resolved_type = resolved_statements.ty.clone();
823                //self.pop_block_scope("while_loop");
824
825                self.create_expr(
826                    ExpressionKind::WhileLoop(condition, Box::from(resolved_statements)),
827                    resolved_type,
828                    &ast_expression.node,
829                )
830            }
831
832            swamp_script_ast::ExpressionKind::If(
833                expression,
834                true_expression,
835                maybe_false_expression,
836            ) => self.analyze_if_expression(
837                expression,
838                true_expression,
839                maybe_false_expression.as_deref(),
840                context,
841            )?,
842
843            swamp_script_ast::ExpressionKind::Match(expression, arms) => {
844                let (match_expr, return_type) = self.analyze_match(expression, context, arms)?;
845                self.create_expr(
846                    ExpressionKind::Match(match_expr),
847                    return_type,
848                    &ast_expression.node,
849                )
850            }
851            swamp_script_ast::ExpressionKind::Guard(guard_expressions) => {
852                self.analyze_guard(&ast_expression.node, context, guard_expressions)?
853            }
854        };
855
856        //info!(ty=%expression.ty, kind=?expression.kind,  "resolved expression");
857
858        Ok(expression)
859    }
860
861    fn get_struct_type(
862        &mut self,
863        qualified_type_identifier: &swamp_script_ast::QualifiedTypeIdentifier,
864    ) -> Result<StructTypeRef, Error> {
865        let maybe_struct_type = self.analyze_named_type(qualified_type_identifier)?;
866        match maybe_struct_type {
867            Type::NamedStruct(struct_type) => Ok(struct_type),
868            _ => Err(self.create_err(
869                // For other Type variants that are not Struct
870                ErrorKind::UnknownStructTypeReference,
871                &qualified_type_identifier.name.0,
872            )),
873        }
874    }
875
876    // TODO: add to core symbol table
877    #[must_use]
878    pub fn check_built_in_type(s: &str) -> Option<Type> {
879        let found = match s {
880            "Int" => Type::Int,
881            "Float" => Type::Float,
882            "Bool" => Type::Bool,
883            "String" => Type::String,
884            _ => return None,
885        };
886        Some(found)
887    }
888
889    pub(crate) fn analyze_named_type(
890        &mut self,
891        type_name_to_find: &swamp_script_ast::QualifiedTypeIdentifier,
892    ) -> Result<Type, Error> {
893        let (path, name) = self.get_path(type_name_to_find);
894        // TODO: the built in should be put in the symbol table
895        if let Some(ty) = Self::check_built_in_type(&name) {
896            return Ok(ty);
897        }
898
899        let symbol = {
900            let maybe_symbol_table = self.shared.get_symbol_table(&path);
901            let symbol_table = maybe_symbol_table.ok_or_else(|| {
902                self.create_err(ErrorKind::UnknownSymbol, &type_name_to_find.name.0)
903            })?;
904            symbol_table
905                .get_symbol(&name)
906                .ok_or_else(|| {
907                    self.create_err(ErrorKind::UnknownSymbol, &type_name_to_find.name.0)
908                })?
909                .clone()
910        };
911
912        let mut analyzed_types = Vec::new();
913
914        for analyzed_type in &type_name_to_find.generic_params {
915            let ty = self.analyze_type(analyzed_type)?;
916
917            analyzed_types.push(ty);
918        }
919
920        let result_type = match symbol {
921            Symbol::Type(base_type) => base_type,
922            Symbol::Alias(alias_type) => alias_type.referenced_type.clone(),
923            _ => return Err(self.create_err(ErrorKind::UnknownSymbol, &type_name_to_find.name.0)),
924        };
925
926        Ok(result_type)
927    }
928
929    fn create_default_value_for_type(
930        &mut self,
931        node: &swamp_script_ast::Node,
932        field_type: &Type,
933    ) -> Result<Expression, Error> {
934        let kind = match field_type {
935            Type::Bool => ExpressionKind::Literal(Literal::BoolLiteral(false)),
936            Type::Int => ExpressionKind::Literal(Literal::IntLiteral(0)),
937            Type::Float => ExpressionKind::Literal(Literal::FloatLiteral(Fp::zero())),
938            Type::String => ExpressionKind::Literal(Literal::StringLiteral(String::new())),
939            Type::Array(array_type_ref) => {
940                ExpressionKind::Literal(Literal::Array(array_type_ref.clone(), vec![]))
941            }
942            Type::Tuple(tuple_type_ref) => {
943                let mut expressions = Vec::new();
944                for resolved_type in &tuple_type_ref.0 {
945                    let expr = self.create_default_value_for_type(node, resolved_type)?;
946                    expressions.push(expr);
947                }
948                ExpressionKind::Literal(Literal::TupleLiteral(tuple_type_ref.clone(), expressions))
949            }
950            Type::Map(map_type_ref) => {
951                ExpressionKind::Literal(Literal::Map(map_type_ref.clone(), vec![]))
952            }
953            Type::Optional(_optional_type) => ExpressionKind::Literal(Literal::NoneLiteral),
954
955            Type::NamedStruct(struct_ref) => {
956                self.create_default_static_call(node, &Type::NamedStruct(struct_ref.clone()))?
957            }
958            _ => {
959                return Err(
960                    self.create_err(ErrorKind::NoDefaultImplemented(field_type.clone()), node)
961                );
962            }
963        };
964
965        let expr = self.create_expr(kind, field_type.clone(), node);
966        Ok(expr)
967    }
968
969    fn create_default_static_call(
970        &mut self,
971        node: &swamp_script_ast::Node,
972        ty: &Type,
973    ) -> Result<ExpressionKind, Error> {
974        self.lookup_associated_function(ty, "default").map_or_else(
975            || Err(self.create_err(ErrorKind::NoDefaultImplementedForType(ty.clone()), node)),
976            |function| {
977                let kind = match &*function {
978                    Function::Internal(internal_function) => {
979                        ExpressionKind::InternalFunctionAccess(internal_function.clone())
980                    }
981                    Function::External(external_function) => {
982                        ExpressionKind::ExternalFunctionAccess(external_function.clone())
983                    }
984                };
985
986                let base_expr =
987                    self.create_expr(kind, Type::Function(function.signature().clone()), node);
988
989                let empty_call_postfix = Postfix {
990                    node: self.to_node(node),
991                    ty: *function.signature().return_type.clone(),
992                    kind: PostfixKind::FunctionCall(vec![]),
993                };
994
995                let kind =
996                    ExpressionKind::PostfixChain(Box::new(base_expr), vec![empty_call_postfix]);
997
998                Ok(kind)
999            },
1000        )
1001    }
1002
1003    fn add_postfix(
1004        &mut self,
1005        vec: &mut Vec<Postfix>,
1006        kind: PostfixKind,
1007        ty: Type,
1008        node: &swamp_script_ast::Node,
1009    ) {
1010        let resolved_node = self.to_node(node);
1011        let postfix = Postfix {
1012            node: resolved_node,
1013            ty,
1014            kind,
1015        };
1016
1017        vec.push(postfix);
1018    }
1019
1020    /// # Panics
1021    ///
1022    /// # Errors
1023    ///
1024    pub fn analyze_struct_field(
1025        &mut self,
1026        field_name: &swamp_script_ast::Node,
1027        tv: Type,
1028    ) -> Result<(AnonymousStructType, usize, Type), Error> {
1029        let field_name_str = self.get_text(field_name).to_string();
1030
1031        let anon_struct_ref = match &tv {
1032            Type::NamedStruct(struct_type) => struct_type.borrow().anon_struct_type.clone(),
1033            Type::AnonymousStruct(anon_struct) => anon_struct.clone(),
1034            _ => return Err(self.create_err(ErrorKind::UnknownStructField, field_name)),
1035        };
1036
1037        if let Some(found_field) = anon_struct_ref
1038            .field_name_sorted_fields
1039            .get(&field_name_str)
1040        {
1041            let index = anon_struct_ref
1042                .field_name_sorted_fields
1043                .get_index(&field_name_str)
1044                .expect("checked earlier");
1045
1046            return Ok((
1047                anon_struct_ref.clone(),
1048                index,
1049                found_field.field_type.clone(),
1050            ));
1051        }
1052
1053        Err(self.create_err(ErrorKind::UnknownStructField, field_name))
1054    }
1055
1056    #[allow(clippy::too_many_lines)]
1057    fn analyze_postfix_chain(
1058        &mut self,
1059        chain: &swamp_script_ast::PostfixChain,
1060    ) -> Result<Expression, Error> {
1061        if let swamp_script_ast::ExpressionKind::StaticMemberFunctionReference(
1062            qualified_type_reference,
1063            member_name,
1064        ) = &chain.base.kind
1065        {
1066            if let Some(found_expr) =
1067                self.check_for_internal_static_call(qualified_type_reference, member_name, &[])?
