swamp_parser/
lib.rs

1/*
2 * Copyright (c) Peter Bjorklund. All rights reserved. https://github.com/swamp/swamp
3 * Licensed under the MIT License. See LICENSE in the project root for license information.
4 */
5pub mod prelude;
6
7use pest::error::{Error, ErrorVariant, InputLocation};
8use pest::iterators::{Pair, Pairs};
9use pest::{Parser, Position};
10use pest_derive::Parser;
11use std::iter::Peekable;
12use std::str::Chars;
13use swamp_ast::{
14    AssignmentOperatorKind, BinaryOperatorKind, CompoundOperator, CompoundOperatorKind,
15    ConcretePattern, DestructuringPattern, EnumVariantLiteral, ExpressionKind, FieldExpression,
16    FieldName, ForPattern, ForVar, ImportItems, IterableExpression, LocalConstantIdentifier,
17    LocalTypeIdentifierWithOptionalTypeVariables, Mod, NamedStructDef, PatternVariableOrWildcard,
18    QualifiedIdentifier, RangeMode, SpanWithoutFileId, StructTypeField, TypeForParameter,
19    TypeVariable, VariableBinding, prelude::*,
20};
21use swamp_ast::{AttributeLiteralKind, Function};
22use swamp_ast::{GenericParameter, LiteralKind};
23use swamp_ast::{Postfix, PostfixChain};
24use tracing::error;
25
26pub struct ParseResult<'a> {
27    #[allow(dead_code)]
28    script: String, // Pairs are referencing the script
29    pairs: pest::iterators::Pairs<'a, Rule>,
30}
31
32pub struct GeneralError {
33    pub description: String,
34}
35
36#[derive(Debug)]
37pub enum SpecificError {
38    CouldNotMoveDown,
39    CouldNotMoveRight,
40    General(String),
41    ExpectingTypeIdentifier,
42    ExpectingInnerPair,
43    UnexpectedTypeRule(String),
44    ExpectedTypeIdentifier(String),
45    ExpectedLocalTypeIdentifier(String),
46    UnexpectedRuleInParseScript(String),
47    ExpectedControlStatement(String),
48    ExpectedStatement(String),
49    ExpectedIfOrElse(String),
50    MissingFunctionSignature,
51    MissingFunctionBody,
52    ExpectedStatementBlock,
53    ExpectedFunctionDefinition,
54    ExpectedParameter,
55    ExpectedImplItem,
56    ExpectedMemberSignature,
57    ExpectedBlockInWhileLoop,
58    UnexpectedExpressionType(String),
59    UnexpectedAccessType(String),
60    UnknownAssignmentOperator(String),
61    CompoundOperatorCanNotContainMut,
62    InvalidAssignmentTarget,
63    CompoundOperatorCanNotHaveMultipleVariables,
64    ExpectedExpressionAfterPrefixOperator,
65    UnknownOperator(String),
66    UnexpectedPostfixOperator,
67    UnexpectedUnaryOperator(String),
68    InvalidMemberCall,
69    UnknownMatchType,
70    UnexpectedElementInPatternList,
71    InvalidPrecisionValue,
72    InvalidPrecisionType,
73    ExpectedTypeIdentifierAfterPath,
74    UnexpectedPatternListElement(String),
75    MustHaveAtLeastOneArm,
76    UnexpectedMatchArmRule(String),
77    UnknownEnumVariant(String),
78    UnknownLiteral,
79    UnknownPrimary(String),
80    InvalidFormatSpecifier,
81    UnexpectedVariantField,
82    MutOnlyForVariables,
83    UnexpectedTokenInFunctionCall,
84    ExpectedExpressionInInterpolation,
85    UnexpectedRuleInInterpolation,
86    ExpectedForPattern,
87    ExpectedBlock,
88    InvalidForPattern,
89    UnexpectedRuleInElse(String),
90    ExpectedLocationExpression,
91    ExpectedImportPath,
92    ExpectedIdentifier,
93    ExpectedIdentifierAfterPath,
94    ExpectedFieldOrRest,
95    UnknownEscapeCharacter(char),
96    UnfinishedEscapeSequence,
97    InvalidUnicodeEscape,
98    InvalidHexEscape,
99    InvalidUtf8Sequence,
100    MissingTypeName,
101    UnknownTerm(String),
102    UnknownExpr(String),
103    UnexpectedTokenInMutableExpression,
104}
105
106#[derive(Debug)]
107pub struct ParseError {
108    pub span: SpanWithoutFileId,
109    pub specific: SpecificError,
110}
111
112#[derive(Parser)]
113#[grammar = "grammar.pest"]
114pub struct ScriptParser;
115
116pub const UNKNOWN_FILE_ID: u16 = 0xffff;
117
118pub struct AstParser;
119
120impl From<Error<Rule>> for ParseError {
121    fn from(value: Error<Rule>) -> Self {
122        let span = match value.location {
123            InputLocation::Pos(pos) => SpanWithoutFileId {
124                offset: pos as u32,
125                length: 1,
126            },
127            InputLocation::Span((start, end)) => SpanWithoutFileId {
128                offset: start as u32,
129                length: (end - start) as u16,
130            },
131        };
132        Self {
133            span,
134            specific: SpecificError::General(value.variant.to_string()),
135        }
136    }
137}
138
139impl AstParser {
140    fn next_pair<'a>(
141        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
142    ) -> Result<Pair<'a, Rule>, ParseError> {
143        Ok(pairs.next().ok_or_else(|| {
144            Error::new_from_pos(
145                ErrorVariant::CustomError {
146                    message: "Expected more tokens".into(),
147                },
148                Position::from_start(""),
149            )
150        })?)