1068            {
1069                return Ok(found_expr);
1070            }
1071        }
1072
1073        let (start, is_mutable) =
1074            self.analyze_start_chain_expression_get_mutability(&chain.base, None)?;
1075
1076        let mut tv = TypeWithMut {
1077            resolved_type: start.ty.clone(),
1078            is_mutable,
1079        };
1080
1081        let mut uncertain = false;
1082
1083        let mut suffixes = Vec::new();
1084
1085        for item in &chain.postfixes {
1086            match item {
1087                swamp_script_ast::Postfix::FieldAccess(field_name) => {
1088                    let (struct_type_ref, index, return_type) =
1089                        self.analyze_struct_field(&field_name.clone(), tv.resolved_type)?;
1090                    self.add_postfix(
1091                        &mut suffixes,
1092                        PostfixKind::StructField(struct_type_ref.clone(), index),
1093                        return_type.clone(),
1094                        field_name,
1095                    );
1096
1097                    tv.resolved_type = return_type.clone();
1098                    // keep previous `is_mutable`
1099                }
1100                swamp_script_ast::Postfix::MemberCall(member_name, ast_arguments) => {
1101                    let dereference = ast_arguments
1102                        .iter()
1103                        .map(|x| &x.expression)
1104                        .collect::<Vec<_>>();
1105                    if let Some(found_internal) = self.check_for_internal_member_call(
1106                        &tv.resolved_type,
1107                        tv.is_mutable,
1108                        member_name,
1109                        &dereference,
1110                    )? {
1111                        tv.resolved_type = found_internal.ty.clone();
1112                        tv.is_mutable = false;
1113                        suffixes.push(found_internal);
1114                    } else {
1115                        let member_name_str = self.get_text(member_name).to_string();
1116
1117                        if let Some(found_member) = self
1118                            .shared
1119                            .state
1120                            .associated_impls
1121                            .get_member_function(&tv.resolved_type, &member_name_str)
1122                        {
1123                            let return_type = self.analyze_postfix_member_call(
1124                                &tv.resolved_type,
1125                                tv.is_mutable,
1126                                member_name,
1127                                ast_arguments,
1128                                &mut suffixes,
1129                            )?;
1130
1131                            //self.add_postfix(&mut suffixes, kind, return_type.clone(), member_name);
1132                            tv.resolved_type = return_type.clone();
1133                            tv.is_mutable = false;
1134                        } else {
1135                            return Err(
1136                                self.create_err(ErrorKind::UnknownMemberFunction, member_name)
1137                            );
1138                        }
1139                    }
1140                }
1141                swamp_script_ast::Postfix::FunctionCall(node, arguments) => {
1142                    if let Type::Function(signature) = &tv.resolved_type {
1143                        let resolved_node = self.to_node(node);
1144                        let resolved_arguments = self.analyze_and_verify_parameters(
1145                            &resolved_node,
1146                            &signature.parameters,
1147                            arguments,
1148                        )?;
1149                        self.add_postfix(
1150                            &mut suffixes,
1151                            PostfixKind::FunctionCall(resolved_arguments),
1152                            *signature.return_type.clone(),
1153                            node,
1154                        );
1155
1156                        tv.resolved_type = *signature.return_type.clone();
1157                        tv.is_mutable = false;
1158                    } else {
1159                        panic!("{}", &format!("what is this type {:?} ", tv.resolved_type))
1160                    }
1161                }
1162
1163                swamp_script_ast::Postfix::Subscript(index_expr) => {
1164                    let collection_type = tv.resolved_type.clone();
1165                    match &collection_type {
1166                        Type::String => {
1167                            if let swamp_script_ast::ExpressionKind::Range(min, max, mode) =
1168                                &index_expr.kind
1169                            {
1170                                let range = self.analyze_range(min, max, mode)?;
1171
1172                                self.add_postfix(
1173                                    &mut suffixes,
1174                                    PostfixKind::StringRangeIndex(range),
1175                                    collection_type.clone(),
1176                                    &index_expr.node,
1177                                );
1178
1179                                tv.resolved_type = Type::String;
1180                            } else {
1181                                let int_argument_context = TypeContext::new_argument(&Type::Int);
1182                                let resolved_index_expr =
1183                                    self.analyze_expression(index_expr, &int_argument_context)?;
1184                                self.add_postfix(
1185                                    &mut suffixes,
1186                                    PostfixKind::StringIndex(resolved_index_expr),
1187                                    Type::String,
1188                                    &index_expr.node,
1189                                );
1190                            }
1191                            tv.resolved_type = Type::String;
1192                            tv.is_mutable = false;
1193                        }
1194
1195                        Type::Array(array_type_ref) => {
1196                            if let swamp_script_ast::ExpressionKind::Range(
1197                                min_expr,
1198                                max_expr,
1199                                mode,
1200                            ) = &index_expr.kind
1201                            {
1202                                let range = self.analyze_range(min_expr, max_expr, mode)?;
1203
1204                                self.add_postfix(
1205                                    &mut suffixes,
1206                                    PostfixKind::ArrayRangeIndex(array_type_ref.clone(), range),
1207                                    collection_type.clone(),
1208                                    &index_expr.node,
1209                                );
1210
1211                                tv.resolved_type = collection_type.clone();
1212                            } else {
1213                                let int_argument_context = TypeContext::new_argument(&Type::Int);
1214                                let resolved_index_expr =
1215                                    self.analyze_expression(index_expr, &int_argument_context)?;
1216                                self.add_postfix(
1217                                    &mut suffixes,
1218                                    PostfixKind::ArrayIndex(
1219                                        array_type_ref.clone(),
1220                                        resolved_index_expr,
1221                                    ),
1222                                    array_type_ref.item_type.clone(),
1223                                    &index_expr.node,
1224                                );
1225
1226                                tv.resolved_type = array_type_ref.item_type.clone();
1227                            }
1228
1229                            tv.is_mutable = false;
1230                        }
1231
1232                        Type::Map(map_type_ref) => {
1233                            let key_type_context =
1234                                TypeContext::new_argument(&map_type_ref.key_type);
1235                            let resolved_key_expr =
1236                                self.analyze_expression(index_expr, &key_type_context)?;
1237                            let return_type =
1238                                Type::Optional(Box::from(map_type_ref.value_type.clone()));
1239                            self.add_postfix(
1240                                &mut suffixes,
1241                                PostfixKind::MapIndex(map_type_ref.clone(), resolved_key_expr),
1242                                return_type.clone(),
1243                                &index_expr.node,
1244                            );
1245
1246                            tv.resolved_type = return_type;
1247                            tv.is_mutable = false;
1248                        }
1249
1250                        Type::Generic(base, generic_type_parameters) => match &**base {
1251                            Type::External(found_rust_type) => {
1252                                if found_rust_type.number == SPARSE_TYPE_ID {
1253                                    let sparse_id = self
1254                                        .shared
1255                                        .lookup_table
1256                                        .get_external_type("SparseId")
1257                                        .expect("SparseId is missing");
1258                                    let binding = Type::External(sparse_id.clone());
1259                                    let sparse_id_context = TypeContext::new_argument(&binding);
1260                                    let contained_type = &generic_type_parameters[0];
1261                                    let resolved_key =
1262                                        self.analyze_expression(index_expr, &sparse_id_context)?;
1263
1264                                    let return_type =
1265                                        Type::Optional(Box::new(contained_type.clone()));
1266
1267                                    self.add_postfix(
1268                                        &mut suffixes,
1269                                        PostfixKind::ExternalTypeIndexRef(
1270                                            found_rust_type.clone(),
1271                                            resolved_key,
1272                                        ),
1273                                        return_type.clone(),
1274                                        &index_expr.node,
1275                                    );
1276
1277                                    tv.resolved_type = return_type;
1278                                    tv.is_mutable = false;
1279                                } else {
1280                                    panic!("unknown generic type lookup")
1281                                }
1282                            }
1283                            _ => panic!("not supported"),
1284                        },
1285                        _ => {
1286                            return Err(self.create_err(
1287                                ErrorKind::ExpectedArray(collection_type),
1288                                &index_expr.node,
1289                            ));
1290                        }
1291                    }
1292                }
1293
1294                swamp_script_ast::Postfix::NoneCoalesce(default_expr) => {
1295                    let unwrapped_type = if let Type::Optional(unwrapped_type) = &tv.resolved_type {
1296                        unwrapped_type
1297                    } else if uncertain {
1298                        &tv.resolved_type
1299                    } else {
1300                        return Err(
1301                            self.create_err(ErrorKind::CanNotNoneCoalesce, &default_expr.node)
1302                        );
1303                    };
1304
1305                    let unwrapped_type_context = TypeContext::new_argument(unwrapped_type);
1306                    let resolved_default_expr =
1307                        self.analyze_expression(default_expr, &unwrapped_type_context)?;
1308                    self.add_postfix(
1309                        &mut suffixes,
1310                        PostfixKind::NoneCoalesce(resolved_default_expr),
1311                        unwrapped_type.clone(),
1312                        &default_expr.node,
1313                    );
1314                    tv.resolved_type = unwrapped_type.clone();
1315                    uncertain = false; // the chain is safe, because this will always solve None
1316                }
1317
1318                swamp_script_ast::Postfix::OptionUnwrap(option_node) => {
1319                    if let Type::Optional(unwrapped_type) = &tv.resolved_type {
1320                        uncertain = true;
1321                        self.add_postfix(
1322                            &mut suffixes,
1323                            PostfixKind::OptionUnwrap,
1324                            *unwrapped_type.clone(),
1325                            option_node,
1326                        );
1327                        tv.resolved_type = *unwrapped_type.clone();
1328                    } else {
1329                        return Err(self.create_err(ErrorKind::ExpectedOptional, option_node));
1330                    }
1331                }
1332            }
1333        }
1334
1335        if uncertain {
1336            if let Type::Optional(_) = tv.resolved_type {
1337            } else {
1338                tv.resolved_type = Type::Optional(Box::from(tv.resolved_type.clone()));
1339            }
1340        }
1341
1342        Ok(self.create_expr(
1343            ExpressionKind::PostfixChain(Box::new(start), suffixes),
1344            tv.resolved_type,
1345            &chain.base.node,
1346        ))
1347    }
1348
1349    fn analyze_bool_argument_expression(
1350        &mut self,
1351        expression: &swamp_script_ast::Expression,
1352    ) -> Result<BooleanExpression, Error> {
1353        let bool_context = TypeContext::new_argument(&Type::Bool);
1354        let resolved_expression = self.analyze_expression(expression, &bool_context)?;
1355        let expr_type = resolved_expression.ty.clone();
1356
1357        let bool_expression = match expr_type {
1358            Type::Bool => resolved_expression,
1359            Type::Optional(_) => self.create_expr(
1360                ExpressionKind::CoerceOptionToBool(Box::new(resolved_expression)),
1361                Type::Bool,
1362                &expression.node,
1363            ),
1364            _ => {
1365                return Err(self.create_err(ErrorKind::ExpectedBooleanExpression, &expression.node));
1366            }
1367        };
1368
1369        Ok(BooleanExpression {
1370            expression: Box::from(bool_expression),
1371        })
1372    }
1373
1374    fn analyze_iterable(
1375        &mut self,
1376        force_mut: Option<swamp_script_ast::Node>,
1377        expression: &swamp_script_ast::MutableOrImmutableExpression,
1378    ) -> Result<Iterable, Error> {
1379        let any_context = TypeContext::new_anything_argument();
1380        let resolved_expression: MutOrImmutableExpression = if force_mut.is_some() {
1381            let resolved_node = self.to_node(&force_mut.unwrap());
1382            MutOrImmutableExpression {
1383                expression_or_location: ArgumentExpressionOrLocation::Location(
1384                    self.analyze_to_location(
1385                        &expression.expression,
1386                        &any_context,
1387                        LocationSide::Rhs,
1388                    )?,
1389                ),
1390                is_mutable: Some(resolved_node),
1391            }
1392        } else {
1393            self.analyze_mut_or_immutable_expression(expression, &any_context, LocationSide::Rhs)?
1394        };
1395
1396        let resolved_type = &resolved_expression.ty().clone();
1397        let (key_type, value_type): (Option<Type>, Type) = match resolved_type {
1398            Type::Array(array_type) => (Some(Type::Int), array_type.item_type.clone()),
1399            Type::Map(map_type_ref) => (
1400                Some(map_type_ref.key_type.clone()),
1401                map_type_ref.value_type.clone(),
1402            ),
1403            Type::String => (Some(Type::Int), Type::String),
1404            Type::Iterable(item_type) => (None, *item_type.clone()),
1405            Type::Generic(_base_type, params) => {
1406                // TODO: HACK: We assume it is a container that iterates over the type parameters
1407                // TODO: HACK: We assume that it is a sparse map
1408                // TODO: HACK: Remove hardcoded number
1409                let rust_type_ref_for_id = self
1410                    .shared
1411                    .lookup_table
1412                    .get_external_type("SparseId")
1413                    .expect("SparseId was missing");
1414                let rust_id_type = Type::External(rust_type_ref_for_id.clone());
1415                (Some(rust_id_type), params[0].clone())
1416            }
1417            _ => return Err(self.create_err(ErrorKind::NotAnIterator, &expression.expression.node)),
1418        };
1419
1420        Ok(Iterable {
1421            key_type,
1422            value_type,
1423            resolved_expression: Box::new(resolved_expression),
1424        })
1425    }
1426
1427    fn analyze_argument_expressions(
1428        &mut self,
1429        expected_type: Option<&Type>,
1430        ast_expressions: &[swamp_script_ast::Expression],
1431    ) -> Result<Vec<Expression>, Error> {
1432        let mut resolved_expressions = Vec::new();
1433        let argument_expressions_context = TypeContext::new_unsure_argument(expected_type);
1434        for expression in ast_expressions {
1435            resolved_expressions
1436                .push(self.analyze_expression(expression, &argument_expressions_context)?);
1437        }
1438        Ok(resolved_expressions)
1439    }
1440
1441    fn analyze_block(
1442        &mut self,
1443        _node: &swamp_script_ast::Node,
1444        context: &TypeContext,
1445        ast_expressions: &[swamp_script_ast::Expression],
1446    ) -> Result<(Vec<Expression>, Type), Error> {
1447        if ast_expressions.is_empty() {
1448            return Ok((vec![], Type::Unit));
1449        }
1450
1451        self.push_block_scope("block");
1452
1453        let mut resolved_expressions = Vec::with_capacity(ast_expressions.len());
1454
1455        for expression in &ast_expressions[..ast_expressions.len() - 1] {
1456            let stmt_context = context.with_expected_type(Some(&Type::Unit));
1457            let expr = self.analyze_expression(expression, &stmt_context)?;
1458
1459            if matches!(expr.ty, Type::Never) {
1460                resolved_expressions.push(expr);
1461                return Ok((resolved_expressions, Type::Never));
1462            }
1463
1464            resolved_expressions.push(expr);
1465        }
1466
1467        // Process the last expression - it determines the block's type
1468        let last_expr =
1469            self.analyze_expression(&ast_expressions[ast_expressions.len() - 1], context)?;
1470        let last_type = last_expr.ty.clone();
1471        resolved_expressions.push(last_expr);
1472
1473        self.pop_block_scope("block");
1474
1475        Ok((resolved_expressions, last_type))
1476    }
1477
1478    fn analyze_interpolated_string(
1479        &mut self,
1480        string_parts: &[swamp_script_ast::StringPart],
1481    ) -> Result<Vec<StringPart>, Error> {
1482        let mut resolved_parts = Vec::new();
1483        for part in string_parts {
1484            let resolved_string_part = match part {
1485                swamp_script_ast::StringPart::Literal(string_node, processed_string) => {
1486                    StringPart::Literal(self.to_node(string_node), processed_string.to_string())
1487                }
1488                swamp_script_ast::StringPart::Interpolation(expression, format_specifier) => {
1489                    let any_context = TypeContext::new_anything_argument();
1490                    let expr = self.analyze_expression(expression, &any_context)?;
1491                    let resolved_format_specifier =
1492                        self.analyze_format_specifier(Option::from(format_specifier));
1493                    StringPart::Interpolation(expr, resolved_format_specifier)
1494                }
1495            };
1496
1497            resolved_parts.push(resolved_string_part);
1498        }
1499
1500        Ok(resolved_parts)
1501    }
1502
1503    pub(crate) fn analyze_static_function_access(
1504        &self,
1505        qualified_func_name: &swamp_script_ast::QualifiedIdentifier,
1506    ) -> Result<Expression, Error> {
1507        let path = self.get_module_path(qualified_func_name.module_path.as_ref());
1508        let function_name = self.get_text(&qualified_func_name.name);
1509
1510        if let Some(found_table) = self.shared.get_symbol_table(&path) {
1511            if let Some(found_func) = found_table.get_function(function_name) {
1512                let (kind, signature) = match found_func {
1513                    FuncDef::Internal(internal_fn) => (
1514                        ExpressionKind::InternalFunctionAccess(internal_fn.clone()),
1515                        &internal_fn.signature,
1516                    ),
1517                    FuncDef::External(external_fn) => (
1518                        ExpressionKind::ExternalFunctionAccess(external_fn.clone()),
1519                        &external_fn.signature,
1520                    ),
1521                    // Can not have a reference to an intrinsic function
1522                    FuncDef::Intrinsic(_) => {
1523                        return Err(
1524                            self.create_err(ErrorKind::UnknownFunction, &qualified_func_name.name)
1525                        );
1526                    }
1527                };
1528
1529                return Ok(self.create_expr(
1530                    kind,
1531                    Type::Function(signature.clone()),
1532                    &qualified_func_name.name,
1533                ));
1534            }
1535        }
1536        Err(self.create_err(ErrorKind::UnknownFunction, &qualified_func_name.name))
1537    }
1538
1539    // The ast assumes it is something similar to a variable, but it can be a function reference as well.
1540    fn analyze_identifier_reference(
1541        &self,
1542        var_node: &swamp_script_ast::Node,
1543    ) -> Result<Expression, Error> {
1544        let text = self.get_text(var_node);
1545
1546        // Must check variable first, since that is more intuitive for the user.