151    }
152
153    fn expect_next<'a>(
154        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
155        expected_rule: Rule,
156    ) -> Result<Pair<'a, Rule>, ParseError> {
157        let pair = Self::next_pair(pairs)?;
158        if pair.as_rule() != expected_rule {
159            return Err(Error::new_from_span(
160                ErrorVariant::CustomError {
161                    message: format!("Expected {:?}, found {:?}", expected_rule, pair.as_rule()),
162                },
163                pair.as_span(),
164            ))?;
165        }
166        Ok(pair)
167    }
168
169    fn expect_identifier_next<'a>(
170        &self,
171        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
172    ) -> Result<LocalIdentifier, ParseError> {
173        let pair = Self::expect_next(pairs, Rule::identifier)?;
174        Ok(LocalIdentifier::new(self.to_node(&pair)))
175    }
176
177    fn expect_function_identifier_next<'a>(
178        &self,
179        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
180    ) -> Result<LocalIdentifier, ParseError> {
181        let pair = Self::expect_next(pairs, Rule::function_identifier)?;
182        Ok(LocalIdentifier::new(self.to_node(&pair)))
183    }
184
185    fn expect_constant_identifier_next<'a>(
186        &self,
187        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
188    ) -> Result<LocalConstantIdentifier, ParseError> {
189        let pair = Self::expect_next(pairs, Rule::constant_identifier)?;
190        Ok(LocalConstantIdentifier(self.to_node(&pair)))
191    }
192
193    fn _expect_variable_next<'a>(
194        &self,
195        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
196    ) -> Result<Variable, ParseError> {
197        let identifier = self.expect_identifier_next(pairs)?;
198        Ok(Variable {
199            name: identifier.0,
200            is_mutable: None,
201        })
202    }
203
204    fn expect_field_label_next<'a>(
205        &self,
206        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
207    ) -> Result<FieldName, ParseError> {
208        let field_label_pair = Self::expect_next(pairs, Rule::field_label)?;
209        let mut inner = field_label_pair.clone().into_inner();
210        let ident_pair = inner.next().ok_or_else(|| {
211            self.create_error_pair(SpecificError::ExpectedIdentifier, &field_label_pair)
212        })?;
213
214        Ok(FieldName(self.to_node(&ident_pair)))
215    }
216
217    fn parse_dot_identifier<'a>(&self, pair: &Pair<Rule>) -> Result<FieldName, ParseError> {
218        debug_assert_eq!(pair.as_rule(), Rule::dot_identifier);
219        let mut inner = pair.clone().into_inner();
220        let ident_pair = inner
221            .next()
222            .ok_or_else(|| self.create_error_pair(SpecificError::ExpectedIdentifier, pair))?;
223
224        Ok(FieldName(self.to_node(&ident_pair)))
225    }
226
227    fn expect_local_type_identifier_next<'a>(
228        &self,
229        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
230    ) -> Result<LocalTypeIdentifier, ParseError> {
231        let pair = Self::expect_next(pairs, Rule::type_identifier)?;
232        Ok(LocalTypeIdentifier::new(self.to_node(&pair)))
233    }
234
235    fn convert_into_iterator<'a>(pair: &'a Pair<'a, Rule>) -> impl Iterator<Item = Pair<'a, Rule>> {
236        pair.clone().into_inner()
237    }
238
239    fn create_error_pair(&self, kind: SpecificError, pair: &Pair<Rule>) -> ParseError {
240        ParseError {
241            span: self.to_span(pair.as_span()),
242            specific: kind,
243        }
244    }
245
246    fn to_err(kind: SpecificError, pair: &Pair<Rule>) -> ParseError {
247        ParseError {
248            span: Self::span(pair.as_span()),
249            specific: kind,
250        }
251    }
252
253    fn next_inner_pair<'a>(&self, pair: &Pair<'a, Rule>) -> Result<Pair<'a, Rule>, ParseError> {
254        let _span = pair.as_span();
255        pair.clone()
256            .into_inner()
257            .next()
258            .ok_or_else(move || self.create_error_pair(SpecificError::ExpectingInnerPair, pair))
259    }
260
261    pub fn parse(rule: Rule, raw_script: &str) -> Result<ParseResult<'static>, ParseError> {
262        let pairs = unsafe {
263            std::mem::transmute::<pest::iterators::Pairs<'_, Rule>, pest::iterators::Pairs<'_, Rule>>(
264                ScriptParser::parse(rule, raw_script)?,
265            )
266        };
267        Ok(ParseResult {
268            script: raw_script.to_string(),
269            pairs,
270        })
271    }
272
273    pub fn parse_item(&self, pair: &Pair<Rule>) -> Result<Definition, ParseError> {
274        debug_assert_eq!(pair.as_rule(), Rule::item);
275
276        let mut inner = pair.clone().into_inner();
277        let mut attributes = Vec::new();
278
279        while let Some(attr_pair) = inner.peek() {
280            if attr_pair.as_rule() == Rule::attribute {
281                let attr = self.parse_attribute(&inner.next().unwrap())?;
282                attributes.push(attr);
283            } else {
284                break;
285            }
286        }
287        // The next should be the definition
288        if let Some(def_pair) = inner.next() {
289            let definition_kind = self.parse_definition(&def_pair, &attributes)?;
290            let definition = Definition {
291                node: self.to_node(&def_pair),
292                kind: definition_kind,
293                attributes,
294            };
295            Ok(definition)
296        } else {
297            panic!("must be definition after attributes")
298        }
299    }
300
301    pub fn parse_module(&self, raw_script: &str) -> Result<Module, ParseError> {
302        let result = Self::parse(Rule::program, raw_script)?;
303
304        let mut pairs = result.pairs;
305
306        let program_pair = Self::next_pair(&mut pairs)?;
307
308        let mut expressions = Vec::new();
309        let mut definitions = Vec::new();
310        for pair in Self::convert_into_iterator(&program_pair) {
311            match pair.as_rule() {
312                Rule::item => {
313                    let def = self.parse_item(&pair)?;
314                    definitions.push(def);
315                }
316                Rule::expression => {
317                    let expr = self.parse_expression(&pair)?;
318                    expressions.push(expr);
319                }
320                Rule::EOI => {} // End of Input - do nothing
321                _ => {
322                    return Err(self.create_error_pair(
323                        SpecificError::UnexpectedRuleInParseScript(Self::pair_to_rule(&pair)),
324                        &pair,
325                    ));
326                }
327            }
328        }
329
330        let maybe_expression = match expressions.len() {
331            0 => None,
332            1 => Some(expressions.into_iter().next().unwrap()),
333            _ => Some(Expression {
334                kind: ExpressionKind::Block(expressions),
335                node: Node {
336                    span: SpanWithoutFileId::default(),
337                },
338            }),
339        };
340
341        Ok(Module::new(definitions, maybe_expression))
342    }
343
344    fn parse_definition(
345        &self,
346        pair: &Pair<Rule>,
347        attributes: &[Attribute],
348    ) -> Result<DefinitionKind, ParseError> {
349        let inner_pair = self.next_inner_pair(pair)?;
350        match inner_pair.as_rule() {
351            Rule::impl_def => self.parse_impl_def(&inner_pair),
352            Rule::const_def => self.parse_const_definition(&inner_pair),
353            Rule::struct_def => self.parse_struct_def(&inner_pair),
354            Rule::type_def => self.parse_type_def(&inner_pair),
355            Rule::function_def => self.parse_function_def(&inner_pair, attributes),
356            Rule::use_def => self.parse_use(&inner_pair),
357            Rule::mod_def => self.parse_mod(&inner_pair),
358            Rule::enum_def => self.parse_enum_def(&inner_pair),
359            _ => todo!(),
360        }
361    }
362
363    fn parse_const_definition(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
364        Ok(DefinitionKind::Constant(self.parse_const_info(pair)?))
365    }
366
367    fn parse_const_info(&self, pair: &Pair<Rule>) -> Result<ConstantInfo, ParseError> {
368        let mut inner = pair.clone().into_inner(); // Self::convert_into_iterator(pair);
369
370        let constant_identifier = self.expect_constant_identifier_next(&mut inner)?;
371
372        let maybe_annotation = self.parse_maybe_annotation(&mut inner)?;
373
374        let expr_pair = Self::next_pair(&mut inner)?;
375        let expression = self.parse_expression(&expr_pair)?;
376
377        Ok(ConstantInfo {
378            constant_identifier,
379            annotation: maybe_annotation,
380            expression: Box::new(expression),
381        })
382    }
383
384    fn module_path_and_items(
385        &self,
386        pair: &Pair<Rule>,
387    ) -> Result<(Vec<Node>, ImportItems), ParseError> {
388        let mut inner = Self::convert_into_iterator(pair);
389        let import_path = Self::next_pair(&mut inner)?;
390
391        let mut segments = Vec::new();
392        for pair in import_path.into_inner() {
393            segments.push(self.to_node(&pair));
394        }
395
396        let items = match inner.next() {
397            Some(found_rule) => match found_rule.as_rule() {
398                Rule::all_imports => ImportItems::All,
399                Rule::import_list => {
400                    let mut imported_items = Vec::new();
401                    for list_item in found_rule.into_inner() {
402                        let item = Self::next_pair(&mut list_item.into_inner())?;
403
404                        let import_item = match item.as_rule() {
405                            Rule::identifier => {
406                                ImportItem::Identifier(LocalIdentifier::new(self.to_node(&item)))
407                            }
408                            Rule::type_identifier => {
409                                ImportItem::Type(LocalTypeIdentifier::new(self.to_node(&item)))
410                            }
411                            _ => {
412                                return Err(self
413                                    .create_error_pair(SpecificError::ExpectedIdentifier, &item));
414                            }
415                        };
416
417                        imported_items.push(import_item);
418                    }
419                    if imported_items.is_empty() {
420                        ImportItems::Nothing
421                    } else {
422                        ImportItems::Items(imported_items)
423                    }
424                }
425                _ => panic!("was not all_imports or import_list"),
426            },
427            None => ImportItems::Nothing,
428        };
429
430        Ok((segments, items))
431    }
432
433    fn parse_use(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
434        let (segments, items) = self.module_path_and_items(pair)?;
435
436        Ok(DefinitionKind::Use(Use {
437            module_path: ModulePath(segments),
438            items,
439        }))
440    }
441
442    fn parse_mod(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
443        let (segments, items) = self.module_path_and_items(pair)?;
444
445        Ok(DefinitionKind::Mod(Mod {
446            module_path: ModulePath(segments),
447            items,
448        }))
449    }
450
451    fn pair_to_rule(rule: &Pair<Rule>) -> String {
452        format!("{:?}", rule.as_rule())
453    }
454
455    fn parse_block(&self, block_pair: &Pair<Rule>) -> Result<Expression, ParseError> {
456        if block_pair.as_rule() != Rule::block {
457            return Err(self.create_error_pair(SpecificError::ExpectedBlock, block_pair));