1547        // local variables before other functions
1548        if let Some(found_variable) = self.try_find_variable(var_node) {
1549            return Ok(self.create_expr(
1550                ExpressionKind::VariableAccess(found_variable.clone()),
1551                found_variable.resolved_type.clone(),
1552                var_node,
1553            ));
1554        }
1555
1556        if let Some(found_symbol) = self.shared.lookup_table.get_symbol(text) {
1557            let expr = match found_symbol {
1558                Symbol::FunctionDefinition(func) => match func {
1559                    FuncDef::External(found_external_function) => self.create_expr(
1560                        ExpressionKind::ExternalFunctionAccess(found_external_function.clone()),
1561                        Type::Function(found_external_function.signature.clone()),
1562                        var_node,
1563                    ),
1564                    FuncDef::Internal(found_internal_function) => self.create_expr(
1565                        ExpressionKind::InternalFunctionAccess(found_internal_function.clone()),
1566                        Type::Function(found_internal_function.signature.clone()),
1567                        var_node,
1568                    ),
1569                    FuncDef::Intrinsic(_) => todo!(),
1570                },
1571
1572                _ => {
1573                    return Err(self.create_err(ErrorKind::UnknownIdentifier, var_node));
1574                }
1575            };
1576            return Ok(expr);
1577        }
1578
1579        Err(self.create_err(ErrorKind::UnknownIdentifier, var_node))
1580    }
1581    fn analyze_usize_index(
1582        &mut self,
1583        usize_expression: &swamp_script_ast::Expression,
1584    ) -> Result<Expression, Error> {
1585        let int_context = TypeContext::new_argument(&Type::Int);
1586        let lookup_expression = self.analyze_expression(usize_expression, &int_context)?;
1587        let lookup_resolution = lookup_expression.ty.clone();
1588
1589        match &lookup_resolution {
1590            Type::Int => {}
1591            _ => Err(self.create_err(
1592                ErrorKind::ArrayIndexMustBeInt(lookup_resolution),
1593                &usize_expression.node,
1594            ))?,
1595        }
1596
1597        Ok(lookup_expression)
1598    }
1599
1600    fn analyze_array_type_helper(
1601        &mut self,
1602        node: &swamp_script_ast::Node,
1603        items: &[swamp_script_ast::Expression],
1604        expected_type: Option<&Type>,
1605    ) -> Result<(ArrayTypeRef, Vec<Expression>), Error> {
1606        let expressions = self.analyze_argument_expressions(None, items)?;
1607        let item_type = if expressions.is_empty() {
1608            if let Some(found_expected_type) = expected_type {
1609                info!(?found_expected_type, "found array type");
1610                if let Type::Array(found) = found_expected_type {
1611                    found.item_type.clone()
1612                } else {
1613                    return Err(self.create_err(ErrorKind::NotAnArray, node));
1614                }
1615            } else {
1616                return Err(self.create_err(ErrorKind::NotAnArray, node));
1617            }
1618        } else {
1619            expressions[0].ty.clone()
1620        };
1621
1622        let array_type = ArrayType { item_type };
1623
1624        let array_type_ref = Rc::new(array_type);
1625
1626        Ok((array_type_ref, expressions))
1627    }
1628
1629    fn push_block_scope(&mut self, _debug_str: &str) {
1630        self.scope.block_scope_stack.push(BlockScope {
1631            mode: BlockScopeMode::Open,
1632            variables: SeqMap::default(),
1633        });
1634    }
1635
1636    fn pop_block_scope(&mut self, _debug_str: &str) {
1637        self.scope.block_scope_stack.pop();
1638    }
1639
1640    fn push_closed_block_scope(&mut self) {
1641        self.scope.block_scope_stack.push(BlockScope {
1642            mode: BlockScopeMode::Closed,
1643            variables: SeqMap::default(),
1644        });
1645    }
1646
1647    fn pop_closed_block_scope(&mut self) {
1648        self.scope.block_scope_stack.pop();
1649    }
1650
1651    fn analyze_enum_variant_ref(
1652        &self,
1653        qualified_type_identifier: &swamp_script_ast::QualifiedTypeIdentifier,
1654        variant_name: &swamp_script_ast::LocalTypeIdentifier,
1655    ) -> Result<EnumVariantTypeRef, Error> {
1656        let variant_name_string = self.get_text(&variant_name.0).to_string();
1657        self.get_enum_variant_type(qualified_type_identifier, &variant_name_string)
1658    }
1659
1660    fn analyze_match(
1661        &mut self,
1662        scrutinee: &swamp_script_ast::MutableOrImmutableExpression,
1663        default_context: &TypeContext,
1664        arms: &Vec<swamp_script_ast::MatchArm>,
1665    ) -> Result<(Match, Type), Error> {
1666        let mut known_type = default_context.expected_type.cloned();
1667        let own_context = default_context.clone();
1668        // Analyze the scrutinee with no specific expected type
1669        let scrutinee_context = TypeContext::new_anything_argument();
1670        let resolved_scrutinee = self.analyze_mut_or_immutable_expression(
1671            scrutinee,
1672            &scrutinee_context,
1673            LocationSide::Rhs,
1674        )?;
1675        let scrutinee_type = resolved_scrutinee.ty().clone();
1676
1677        // Ensure we have at least one arm
1678        if arms.is_empty() {
1679            return Err(self.create_err(ErrorKind::EmptyMatch, &scrutinee.expression.node));
1680        }
1681
1682        let mut resolved_arms = Vec::with_capacity(arms.len());
1683
1684        for arm in arms {
1685            let (resolved_arm, _anyone_wants_mutable) = self.analyze_arm(
1686                arm,
1687                &resolved_scrutinee,
1688                &own_context.with_expected_type(known_type.as_ref()),
1689                &scrutinee_type,
1690            )?;
1691
1692            if known_type.is_none() && !matches!(resolved_arm.expression.ty, Type::Never) {
1693                known_type = Some(resolved_arm.expression.ty.clone());
1694            }
1695            resolved_arms.push(resolved_arm);
1696        }
1697
1698        known_type.map_or_else(
1699            || {
1700                Err(self.create_err(
1701                    ErrorKind::MatchArmsMustHaveTypes,
1702                    &scrutinee.expression.node,
1703                ))
1704            },
1705            |encountered_type| {
1706                if matches!(encountered_type, Type::Never) {
1707                    Err(self.create_err(
1708                        ErrorKind::IncompatibleTypes(encountered_type.clone(), encountered_type),
1709                        &scrutinee.expression.node,
1710                    ))
1711                } else {
1712                    Ok((
1713                        Match {
1714                            expression: Box::new(resolved_scrutinee),
1715                            arms: resolved_arms,
1716                        },
1717                        encountered_type,
1718                    ))
1719                }
1720            },
1721        )
1722    }
1723
1724    fn analyze_arm(
1725        &mut self,
1726        arm: &swamp_script_ast::MatchArm,
1727        _expression: &MutOrImmutableExpression,
1728        type_context: &TypeContext,
1729        expected_condition_type: &Type,
1730    ) -> Result<(MatchArm, bool), Error> {
1731        let (resolved_pattern, scope_was_pushed, anyone_wants_mutable) =
1732            self.analyze_pattern(&arm.pattern, expected_condition_type)?;
1733
1734        let resolved_expression = self.analyze_expression(&arm.expression, type_context)?;
1735        if scope_was_pushed {
1736            self.pop_block_scope("analyze_arm");
1737        }
1738
1739        let resolved_type = resolved_expression.ty.clone();
1740
1741        Ok((
1742            MatchArm {
1743                pattern: resolved_pattern,
1744                expression: Box::from(resolved_expression),
1745                expression_type: resolved_type,
1746            },
1747            anyone_wants_mutable,
1748        ))
1749    }
1750
1751    fn str_to_int(text: &str) -> Result<i32, ParseIntError> {
1752        text.parse::<i32>()
1753    }
1754
1755    fn str_to_float(text: &str) -> Result<f32, ParseFloatError> {
1756        text.parse::<f32>()
1757    }
1758
1759    fn analyze_pattern_literal(
1760        &mut self,
1761        node: &swamp_script_ast::Node,
1762        ast_literal: &swamp_script_ast::LiteralKind,
1763        expected_condition_type: &Type,
1764    ) -> Result<NormalPattern, Error> {
1765        let required_condition_type_context = TypeContext::new_argument(expected_condition_type);
1766        let (resolved_literal, literal_type) =
1767            self.analyze_literal(node, ast_literal, &required_condition_type_context)?;
1768
1769        if !literal_type.compatible_with(expected_condition_type) {
1770            return Err(self.create_err(
1771                ErrorKind::IncompatibleTypes(literal_type, expected_condition_type.clone()),
1772                node,
1773            ));
1774        }
1775
1776        Ok(NormalPattern::Literal(resolved_literal))
1777    }
1778
1779    const fn to_node(&self, node: &swamp_script_ast::Node) -> Node {
1780        Node {
1781            span: Span {
1782                file_id: self.shared.file_id,
1783                offset: node.span.offset,
1784                length: node.span.length,
1785            },
1786        }
1787    }
1788
1789    fn get_module_path(&self, module_path: Option<&swamp_script_ast::ModulePath>) -> Vec<String> {
1790        module_path.as_ref().map_or_else(Vec::new, |found| {
1791            let mut strings = Vec::new();
1792            for path_item in &found.0 {
1793                strings.push(self.get_text(path_item).to_string());
1794            }
1795            strings
1796        })
1797    }
1798
1799    fn get_enum_variant_type(
1800        &self,
1801        qualified_type_identifier: &swamp_script_ast::QualifiedTypeIdentifier,
1802        variant_name: &str,
1803    ) -> Result<EnumVariantTypeRef, Error> {
1804        let (symbol_table, enum_name) =
1805            self.get_symbol_table_and_name(qualified_type_identifier)?;
1806        symbol_table
1807            .get_enum_variant_type(&enum_name, variant_name)
1808            .ok_or_else(|| {
1809                self.create_err(
1810                    ErrorKind::UnknownEnumVariantType,
1811                    &qualified_type_identifier.name.0,
1812                )
1813            })
1814    }
1815
1816    pub(crate) fn get_symbol_table_and_name(
1817        &self,
1818        type_identifier: &swamp_script_ast::QualifiedTypeIdentifier,
1819    ) -> Result<(&SymbolTable, String), Error> {
1820        let path = self.get_module_path(type_identifier.module_path.as_ref());
1821        let name = self.get_text(&type_identifier.name.0).to_string();
1822
1823        let maybe_symbol_table = self.shared.get_symbol_table(&path);
1824        maybe_symbol_table.map_or_else(
1825            || Err(self.create_err(ErrorKind::UnknownModule, &type_identifier.name.0)),
1826            |symbol_table| Ok((symbol_table, name)),
1827        )
1828    }
1829
1830    const fn analyze_compound_operator(
1831        &self,
1832        ast_operator: &swamp_script_ast::CompoundOperator,
1833    ) -> CompoundOperator {
1834        let resolved_node = self.to_node(&ast_operator.node);
1835        let resolved_kind = match ast_operator.kind {
1836            swamp_script_ast::CompoundOperatorKind::Add => CompoundOperatorKind::Add,
1837            swamp_script_ast::CompoundOperatorKind::Sub => CompoundOperatorKind::Sub,
1838            swamp_script_ast::CompoundOperatorKind::Mul => CompoundOperatorKind::Mul,
1839            swamp_script_ast::CompoundOperatorKind::Div => CompoundOperatorKind::Div,
1840            swamp_script_ast::CompoundOperatorKind::Modulo => CompoundOperatorKind::Modulo,