458        }
459
460        let mut expressions = Vec::new();
461
462        for pair in Self::convert_into_iterator(block_pair) {
463            if pair.as_rule() != Rule::expression {
464                return Err(self.create_error_pair(
465                    SpecificError::UnexpectedRuleInParseScript(format!(
466                        "Expected expression_in_block, got: {:?}",
467                        pair.as_rule()
468                    )),
469                    block_pair,
470                ));
471            }
472
473            match pair.as_rule() {
474                Rule::expression => {
475                    let expr = self.parse_expression(&pair)?;
476                    expressions.push(expr);
477                }
478                _ => {
479                    return Err(self.create_error_pair(
480                        SpecificError::UnexpectedRuleInParseScript(format!(
481                            "Unexpected rule in parse_block: {:?}",
482                            pair.as_rule()
483                        )),
484                        &pair,
485                    ));
486                }
487            }
488        }
489
490        let block_expr = self.create_expr(ExpressionKind::Block(expressions), block_pair);
491        Ok(block_expr)
492    }
493
494    fn parse_with_expr(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
495        let mut inner = Self::convert_into_iterator(pair);
496        let binding_list_pair = inner.next().expect("variable list missing");
497        let binding_list = self.parse_variable_binding_list(&binding_list_pair)?;
498
499        let expr_pair = inner.next().expect("block missing");
500        let expr = self.parse_expression(&expr_pair)?;
501
502        let with_expr = self.create_expr(ExpressionKind::With(binding_list, Box::from(expr)), pair);
503        Ok(with_expr)
504    }
505
506    fn parse_when_expr(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
507        let mut inner = Self::convert_into_iterator(pair);
508        let binding_list =
509            self.parse_variable_binding_list(&inner.next().expect("variable list missing"))?;
510        let expr = self.parse_expression(&inner.next().expect("block missing"))?;
511
512        let next = inner.next();
513        let else_expr = if let Some(found_else) = next {
514            Some(Box::new(self.parse_expression(&found_else)?))
515        } else {
516            None
517        };
518
519        Ok(self.create_expr(
520            ExpressionKind::When(binding_list, Box::from(expr), else_expr),
521            pair,
522        ))
523    }
524
525    fn parse_when_variable_binding(
526        &self,
527        pair: &Pair<Rule>,
528    ) -> Result<VariableBinding, ParseError> {
529        let mut inner = Self::convert_into_iterator(pair);
530
531        let variable = self.parse_variable_item(&inner.next().expect("variable missing"))?;
532
533        let expression = match inner.next() {
534            Some(expr_pair) => Some(self.parse_arg_expression(&expr_pair)?),
535            _ => None,
536        };
537
538        Ok(VariableBinding {
539            variable,
540            expression,
541        })
542    }
543
544    fn parse_variable_binding_list(
545        &self,
546        pair: &Pair<Rule>,
547    ) -> Result<Vec<VariableBinding>, ParseError> {
548        let inner = Self::convert_into_iterator(pair);
549        let mut bindings = Vec::new();
550
551        // Each item in inner will be a variable_binding
552        for binding_pair in inner {
553            if binding_pair.as_rule() == Rule::variable_binding {
554                bindings.push(self.parse_when_variable_binding(&binding_pair)?);
555            }
556        }
557
558        Ok(bindings)
559    }
560    fn parse_if_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
561        let mut inner = Self::convert_into_iterator(pair);
562        let condition = self.parse_expression(&Self::next_pair(&mut inner)?)?;
563        let then_branch = self.parse_expression(&Self::next_pair(&mut inner)?)?;
564        let else_branch = inner
565            .next()
566            .map(|p| {
567                match p.as_rule() {
568                    Rule::if_expr => self.parse_if_expression(&p), // Recursively handle `else if`
569                    _ => self.parse_expression(&p),                // Inline or block `else`
570                }
571            })
572            .transpose()?;
573
574        Ok(self.create_expr(
575            ExpressionKind::If(
576                Box::new(condition),
577                Box::new(then_branch),
578                else_branch.map(Box::new),
579            ),
580            pair,
581        ))
582    }
583
584    #[allow(clippy::too_many_lines)]
585    fn parse_postfix_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
586        assert_eq!(pair.as_rule(), Rule::postfix);
587        let mut inner = pair.clone().into_inner();
588
589        let primary_pair = inner.next().ok_or_else(|| {
590            self.create_error_pair(SpecificError::UnexpectedPostfixOperator, pair)
591        })?;
592        let start_expr = self.parse_term(&primary_pair)?;
593        //info!(?start_expr, "start");
594        let mut postfixes = Vec::new();
595        if inner.len() == 0 {
596            return Ok(start_expr);
597        }
598
599        for op_pair in inner.clone() {
600            //info!(rule=?op_pair.as_rule(), "..continuing chain");
601            match op_pair.as_rule() {
602                Rule::postfix_op => {
603                    let mut sub_inner = op_pair.clone().into_inner();
604                    let child = sub_inner.next().ok_or_else(|| {
605                        self.create_error_pair(SpecificError::UnexpectedPostfixOperator, &op_pair)
606                    })?;
607
608                    match child.as_rule() {
609                        Rule::unwrap_postfix => {
610                            postfixes