1841        };
1842
1843        CompoundOperator {
1844            node: resolved_node,
1845            kind: resolved_kind,
1846        }
1847    }
1848
1849    const fn to_node_option(&self, maybe_node: Option<&swamp_script_ast::Node>) -> Option<Node> {
1850        match maybe_node {
1851            None => None,
1852            Some(node) => Some(self.to_node(node)),
1853        }
1854    }
1855
1856    const fn analyze_format_specifier(
1857        &self,
1858        ast_format_specifier: Option<&swamp_script_ast::FormatSpecifier>,
1859    ) -> Option<FormatSpecifier> {
1860        let f = match ast_format_specifier {
1861            None => return None,
1862            Some(ast_format) => match ast_format {
1863                swamp_script_ast::FormatSpecifier::LowerHex(node) => FormatSpecifier {
1864                    node: self.to_node(node),
1865                    kind: FormatSpecifierKind::LowerHex,
1866                },
1867                swamp_script_ast::FormatSpecifier::UpperHex(node) => FormatSpecifier {
1868                    node: self.to_node(node),
1869                    kind: FormatSpecifierKind::UpperHex,
1870                },
1871                swamp_script_ast::FormatSpecifier::Binary(node) => FormatSpecifier {
1872                    node: self.to_node(node),
1873                    kind: FormatSpecifierKind::Binary,
1874                },
1875                swamp_script_ast::FormatSpecifier::Float(node) => FormatSpecifier {
1876                    node: self.to_node(node),
1877                    kind: FormatSpecifierKind::Float,
1878                },
1879                swamp_script_ast::FormatSpecifier::Precision(value, node, x) => {
1880                    let (precision_type, precision_node) = match x {
1881                        swamp_script_ast::PrecisionType::Float(node) => {
1882                            (PrecisionType::Float, self.to_node(node))
1883                        }
1884                        swamp_script_ast::PrecisionType::String(node) => {
1885                            (PrecisionType::String, self.to_node(node))
1886                        }
1887                    };
1888                    FormatSpecifier {
1889                        node: self.to_node(node),
1890                        kind: FormatSpecifierKind::Precision(
1891                            *value,
1892                            precision_node,
1893                            precision_type,
1894                        ),
1895                    }
1896                }
1897            },
1898        };
1899
1900        Some(f)
1901    }
1902
1903    fn analyze_with_expr(
1904        &mut self,
1905        context: &TypeContext,
1906        variables: &[swamp_script_ast::VariableBinding],
1907        expression: &swamp_script_ast::Expression,
1908    ) -> Result<Expression, Error> {
1909        let mut variable_expressions = Vec::new();
1910
1911        for variable in variables {
1912            let any_context = TypeContext::new_anything_argument();
1913            let var = self.analyze_mut_or_immutable_expression(
1914                &variable.expression,
1915                &any_context,
1916                LocationSide::Rhs,
1917            )?;
1918            variable_expressions.push(var);
1919        }
1920
1921        self.push_closed_block_scope();
1922        let mut expressions = Vec::new();
1923        for (variable_binding, resolved_expression) in variables.iter().zip(variable_expressions) {
1924            let initialize_variable_expression = self.create_variable_binding_for_with(
1925                &variable_binding.variable,
1926                resolved_expression,
1927            )?;
1928            expressions.push(initialize_variable_expression);
1929        }
1930
1931        let resolved_expression = self.analyze_expression(expression, context)?;
1932        let block_type = resolved_expression.ty.clone();
1933        expressions.push(resolved_expression);
1934
1935        let block_expression_kind = ExpressionKind::Block(expressions);
1936        self.pop_closed_block_scope();
1937
1938        let block_expr = self.create_expr(block_expression_kind, block_type, &expression.node);
1939        Ok(block_expr)
1940    }
1941
1942    fn analyze_when_expr(
1943        &mut self,
1944        context: &TypeContext,
1945        variables: &[swamp_script_ast::WhenBinding],
1946        true_expr: &swamp_script_ast::Expression,
1947        else_expr: Option<&swamp_script_ast::Expression>,
1948    ) -> Result<Expression, Error> {
1949        // Since we are making new variable bindings, we have to push a scope for them
1950        self.push_block_scope("when");
1951        let mut bindings = Vec::new();
1952        for variable_binding in variables {
1953            let mut_expr = if let Some(found_expr) = &variable_binding.expression {
1954                let any_context = TypeContext::new_anything_argument();
1955                self.analyze_mut_or_immutable_expression(
1956                    found_expr,
1957                    &any_context,
1958                    LocationSide::Rhs,
1959                )?
1960            } else {
1961                let same_var = self.find_variable(&variable_binding.variable)?;
1962
1963                let is_mutable = same_var.mutable_node.clone();
1964                let argument_expression = if same_var.is_mutable() {
1965                    let loc = SingleLocationExpression {
1966                        kind: SingleLocationExpressionKind::MutVariableRef,
1967                        node: self.to_node(&variable_binding.variable.name),
1968                        ty: same_var.resolved_type.clone(),
1969                        starting_variable: same_var,
1970                        access_chain: vec![],
1971                    };
1972                    ArgumentExpressionOrLocation::Location(loc)
1973                } else {
1974                    let generated_expr_kind = ExpressionKind::VariableAccess(same_var.clone());
1975                    let generated_expression = self.create_expr(
1976                        generated_expr_kind,
1977                        same_var.resolved_type.clone(),
1978                        &variable_binding.variable.name,
1979                    );
1980                    ArgumentExpressionOrLocation::Expression(generated_expression)
1981                };
1982
1983                MutOrImmutableExpression {
1984                    expression_or_location: argument_expression,
1985                    is_mutable,
1986                }
1987            };
1988
1989            let ty = mut_expr.ty();
1990
1991            if let Type::Optional(found_ty) = ty {
1992                let variable_ref = self.create_variable(&variable_binding.variable, found_ty)?;
1993
1994                let binding = WhenBinding {
1995                    variable: variable_ref,
1996                    expr: mut_expr,
1997                };
1998                bindings.push(binding);
1999            } else {
2000                return Err(self.create_err(ErrorKind::ExpectedOptional, &true_expr.node));
2001            }
2002        }
2003
2004        let resolved_true = self.analyze_expression(true_expr, context)?;
2005        let block_type = resolved_true.ty.clone();
2006
2007        self.pop_block_scope("when");
2008
2009        let maybe_resolved_else = if let Some(found_else) = else_expr {
2010            let block_type_for_true_context = context.we_know_expected_type(&block_type);
2011            Some(Box::new(self.analyze_expression(
2012                found_else,
2013                &block_type_for_true_context,
2014            )?))
2015        } else {
2016            None
2017        };
2018
2019        let when_kind =
2020            ExpressionKind::When(bindings, Box::from(resolved_true), maybe_resolved_else);
2021
2022        let block_expr = self.create_expr(when_kind, block_type, &true_expr.node);
2023        Ok(block_expr)
2024    }
2025
2026    fn analyze_guard(
2027        &mut self,
2028        node: &swamp_script_ast::Node,
2029        context: &TypeContext,
2030        guard_expressions: &Vec<swamp_script_ast::GuardExpr>,
2031    ) -> Result<Expression, Error> {
2032        let mut guards = Vec::new();
2033        let mut found_wildcard = None;
2034        let mut detected_type = context.expected_type.cloned();
2035
2036        for guard in guard_expressions {
2037            let resolved_condition = match &guard.clause {
2038                swamp_script_ast::GuardClause::Wildcard(x) => {
2039                    if found_wildcard.is_some() {
2040                        return Err(
2041                            self.create_err(ErrorKind::GuardCanNotHaveMultipleWildcards, node)
2042                        );
2043                    }
2044                    found_wildcard = Some(x);
2045                    None
2046                }
2047                swamp_script_ast::GuardClause::Expression(clause_expr) => {
2048                    if found_wildcard.is_some() {
2049                        return Err(self.create_err(ErrorKind::WildcardMustBeLastInGuard, node));
2050                    }
2051                    Some(self.analyze_bool_argument_expression(clause_expr)?)
2052                }
2053            };
2054
2055            let resolved_result = self.analyze_expression(
2056                &guard.result,
2057                &context.with_expected_type(detected_type.as_ref()),
2058            )?;
2059            let ty = resolved_result.ty.clone();
2060            if detected_type.is_none() && !matches!(ty, Type::Never) {
2061                detected_type = Some(ty.clone());
2062            }
2063
2064            guards.push(Guard {
2065                condition: resolved_condition,
2066                result: resolved_result,
2067            });
2068        }
2069
2070        if found_wildcard.is_none() {
2071            return Err(self.create_err(ErrorKind::GuardMustHaveWildcard, node));
2072        }
2073
2074        let kind = ExpressionKind::Guard(guards);
2075
2076        detected_type.map_or_else(
2077            || Err(self.create_err(ErrorKind::GuardHasNoType, node)),
2078            |found_expecting_type| {
2079                let expr = self.create_expr(kind, found_expecting_type, node);
2080                Ok(expr)
2081            },
2082        )
2083    }
2084
2085    /// # Errors
2086    ///
2087    pub fn analyze_variable_assignment(
2088        &mut self,
2089        variable: &swamp_script_ast::Variable,
2090        source_expression: &swamp_script_ast::MutableOrImmutableExpression,
2091    ) -> Result<Expression, Error> {
2092        let any_argument_context = TypeContext::new_anything_argument();
2093        let source_expr = self.analyze_mut_or_immutable_expression(
2094            source_expression,
2095            &any_argument_context,
2096            LocationSide::Rhs,
2097        )?;
2098        let ty = source_expr.ty().clone();
2099        if !ty.is_concrete() {
2100            return Err(self.create_err(ErrorKind::VariableTypeMustBeConcrete, &variable.name));
2101        }
2102
2103        let maybe_found_variable = self.try_find_variable(&variable.name);
2104
2105        let kind: ExpressionKind = if let Some(found_var) = maybe_found_variable {
2106            if !found_var.is_mutable() {
2107                return Err(self.create_err(ErrorKind::VariableIsNotMutable, &variable.name));
2108            }
2109            if !found_var.resolved_type.assignable_type(&ty) {
2110                return Err(self.create_err(
2111                    ErrorKind::IncompatibleTypes(found_var.resolved_type.clone(), ty.clone()),
2112                    &variable.name,
2113                ));
2114            }
2115            ExpressionKind::VariableReassignment(found_var, Box::from(source_expr))
2116        } else {
2117            let new_var = self.create_variable(variable, &ty)?;
2118            ExpressionKind::VariableDefinition(new_var, Box::from(source_expr))
2119        };