611                                .push(Postfix::OptionalChainingOperator(self.to_node(&op_pair)));
612                        }
613
614                        Rule::function_call_postfix => {
615                            let (maybe_generics, args) =
616                                self.parse_function_call_postfix(&child)?;
617                            let node = self.to_node(&op_pair);
618                            postfixes.push(Postfix::FunctionCall(node, maybe_generics, args));
619                        }
620
621                        Rule::member_call_postfix => {
622                            let (member_identifier, maybe_generics, args) =
623                                self.parse_member_call_postfix(&child)?;
624
625                            postfixes.push(Postfix::MemberCall(
626                                member_identifier.0,
627                                maybe_generics,
628                                args,
629                            ));
630                        }
631
632                        Rule::member_access_postfix => {
633                            let mut inner = child.into_inner();
634                            let dot_id = Self::next_pair(&mut inner)?;
635                            let identifier = self.parse_dot_identifier(&dot_id)?;
636                            postfixes.push(Postfix::FieldAccess(identifier.0));
637                        }
638
639                        Rule::subscript_postfix => {
640                            let mut arr_inner = child.clone().into_inner();
641
642                            let first_expr_pair = arr_inner.next().ok_or_else(|| {
643                                self.create_error_pair(
644                                    SpecificError::UnexpectedPostfixOperator,
645                                    &child,
646                                )
647                            })?;
648                            let first_expression = self.parse_expression(&first_expr_pair)?;
649
650                            let second_expr_pair = arr_inner.next();
651                            match second_expr_pair {
652                                Some(pair) => {
653                                    let second_expression = self.parse_expression(&pair)?;
654                                    postfixes.push(Postfix::SubscriptTuple(
655                                        first_expression,
656                                        second_expression,
657                                    ));
658                                }
659                                None => {
660                                    postfixes.push(Postfix::Subscript(first_expression));
661                                }
662                            }
663                        }
664
665                        _ => {
666                            return Err(self.create_error_pair(
667                                SpecificError::UnexpectedPostfixOperator,
668                                &child,
669                            ));
670                        }
671                    }
672                }
673                _ => {
674                    return Err(
675                        self.create_error_pair(SpecificError::UnexpectedPostfixOperator, &op_pair)
676                    );
677                }
678            }
679        }
680
681        Ok(self.create_expr(
682            ExpressionKind::PostfixChain(PostfixChain {
683                base: Box::from(start_expr),
684                postfixes,
685            }),
686            pair,
687        ))
688    }
689
690    fn parse_member_call_postfix(
691        &self,
692        pair: &Pair<Rule>,
693    ) -> Result<(FieldName, Option<Vec<GenericParameter>>, Vec<Expression>), ParseError> {
694        debug_assert_eq!(pair.as_rule(), Rule::member_call_postfix);
695
696        let mut inner = pair.clone().into_inner();
697
698        let member_access = Self::next_pair(&mut inner)?;
699        debug_assert_eq!(member_access.as_rule(), Rule::member_access_postfix);
700        let mut ma_inner = member_access.into_inner();
701        let dot_id = Self::next_pair(&mut ma_inner)?;
702        let member_identifier = self.parse_dot_identifier(&dot_id)?;
703
704        let mut generic_args: Option<Vec<GenericParameter>> = None;
705        // Peek at the next rule without consuming it
706        if let Some(peeked_pair) = inner.peek() {
707            if peeked_pair.as_rule() == Rule::generic_arguments {
708                let generic_args_pair = Self::next_pair(&mut inner)?;
709                generic_args = Some(self.parse_generic_arguments(&generic_args_pair)?);
710            }
711        } else {
712            panic!("shouldn't happen in member_call_postfix")
713        }
714
715        let args_pair = Self::next_pair(&mut inner)?;
716        let args = self.parse_function_call_arguments(&args_pair)?;
717
718        Ok((member_identifier, generic_args, args))
719    }
720
721    fn parse_type_def(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
722        let mut inner = Self::convert_into_iterator(pair);
723        let alias_name = self.expect_local_type_identifier_next(&mut inner)?;
724        let referenced_type = self.parse_type(inner.next().expect("should work"))?;
725
726        let alias_type = AliasType {
727            identifier: alias_name,
728            referenced_type,
729        };
730
731        Ok(DefinitionKind::AliasDef(alias_type))
732    }
733
734    fn parse_struct_type_field(&self, pair: &Pair<Rule>) -> Result<StructTypeField, ParseError> {
735        debug_assert_eq!(pair.as_rule(), Rule::struct_type_field);
736
737        let mut field_inner = Self::convert_into_iterator(pair);
738        let field_name = self.expect_field_label_next(&mut field_inner)?;
739        let field_type = self.parse_type(Self::next_pair(&mut field_inner)?)?;
740        let struct_type_field = StructTypeField {
741            field_name,
742            field_type,
743        };
744
745        Ok(struct_type_field)
746    }
747
748    fn parse_struct_type_fields(
749        &self,
750        pair: &Pair<Rule>,
751    ) -> Result<Vec<StructTypeField>, ParseError> {
752        debug_assert_eq!(pair.as_rule(), Rule::struct_type_fields);
753        let mut fields = Vec::new();
754        for field_def in Self::convert_into_iterator(pair) {
755            let anonymous_struct_field = self.parse_struct_type_field(&field_def)?;
756
757            fields.push(anonymous_struct_field);
758        }
759        Ok(fields)
760    }
761
762    fn parse_struct_type(&self, pair: &Pair<Rule>) -> Result<AnonymousStructType, ParseError> {
763        debug_assert_eq!(pair.as_rule(), Rule::struct_type);
764        let fields = Self::right_alternative(pair)?;
765        let fields = self.parse_struct_type_fields(&fields)?;
766        let struct_type = AnonymousStructType::new(fields);
767        Ok(struct_type)
768    }
769
770    fn parse_tuple_type_elements(&self, pair: &Pair<Rule>) -> Result<Vec<Type>, ParseError> {
771        debug_assert_eq!(pair.as_rule(), Rule::tuple_type);
772        let mut types = Vec::new();
773        for type_pair in pair.clone().into_inner() {
774            let type_value = self.parse_type(type_pair)?;
775            types.push(type_value);
776        }
777        Ok(types)
778    }
779
780    fn parse_struct_def(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
781        let mut inner = Self::convert_into_iterator(pair).peekable();
782
783        let name_with_optional_type_params =
784            self.parse_local_type_identifier_with_optional_type_variables(&inner.next().unwrap())?;
785
786        // struct_type is optional
787        // it is valid syntax to just do:
788        // `struct SomeStruct`
789        let struct_type_pair_option = inner.next();
790        let struct_type_result = match struct_type_pair_option {
791            Some(struct_type_pair) => Some(self.parse_struct_type(&struct_type_pair)?),
792            None => None,
793        };
794
795        let struct_type = struct_type_result.map_or_else(
796            || AnonymousStructType::new(vec![]),
797            |found_result| found_result,
798        );
799
800        Ok(DefinitionKind::NamedStructDef(NamedStructDef {
801            identifier: name_with_optional_type_params,
802            struct_type,
803        }))
804    }
805
806    fn parse_function_def(
807        &self,
808        pair: &Pair<Rule>,
809        attributes: &[Attribute],
810    ) -> Result<DefinitionKind, ParseError> {
811        let function_pair = self.next_inner_pair(pair)?;
812
813        match function_pair.as_rule() {
814            Rule::normal_function => {
815                let mut inner = function_pair.clone().into_inner();
816                let signature_pair = inner.next().ok_or_else(|| {
817                    self.create_error_pair(SpecificError::MissingFunctionSignature, &function_pair)
818                })?;
819
820                let signature = self.parse_function_signature(&signature_pair)?;
821
822                let body = self.parse_block(&inner.next().ok_or_else(|| {
823                    self.create_error_pair(SpecificError::MissingFunctionBody, &function_pair)
824                })?)?;
825
826                Ok(DefinitionKind::FunctionDef(Function::Internal(
827                    FunctionWithBody {
828                        declaration: signature,
829                        attributes: attributes.to_vec(),
830                        body,
831                    },
832                )))
833            }
834            Rule::external_function => {
835                let mut inner = function_pair.clone().into_inner();
836                let id = inner.next().unwrap();
837                let signature_pair = inner.next().ok_or_else(|| {
838                    self.create_error_pair(
839                        SpecificError::MissingFunctionSignature,
840                        &function_pair.clone(),
841                    )
842                })?;
843
844                let signature = self.parse_function_signature(&signature_pair)?;
845                Ok(DefinitionKind::FunctionDef(Function::External(
846                    self.to_node(&id),
847                    signature,
848                )))
849            }
850            _ => {
851                Err(self
852                    .create_error_pair(SpecificError::ExpectedFunctionDefinition, &function_pair))
853            }
854        }
855    }
856    fn parse_function_signature(
857        &self,
858        pair: &Pair<Rule>,
859    ) -> Result<FunctionDeclaration, ParseError> {
860        if pair.as_rule() != Rule::function_signature {
861            return Err(self.create_error_pair(SpecificError::MissingFunctionSignature, pair));
862        }
863
864        let mut inner = pair.clone().into_inner();
865
866        let function_name = self.expect_function_identifier_next(&mut inner)?;
867
868        let mut maybe_next_token = inner.next();
869        if let Some(next_rule) = &maybe_next_token
870            && next_rule.as_rule() == Rule::generic_type_variables {
871                //generic_types = self.parse_generic_type_variables(next_rule)?;
872                maybe_next_token = inner.next();
873            }
874
875        let (parameters, return_type) = match maybe_next_token {
876            Some(token) if token.as_rule() == Rule::parameter_list => {
877                let params = self.parse_parameters(&token)?;
878
879                let ret_type = if let Some(return_type_pair) = inner.next() {
880                    Some(self.parse_return_type(&return_type_pair)?)
881                } else {
882                    None
883                };
884
885                (params, ret_type)
886            }
887
888            Some(token) if token.as_rule() == Rule::return_type => {
889                (Vec::new(), Some(self.parse_return_type(&token)?))