2120
2121        Ok(self.create_expr(kind, Type::Unit, &variable.name))
2122    }
2123
2124    fn analyze_create_variable(
2125        &mut self,
2126        var: &swamp_script_ast::Variable,
2127        annotation_type: Option<&swamp_script_ast::Type>,
2128        source_expression: &swamp_script_ast::MutableOrImmutableExpression,
2129    ) -> Result<Expression, Error> {
2130        let ty = if let Some(found_ast_type) = annotation_type {
2131            Some(self.analyze_type(found_ast_type)?)
2132        } else {
2133            None
2134        };
2135
2136        let unsure_arg_context = TypeContext::new_unsure_argument(ty.as_ref());
2137
2138        let resolved_source = self.analyze_mut_or_immutable_expression(
2139            source_expression,
2140            &unsure_arg_context,
2141            LocationSide::Rhs,
2142        )?;
2143
2144        let var_ref = self.create_local_variable(
2145            &var.name,
2146            Option::from(&var.is_mutable),
2147            &resolved_source.ty(),
2148        )?;
2149
2150        let resolved_type = resolved_source.ty().clone();
2151        assert_ne!(resolved_type, Type::Unit);
2152        let kind = ExpressionKind::VariableDefinition(var_ref, Box::from(resolved_source));
2153
2154        let resolved_expr = self.create_expr(kind, Type::Unit, &var.name);
2155
2156        Ok(resolved_expr)
2157    }
2158
2159    fn add_location_item(
2160        &mut self,
2161        vec: &mut Vec<LocationAccess>,
2162        kind: LocationAccessKind,
2163        ty: Type,
2164        ast_node: &swamp_script_ast::Node,
2165    ) {
2166        let resolved_node = self.to_node(ast_node);
2167        let postfix = LocationAccess {
2168            node: resolved_node.clone(),
2169            ty,
2170            kind,
2171        };
2172
2173        vec.push(postfix);
2174    }
2175
2176    #[allow(clippy::too_many_lines)]
2177    fn analyze_chain_to_location(
2178        &mut self,
2179        chain: &swamp_script_ast::PostfixChain,
2180        context: &TypeContext,
2181        location_side: LocationSide,
2182    ) -> Result<SingleLocationExpression, Error> {
2183        let mut items = Vec::new();
2184
2185        let nothing_context =
2186            TypeContext::new(None, None, TypeContextScope::ArgumentOrOutsideFunction);
2187
2188        let base_expr = self.analyze_expression(&chain.base, &nothing_context)?;
2189        let ExpressionKind::VariableAccess(start_variable) = base_expr.kind else {
2190            return Err(self.create_err(ErrorKind::NotValidLocationStartingPoint, &chain.base.node));
2191        };
2192
2193        if !start_variable.is_mutable() {
2194            return Err(self.create_err(ErrorKind::VariableIsNotMutable, &chain.base.node));
2195        }
2196
2197        let mut ty = start_variable.resolved_type.clone();
2198        for (i, item) in chain.postfixes.iter().enumerate() {
2199            match &item {
2200                swamp_script_ast::Postfix::FieldAccess(field_name_node) => {
2201                    //let field_name_resolved = self.to_node(field_name_node)
2202                    let (struct_type_ref, index, return_type) =
2203                        self.analyze_struct_field(field_name_node, ty)?;
2204                    self.add_location_item(
2205                        &mut items,
2206                        LocationAccessKind::FieldIndex(struct_type_ref.clone(), index),
2207                        return_type.clone(),
2208                        field_name_node,
2209                    );
2210
2211                    ty = return_type.clone();
2212                }
2213                swamp_script_ast::Postfix::Subscript(lookup_expr) => {
2214                    let is_range = if let swamp_script_ast::ExpressionKind::Range(min, max, mode) =
2215                        &lookup_expr.kind
2216                    {
2217                        Some(self.analyze_range(min, max, mode)?)
2218                    } else {
2219                        None
2220                    };
2221                    match &ty {
2222                        Type::String => {
2223                            if let Some(range) = is_range {
2224                                self.add_location_item(
2225                                    &mut items,
2226                                    LocationAccessKind::StringRange(range),
2227                                    Type::String,
2228                                    &lookup_expr.node,
2229                                );
2230                            } else {
2231                                let index_expr_context = TypeContext::new_argument(&Type::Int);
2232                                let index_expr =
2233                                    self.analyze_expression(lookup_expr, &index_expr_context)?; // TODO: Support slice (range)
2234                                self.add_location_item(
2235                                    &mut items,
2236                                    LocationAccessKind::StringIndex(index_expr),
2237                                    Type::String,
2238                                    &lookup_expr.node,
2239                                );
2240                            }
2241                            ty = Type::String;
2242                        }
2243
2244                        Type::Array(array_type) => {
2245                            let int_argument_context = TypeContext::new_argument(&Type::Int);
2246                            let index_expr =
2247                                self.analyze_expression(lookup_expr, &int_argument_context)?; // TODO: Support slice (range)
2248                            self.add_location_item(
2249                                &mut items,
2250                                LocationAccessKind::ArrayIndex(array_type.clone(), index_expr),
2251                                array_type.item_type.clone(),
2252                                &lookup_expr.node,
2253                            );
2254                            ty = array_type.item_type.clone();
2255                        }
2256
2257                        Type::Map(map_type) => {
2258                            let key_type_argument_context =
2259                                TypeContext::new_argument(&map_type.key_type);
2260                            let key_expr =
2261                                self.analyze_expression(lookup_expr, &key_type_argument_context)?;
2262                            let is_last = i == chain.postfixes.len() - 1;
2263                            let allow_auto_insert = is_last && location_side == LocationSide::Lhs;
2264                            let (kind, lookup_type) = if allow_auto_insert {
2265                                // If this is the last postfix in the chain, then it is a "bare" access and auto-insert is allowed
2266                                // the type is `value_type` since this lookup is safe. we can create a memory location if there wasn't one
2267                                (
2268                                    LocationAccessKind::MapIndexInsertIfNonExisting(
2269                                        map_type.clone(),
2270                                        key_expr,
2271                                    ),
2272                                    map_type.value_type.clone(),
2273                                )
2274                            } else {
2275                                let optional_value_type =
2276                                    Type::Optional(Box::from(map_type.value_type.clone()));
2277                                (
2278                                    LocationAccessKind::MapIndex(map_type.clone(), key_expr),
2279                                    optional_value_type,
2280                                )
2281                            };
2282
2283                            self.add_location_item(
2284                                &mut items,
2285                                kind,
2286                                lookup_type.clone(),
2287                                &lookup_expr.node,
2288                            );
2289                            ty = lookup_type;
2290                        }
2291
2292                        Type::Generic(collection_type, generic_params) => {
2293                            if let Type::External(rust_type) = &**collection_type {
2294                                let val_type = generic_params[0].clone();
2295                                if rust_type.number == SPARSE_TYPE_ID {
2296                                    let sparse_id_type = self
2297                                        .shared
2298                                        .lookup_table
2299                                        .get_external_type("SparseId")
2300                                        .expect("should have SparseId");
2301
2302                                    let key_type = Type::External(sparse_id_type.clone());
2303                                    let key_type_context = TypeContext::new_argument(&key_type);
2304
2305                                    let key_expr =
2306                                        self.analyze_expression(lookup_expr, &key_type_context)?;
2307
2308                                    self.add_location_item(
2309                                        &mut items,
2310                                        LocationAccessKind::ExternalTypeIndex(
2311                                            rust_type.clone(),
2312                                            key_expr,
2313                                        ),
2314                                        key_type.clone(),
2315                                        &lookup_expr.node,
2316                                    );
2317
2318                                    ty = Type::Optional(Box::from(val_type.clone()));
2319                                }
2320                            }
2321                        }
2322
2323                        _ => {
2324                            return Err(
2325                                self.create_err(ErrorKind::IllegalIndexInChain, &lookup_expr.node)
2326                            );
2327                        }
2328                    }
2329                }
2330
2331                swamp_script_ast::Postfix::MemberCall(node, _) => {
2332                    return Err(self.create_err(ErrorKind::CallsCanNotBePartOfChain, node));
2333                }
2334
2335                swamp_script_ast::Postfix::FunctionCall(node, _) => {
2336                    return Err(self.create_err(ErrorKind::CallsCanNotBePartOfChain, node));
2337                }
2338                swamp_script_ast::Postfix::OptionUnwrap(node) => {
2339                    return Err(self.create_err(ErrorKind::UnwrapCanNotBePartOfChain, node));
2340                }
2341                swamp_script_ast::Postfix::NoneCoalesce(expr) => {
2342                    return Err(