890            }
891            _ => (Vec::new(), None),
892        };
893
894        Ok(FunctionDeclaration {
895            name: function_name.0,
896            params: parameters,
897            self_parameter: None,
898            return_type,
899        })
900    }
901
902    fn parse_return_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
903        let inner_pair = self.next_inner_pair(pair)?;
904        self.parse_type(inner_pair)
905    }
906
907    pub fn parse_parameters(&self, pair: &Pair<Rule>) -> Result<Vec<Parameter>, ParseError> {
908        let mut parameters = Vec::new();
909
910        for param_pair in Self::convert_into_iterator(pair) {
911            match param_pair.as_rule() {
912                Rule::parameter => {
913                    let mut iterator = Self::convert_into_iterator(&param_pair);
914                    let may_mut_pair = iterator.next().unwrap();
915                    let var = self.parse_maybe_mut_identifier(&may_mut_pair)?;
916                    let type_pair = iterator.next().unwrap();
917                    let param_type = self.parse_type(type_pair.clone())?;
918
919                    parameters.push(Parameter {
920                        variable: var,
921                        param_type,
922                    });
923                }
924                Rule::self_parameter => {
925                    panic!("should have been handled before parsing parameters")
926                }
927                _ => {
928                    return Err(
929                        self.create_error_pair(SpecificError::ExpectedParameter, &param_pair)
930                    );
931                }
932            }
933        }
934
935        Ok(parameters)
936    }
937
938    fn parse_impl_def(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
939        let mut inner = Self::convert_into_iterator(pair);
940        let name_with_optional_type_params =
941            self.parse_local_type_identifier_with_optional_type_variables(&inner.next().unwrap())?;
942
943        let mut functions = Vec::new();
944
945        for item_pair in inner {
946            if item_pair.as_rule() == Rule::impl_item {
947                let inner_item = self.next_inner_pair(&item_pair)?;
948                match inner_item.as_rule() {
949                    Rule::external_member_function => {
950                        let mut inner_inner_item = inner_item.into_inner();
951                        let id = inner_inner_item.next().unwrap();
952                        let signature =
953                            self.parse_member_signature(&inner_inner_item.next().unwrap())?;
954                        functions.push(Function::External(self.to_node(&id), signature));
955                    }
956                    Rule::normal_member_function => {
957                        let function_data = self.parse_member_data(&inner_item)?;
958                        functions.push(Function::Internal(function_data));
959                    }
960                    _ => {
961                        return Err(
962                            self.create_error_pair(SpecificError::ExpectedImplItem, &inner_item)
963                        );
964                    }
965                }
966            }
967        }
968
969        Ok(DefinitionKind::ImplDef(
970            name_with_optional_type_params,
971            functions,
972        ))
973    }
974
975    fn parse_member_signature(&self, pair: &Pair<Rule>) -> Result<FunctionDeclaration, ParseError> {
976        debug_assert_eq!(pair.as_rule(), Rule::member_signature);
977
978        let mut inner = pair.clone().into_inner();
979
980        let name = self.expect_function_identifier_next(&mut inner)?;
981
982        // TODO: Remove the parsing of generic type variables
983        let maybe_next_token = inner.peek();
984        if let Some(next_rule) = &maybe_next_token
985            && next_rule.as_rule() == Rule::generic_type_variables {
986                // self.parse_generic_type_variables(next_rule)?;
987                let _ = inner.next();
988            }
989
990        let mut parameters = Vec::new();
991        let mut self_parameter = None;
992        let mut return_type = None;
993
994        for next_pair in inner {
995            match next_pair.as_rule() {
996                Rule::self_parameter => {
997                    let mut mut_keyword_node = None;
998                    let mut self_node = None;
999
1000                    for pair in next_pair.into_inner() {
1001                        match pair.as_rule() {
1002                            Rule::mut_keyword => {
1003                                mut_keyword_node = Some(self.to_node(&pair));
1004                            }
1005                            Rule::self_identifier => {
1006                                self_node = Some(self.to_node(&pair));
1007                            }
1008                            _ => unreachable!("Unexpected rule in self_parameter"),
1009                        }
1010                    }
1011
1012                    self_parameter = Some(SelfParameter {
1013                        is_mutable: mut_keyword_node,
1014                        self_node: self_node.expect("self node must exist"),
1015                    });
1016                }
1017                Rule::parameter_list => {
1018                    parameters = self.parse_parameters(&next_pair)?;
1019                }
1020                Rule::return_type => {
1021                    return_type = Some(self.parse_return_type(&next_pair)?);
1022                }
1023                _ => {}
1024            }
1025        }
1026
1027        Ok(FunctionDeclaration {
1028            name: name.0,
1029            params: parameters,
1030            self_parameter,
1031            return_type,
1032        })
1033    }
1034
1035    fn parse_member_data(&self, pair: &Pair<Rule>) -> Result<FunctionWithBody, ParseError> {
1036        if pair.as_rule() != Rule::normal_member_function {
1037            return Err(self.create_error_pair(SpecificError::ExpectedMemberSignature, pair));
1038        }
1039
1040        let mut inner = Self::convert_into_iterator(pair).peekable();
1041
1042        let mut attributes = Vec::new();
1043        while let Some(next) = inner.peek() {
1044            if next.as_rule() == Rule::attribute {
1045                let attr_pair = inner.next().unwrap();
1046                let attr = self.parse_attribute(&attr_pair)?;
1047                attributes.push(attr);
1048            } else {
1049                break;
1050            }
1051        }
1052
1053        let signature_pair = Self::next_pair(&mut inner)?;
1054        let signature = self.parse_member_signature(&signature_pair)?;
1055
1056        let block_pair = Self::next_pair(&mut inner)?;
1057        let body = self.parse_block(&block_pair)?;
1058
1059        Ok(FunctionWithBody {
1060            attributes,
1061            declaration: signature,
1062            body,