2343                        self.create_err(ErrorKind::NoneCoalesceCanNotBePartOfChain, &expr.node)
2344                    );
2345                }
2346            }
2347        }
2348
2349        if let Some(found_expected_type) = context.expected_type {
2350            if !ty.compatible_with(found_expected_type) {
2351                return Err(self.create_err(
2352                    ErrorKind::IncompatibleTypes(ty, found_expected_type.clone()),
2353                    &chain.base.node,
2354                ));
2355            }
2356        }
2357
2358        let location = SingleLocationExpression {
2359            kind: SingleLocationExpressionKind::MutVariableRef,
2360            node: self.to_node(&chain.base.node),
2361            ty: ty.clone(),
2362            starting_variable: start_variable,
2363            access_chain: items,
2364        };
2365        Ok(location)
2366    }
2367
2368    fn analyze_to_location(
2369        &mut self,
2370        expr: &swamp_script_ast::Expression,
2371        context: &TypeContext,
2372        location_type: LocationSide,
2373    ) -> Result<SingleLocationExpression, Error> {
2374        match &expr.kind {
2375            swamp_script_ast::ExpressionKind::PostfixChain(chain) => {
2376                self.analyze_chain_to_location(chain, context, location_type)
2377            }
2378            swamp_script_ast::ExpressionKind::IdentifierReference(variable) => {
2379                let var = self.find_variable(variable)?;
2380                if var.is_mutable() {
2381                    Ok(SingleLocationExpression {
2382                        kind: SingleLocationExpressionKind::MutVariableRef,
2383                        node: self.to_node(&variable.name),
2384                        ty: var.resolved_type.clone(),
2385                        starting_variable: var,
2386                        access_chain: vec![],
2387                    })
2388                } else {
2389                    Err(self.create_err(ErrorKind::VariableIsNotMutable, &expr.node))
2390                }
2391            }
2392            _ => Err(self.create_err(ErrorKind::NotValidLocationStartingPoint, &expr.node)),
2393        }
2394    }
2395
2396    #[allow(clippy::single_match)]
2397    fn check_special_assignment_compound(
2398        &mut self,
2399        target_expression: &swamp_script_ast::Expression,
2400        target_type: &Type,
2401        op: &CompoundOperatorKind,
2402        source: &swamp_script_ast::Expression,
2403        source_type: &Type,
2404    ) -> Result<Option<ExpressionKind>, Error> {
2405        match &target_type {
2406            Type::Array(array_type) => {
2407                let target_type_context = TypeContext::new_argument(target_type);
2408                let source_type_context = TypeContext::new_argument(source_type);
2409                if *op == CompoundOperatorKind::Add
2410                    && source_type.compatible_with(&array_type.item_type)
2411                {
2412                    // Handle ArrayPush
2413                    let target_location = SingleMutLocationExpression(self.analyze_to_location(
2414                        target_expression,
2415                        &target_type_context,
2416                        LocationSide::Rhs,
2417                    )?);
2418                    let resolved_source = self.analyze_expression(source, &source_type_context)?;
2419                    return Ok(Option::from(ExpressionKind::IntrinsicCallMut(
2420                        IntrinsicFunction::VecSelfPush,
2421                        target_location,
2422                        vec![resolved_source],
2423                    )));
2424                } else if *op == CompoundOperatorKind::Add
2425                    && source_type.compatible_with(target_type)
2426                {
2427                    // Handle ArrayExtend
2428                    let target_location = SingleMutLocationExpression(self.analyze_to_location(
2429                        target_expression,
2430                        &target_type_context,
2431                        LocationSide::Rhs,
2432                    )?);
2433                    let resolved_source = self.analyze_expression(source, &source_type_context)?;
2434                    return Ok(Option::from(ExpressionKind::IntrinsicCallMut(
2435                        IntrinsicFunction::VecSelfExtend,
2436                        target_location,
2437                        vec![resolved_source],
2438                    )));
2439                }
2440            }
2441            _ => {}
2442        }
2443
2444        Ok(None)
2445    }
2446
2447    fn analyze_assignment_compound(
2448        &mut self,
2449        target_expression: &swamp_script_ast::Expression,
2450        ast_op: &swamp_script_ast::CompoundOperator,
2451        ast_source_expression: &swamp_script_ast::Expression,
2452    ) -> Result<Expression, Error> {
2453        let resolved_op = self.analyze_compound_operator(ast_op);
2454        let any_argument_context = TypeContext::new_anything_argument();
2455        let source_expr = self.analyze_expression(ast_source_expression, &any_argument_context)?;
2456        let source_expr_type_context = TypeContext::new_argument(&source_expr.ty);
2457
2458        let resolved_location = SingleMutLocationExpression(self.analyze_to_location(
2459            target_expression,
2460            &source_expr_type_context,
2461            LocationSide::Rhs,
2462        )?);
2463
2464        let kind = if let Some(found_special) = self.check_special_assignment_compound(
2465            target_expression,
2466            &resolved_location.0.ty,
2467            &resolved_op.kind,
2468            ast_source_expression,
2469            &source_expr.ty,
2470        )? {
2471            found_special
2472        } else {
2473            ExpressionKind::CompoundAssignment(
2474                resolved_location,
2475                resolved_op.kind,
2476                Box::from(source_expr),
2477            )
2478        };
2479
2480        let expr = self.create_expr(kind, Type::Unit, &target_expression.node);
2481
2482        Ok(expr)
2483    }
2484
2485    fn analyze_assignment(
2486        &mut self,
2487        target_location: &swamp_script_ast::Expression,
2488        ast_source_expression: &swamp_script_ast::Expression,
2489    ) -> Result<Expression, Error> {
2490        let any_argument_context = TypeContext::new_anything_argument();
2491        let resolved_location =
2492            self.analyze_to_location(target_location, &any_argument_context, LocationSide::Lhs)?;
2493
2494        let ty = resolved_location.ty.clone();
2495        if ty == Type::Unit {
2496            error!(?ast_source_expression, "unit problem");
2497        }
2498
2499        let lhs_argument_context = TypeContext::new_argument(&ty);
2500        let source_expr = self.analyze_expression(ast_source_expression, &lhs_argument_context)?;
2501
2502        let mut_location = SingleMutLocationExpression(resolved_location);
2503
2504        let kind = ExpressionKind::Assignment(Box::from(mut_location), Box::from(source_expr));
2505
2506        let expr = self.create_expr(kind, Type::Unit, &target_location.node); // Assignments are always of type Unit
2507
2508        Ok(expr)
2509    }
2510
2511    #[must_use]
2512    pub fn create_mut_single_location_expr(
2513        &self,
2514        kind: SingleLocationExpressionKind,
2515        ty: Type,
2516        ast_node: &swamp_script_ast::Node,
2517    ) -> SingleMutLocationExpression {
2518        SingleMutLocationExpression(SingleLocationExpression {
2519            kind,
2520            ty,
2521            starting_variable: Rc::new(Variable {
2522                name: Node::default(),
2523                resolved_type: Type::Int,
2524                mutable_node: None,
2525                scope_index: 0,
2526                variable_index: 0,
2527            }),
2528            node: self.to_node(ast_node),
2529            access_chain: vec![],
2530        })
2531    }
2532
2533    #[must_use]
2534    pub fn create_single_location_expr(
2535        &self,
2536        kind: SingleLocationExpressionKind,
2537        ty: Type,
2538        ast_node: &swamp_script_ast::Node,
2539    ) -> SingleLocationExpression {
2540        SingleLocationExpression {
2541            kind,
2542            ty,
2543            starting_variable: Rc::new(Variable {
2544                name: Node::default(),
2545                resolved_type: Type::Int,
2546                mutable_node: None,
2547                scope_index: 0,
2548                variable_index: 0,
2549            }),
2550            node: self.to_node(ast_node),
2551            access_chain: vec![],
2552        }
2553    }
2554
2555    #[must_use]
2556    pub fn create_single_location_expr_resolved(
2557        &self,
2558        kind: SingleLocationExpressionKind,
2559        ty: Type,
2560        node: &Node,
2561    ) -> SingleLocationExpression {
2562        SingleLocationExpression {
2563            kind,
2564            ty,
2565            starting_variable: Rc::new(Variable {
2566                name: Node::default(),
2567                resolved_type: Type::Int,
2568                mutable_node: None,
2569                scope_index: 0,
2570                variable_index: 0,
2571            }),
2572            node: node.clone(),
2573            access_chain: vec![],
2574        }
2575    }
2576    #[must_use]
2577    pub fn create_mut_single_location_expr_resolved(
2578        &self,
2579        kind: SingleLocationExpressionKind,
2580        ty: Type,
2581        node: &Node,
2582    ) -> SingleMutLocationExpression {
2583        SingleMutLocationExpression(SingleLocationExpression {
2584            kind,
2585            ty,
2586            starting_variable: Rc::new(Variable {
2587                name: Node::default(),
2588                resolved_type: Type::Int,
2589                mutable_node: None,
2590                scope_index: 0,
2591                variable_index: 0,
2592            }),
2593            node: node.clone(),
2594            access_chain: vec![],
2595        })
2596    }
2597
2598    #[must_use]
2599    pub const fn create_expr(
2600        &self,
2601        kind: ExpressionKind,
2602        ty: Type,
2603        ast_node: &swamp_script_ast::Node,
2604    ) -> Expression {
2605        //info!(%ty, ?kind, "create_expr()");
2606        Expression {
2607            kind,
2608            ty,
2609            node: self.to_node(ast_node),
2610        }
2611    }
2612
2613    #[must_use]
2614    pub fn create_expr_resolved(
2615        &self,
2616        kind: ExpressionKind,
2617        ty: Type,
2618        ast_node: &Node,
2619    ) -> Expression {
2620        Expression {
2621            kind,
2622            ty,
2623            node: ast_node.clone(),
2624        }
2625    }
2626
2627    fn analyze_destructuring(
2628        &mut self,
2629        node: &swamp_script_ast::Node,
2630        target_ast_variables: &[swamp_script_ast::Variable],
2631        tuple_expression: &swamp_script_ast::Expression,
2632    ) -> Result<Expression, Error> {
2633        let any_context = TypeContext::new_anything_argument();
2634        let tuple_resolved = self.analyze_expression(tuple_expression, &any_context)?;
2635        let tuple_expr_type = &tuple_resolved.ty;
2636
2637        let mut variable_refs = Vec::new();
2638        if let Type::Tuple(tuple) = tuple_expr_type.clone() {
2639            if target_ast_variables.len() > tuple.0.len() {
2640                return Err(self.create_err(ErrorKind::TooManyDestructureVariables, node));
2641            }
2642            for (variable_ref, tuple_type) in target_ast_variables.iter().zip(tuple.0.clone()) {
2643                let (variable_ref, _is_reassignment) =
2644                    self.set_or_overwrite_variable_with_type(variable_ref, &tuple_type)?;
2645                variable_refs.push(variable_ref);
2646            }
2647            let expr_kind =
2648                ExpressionKind::TupleDestructuring(variable_refs, tuple, Box::from(tuple_resolved));
2649
2650            Ok(self.create_expr(expr_kind, Type::Unit, node))
2651        } else {
2652            Err(self.create_err(ErrorKind::CanNotDestructure, node))
2653        }
2654    }
2655
2656    fn analyze_postfix_member_func_call(
2657        &mut self,
2658        resolved_node: &Node,
2659        found_function: &FunctionRef,
2660        encountered_self_type: &Type,
2661        is_mutable: bool,
2662        arguments: &[swamp_script_ast::MutableOrImmutableExpression],
2663    ) -> Result<Postfix, Error> {
2664        let signature = found_function.signature();
2665
2666        let self_type = &signature.parameters[0];
2667        if !self_type
2668            .resolved_type
2669            .compatible_with(&encountered_self_type)
2670            || self_type.is_mutable && !is_mutable
2671        {
2672            return Err(self.create_err_resolved(ErrorKind::SelfNotCorrectType, resolved_node));
2673        }
2674
2675        let resolved_arguments = self.analyze_and_verify_parameters(
2676            resolved_node,
2677            &signature.parameters[1..],
2678            arguments,
2679        )?;
2680
2681        let kind = PostfixKind::MemberCall(found_function.clone(), resolved_arguments);
2682        let postfix = Postfix {
2683            node: resolved_node.clone(),
2684            ty: *signature.return_type.clone(),
2685            kind,
2686        };
2687
2688        Ok(postfix)
2689    }
2690
2691    fn analyze_postfix_field_call(
2692        &mut self,
2693        resolved_node: &Node,
2694        struct_type: &StructTypeRef,
2695        field: &StructTypeField,
2696        index: usize,
2697        signature: &Signature,
2698        arguments: &[swamp_script_ast::MutableOrImmutableExpression],
2699    ) -> Result<Vec<Postfix>, Error> {
2700        let mut suffixes = Vec::new();
2701        //let field_name_str = self.get_text(member_name).to_string();
2702        let struct_field_kind =
2703            PostfixKind::StructField(struct_type.borrow().anon_struct_type.clone(), index);
2704
2705        let struct_field_postfix = Postfix {
2706            node: resolved_node.clone(),
2707            ty: field.field_type.clone(),
2708            kind: struct_field_kind,
2709        };
2710
2711        suffixes.push(struct_field_postfix);
2712
2713        let resolved_arguments =
2714            self.analyze_and_verify_parameters(resolved_node, &signature.parameters, arguments)?;
2715
2716        let call_kind = PostfixKind::FunctionCall(resolved_arguments);
2717
2718        let call_postfix = Postfix {
2719            node: resolved_node.clone(),
2720            ty: *signature.return_type.clone(),
2721            kind: call_kind,
2722        };
2723        suffixes.push(call_postfix);
2724
2725        Ok(suffixes)
2726    }
2727
2728    fn analyze_postfix_member_call(
2729        &mut self,
2730        type_that_member_is_on: &Type,
2731        is_mutable: bool,
2732        member_name: &swamp_script_ast::Node,
2733        arguments: &[swamp_script_ast::MutableOrImmutableExpression],
2734        suffixes: &mut Vec<Postfix>,
2735    ) -> Result<Type, Error> {
2736        let field_name_str = self.get_text(member_name).to_string();
2737
2738        let resolved_node = self.to_node(member_name);
2739
2740        let maybe_function = self
2741            .shared
2742            .state
2743            .associated_impls
2744            .get_member_function(&type_that_member_is_on, &field_name_str)
2745            .cloned();
2746
2747        let postfixes = match maybe_function {
2748            Some(found_function_member) => {
2749                let postfix = self.analyze_postfix_member_func_call(
2750                    &resolved_node,
2751                    &found_function_member,
2752                    type_that_member_is_on,
2753                    is_mutable,
2754                    arguments,
2755                )?;
2756                vec![postfix]
2757            }
2758            _ => {
2759                return Err(self.create_err(ErrorKind::NotValidLocationStartingPoint, member_name));
2760            } // TODO: Support function calls
2761              /*
2762              if let Type::NamedStruct(found_struct) = type_that_member_is_on {
2763                  let binding = found_struct.borrow();
2764                  match binding
2765                      .anon_struct_type
2766                      .field_name_sorted_fields
2767                      .get(&field_name_str)
2768                  {
2769                      Some(found_field) => {
2770                          if let Type::Function(signature) = &found_field.field_type {
2771                              let index = binding
2772                                  .anon_struct_type
2773                                  .field_name_sorted_fields
2774                                  .get_index(&field_name_str)
2775                                  .expect("should work");
2776                              self.analyze_postfix_field_call(
2777                                  &resolved_node,
2778                                  found_struct,
2779                                  found_field,
2780                                  index,
2781                                  signature,
2782                                  arguments,
2783                              )?
2784                          } else {
2785                              return Err(
2786                                  self.create_err(ErrorKind::NotValidLocationStartingPoint, member_name)
2787                              );
2788                          }
2789                      }
2790                      _ => {
2791                          return Err(
2792                              self.create_err(ErrorKind::NotValidLocationStartingPoint, member_name)
2793                          );
2794                      }
2795                  },
2796              }
2797
2798               */
2799        };
2800
2801        let last_type = postfixes.last().unwrap().ty.clone();
2802        suffixes.extend(postfixes);
2803
2804        Ok(last_type)
2805    }
2806
2807    /*
2808    pub fn analyze_range(&mut self, min_value: &Expression, max_value: &Expression, range_mode: &RangeMode) -> Range {
2809        let min_expression =
2810            self.analyze_expression(min_value, Some(&Type::Int))?;
2811        let max_expression =
2812            self.analyze_expression(max_value, Some(&Type::Int))?;
2813
2814        Range {
2815            min: min_expression,
2816            max: max_expression,
2817            mode: convert_range_mode(range_mode),
2818        }
2819    }
2820     */
2821
2822    fn analyze_break(
2823        &self,
2824        context: &TypeContext,
2825        node: &swamp_script_ast::Node,
2826    ) -> Result<Expression, Error> {
2827        if !context.allows_break() {
2828            return Err(self.create_err(ErrorKind::BreakOutsideLoop, node));
2829        }
2830
2831        Ok(Expression {
2832            kind: ExpressionKind::Break,
2833            ty: Type::Never,
2834            node: self.to_node(node),
2835        })
2836    }
2837
2838    fn analyze_return(
2839        &mut self,
2840        context: &TypeContext,
2841        optional_expression: Option<&swamp_script_ast::Expression>,
2842        node: &swamp_script_ast::Node,
2843    ) -> Result<Expression, Error> {
2844        if !context.allows_return() {
2845            return Err(self.create_err(ErrorKind::ReturnOutsideCompare, node));
2846        }
2847
2848        let return_context = context.for_return();
2849        let inner = if let Some(expr) = optional_expression {
2850            Some(Box::new(self.analyze_expression(expr, &return_context)?))
2851        } else {
2852            // Empty return
2853            None
2854        };
2855
2856        Ok(self.create_expr(ExpressionKind::Return(inner), Type::Never, node))
2857    }
2858
2859    fn analyze_continue(
2860        &self,
2861        context: &TypeContext,
2862        node: &swamp_script_ast::Node,
2863    ) -> Result<Expression, Error> {
2864        if !context.allows_continue() {
2865            return Err(self.create_err(ErrorKind::ContinueOutsideLoop, node));
2866        }
2867        Ok(self.create_expr(ExpressionKind::Continue, Type::Never, node))
2868    }
2869
2870    fn coerce_expression(
2871        &self,
2872        expr: Expression,
2873        expected_type: &Type,
2874        encountered_type: &Type,
2875        node: &swamp_script_ast::Node,
2876    ) -> Result<Expression, Error> {
2877        if !matches!(encountered_type, Type::Optional(_)) {
2878            // If an optional is expected, we can wrap it
2879            if let Type::Optional(expected_inner_type) = expected_type {
2880                if encountered_type.compatible_with(expected_inner_type) {
2881                    let wrapped = self.create_expr(
2882                        ExpressionKind::Option(Option::from(Box::new(expr))),
2883                        expected_type.clone(),
2884                        node,
2885                    );
2886                    return Ok(wrapped);
2887                }
2888            }
2889        } else if matches!(expected_type, &Type::Bool) {
2890            if let Type::Optional(_inner_type) = encountered_type {
2891                let wrapped = self.create_expr(
2892                    ExpressionKind::CoerceOptionToBool(Box::from(expr)),
2893                    Type::Bool,
2894                    node,
2895                );
2896                return Ok(wrapped);
2897            }
2898        }
2899
2900        error!(?expr, "expr");
2901        error!(?expected_type, ?encountered_type, "incompatible types");
2902
2903        Err(self.create_err(
2904            ErrorKind::IncompatibleTypes(expected_type.clone(), encountered_type.clone()),
2905            node,
2906        ))
2907    }
2908}