1063        })
1064    }
1065
1066    fn parse_for_loop(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1067        let mut inner = Self::convert_into_iterator(pair);
1068
1069        let pattern_pair = Self::next_pair(&mut inner)?;
1070        if pattern_pair.as_rule() != Rule::for_pattern {
1071            return Err(self.create_error_pair(SpecificError::ExpectedForPattern, &pattern_pair));
1072        }
1073
1074        let inner_pattern = self.next_inner_pair(&pattern_pair)?;
1075        let pattern = match inner_pattern.as_rule() {
1076            Rule::maybe_mut_identifier => {
1077                let mut inner_iter = inner_pattern.clone().into_inner();
1078                let is_mutable = inner_iter
1079                    .peek()
1080                    .is_some_and(|p| p.as_rule() == Rule::mut_keyword);
1081
1082                let is_mut = if is_mutable {
1083                    let mut_node = self.to_node(&inner_iter.next().unwrap());
1084                    Some(mut_node)
1085                } else {
1086                    None
1087                };
1088
1089                let identifier = if is_mutable {
1090                    self.expect_identifier_next(&mut inner_iter)?.0
1091                } else {
1092                    self.to_node(&inner_pattern)
1093                };
1094
1095                ForPattern::Single(ForVar { identifier, is_mut })
1096            }
1097            Rule::for_pair => {
1098                let mut vars = Self::convert_into_iterator(&inner_pattern);
1099
1100                // Parse first variable in the pair
1101                let first_var_pair = Self::next_pair(&mut vars)?;
1102                let mut first_inner_iter = first_var_pair.clone().into_inner();
1103                let first_is_mut = if first_inner_iter
1104                    .peek()
1105                    .is_some_and(|p| p.as_rule() == Rule::mut_keyword)
1106                {
1107                    Some(self.to_node(&first_inner_iter.next().unwrap()))
1108                } else {
1109                    None
1110                };
1111
1112                let first_identifier = if first_is_mut.is_some() {
1113                    self.expect_identifier_next(&mut first_inner_iter)?.0
1114                } else {
1115                    self.to_node(&first_var_pair)
1116                };
1117
1118                // Parse second variable in the pair
1119                let second_var_pair = Self::next_pair(&mut vars)?;
1120                let mut second_inner_iter = second_var_pair.clone().into_inner();
1121                let second_is_mut = if second_inner_iter
1122                    .peek()
1123                    .is_some_and(|p| p.as_rule() == Rule::mut_keyword)
1124                {
1125                    Some(self.to_node(&second_inner_iter.next().unwrap()))
1126                } else {
1127                    None
1128                };
1129
1130                let second_identifier = if second_is_mut.is_some() {
1131                    self.expect_identifier_next(&mut second_inner_iter)?.0
1132                } else {
1133                    self.to_node(&second_var_pair)
1134                };
1135
1136                ForPattern::Pair(
1137                    ForVar {
1138                        identifier: first_identifier,
1139                        is_mut: first_is_mut,
1140                    },
1141                    ForVar {
1142                        identifier: second_identifier,
1143                        is_mut: second_is_mut,
1144                    },
1145                )
1146            }
1147            _ => {
1148                return Err(
1149                    self.create_error_pair(SpecificError::InvalidForPattern, &inner_pattern)
1150                );
1151            }
1152        };
1153
1154        let next_pair = Self::next_pair(&mut inner)?;
1155        let iterable_expression = self.parse_arg_expression(&next_pair)?;
1156
1157        let mut_expression = IterableExpression {
1158            expression: Box::new(iterable_expression),
1159        };
1160
1161        let body = self.parse_expression(&Self::next_pair(&mut inner)?)?;
1162
1163        // Return the ForLoop statement with MutExpression
1164        Ok(self.create_expr(
1165            ExpressionKind::ForLoop(pattern, mut_expression, Box::from(body)),
1166            pair,
1167        ))
1168    }
1169
1170    fn parse_while_loop(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1171        let mut inner = Self::convert_into_iterator(pair);
1172
1173        let condition = self.parse_expression(&Self::next_pair(&mut inner)?)?;
1174
1175        let body = self.parse_expression(&Self::next_pair(&mut inner)?)?;
1176
1177        Ok(self.create_expr(
1178            ExpressionKind::WhileLoop(Box::from(condition), Box::from(body)),
1179            pair,
1180        ))
1181    }
1182
1183    fn parse_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1184        let sub = &Self::right_alternative(pair)?;
1185        match sub.as_rule() {
1186            /*
1187            // TODO: verify that this block is not needed
1188            Rule::expression => {
1189                let inner = self.next_inner_pair(sub)?;
1190
1191                self.parse_expression(&inner)
1192            }
1193             */
1194            Rule::qualified_identifier => Ok(self.create_expr(
1195                ExpressionKind::VariableReference(Variable::new(self.to_node(sub), None)),
1196                sub,
1197            )),
1198            Rule::block => self.parse_block(sub),
1199
1200            Rule::assignment => self.parse_assignment_expression(sub),
1201            Rule::destructuring_assignment => self.parse_destructuring_assignment(sub),
1202            Rule::variable_definition => self.parse_variable_definition(sub),
1203
1204            Rule::addition => self.parse_addition(sub),
1205            Rule::range => self.parse_range(sub),
1206            Rule::logical => self.parse_logical(sub),
1207            Rule::none_coalesce => self.parse_none_coalesce(sub),
1208            Rule::comparison => self.parse_comparison(sub),
1209            Rule::multiplication => self.parse_multiplication(sub),
1210
1211            Rule::prefix => self.parse_prefix(sub),
1212
1213            Rule::match_expr => self.parse_match_expr(sub),
1214            Rule::initializer_list => self.parse_initializer_list_literal(sub),
1215            Rule::initializer_pair_list => self.parse_initializer_pair_list(sub),
1216            Rule::guard_expr => self.parse_guard_expr_list(sub),
1217            Rule::with_expr => self.parse_with_expr(sub),
1218            Rule::when_expr => self.parse_when_expr(sub),
1219            Rule::if_expr => self.parse_if_expression(sub),
1220            Rule::for_loop => self.parse_for_loop(sub),
1221            Rule::while_loop => self.parse_while_loop(sub),
1222
1223            //            Rule::expression | Rule::literal => self.parse_expr(pair),
1224            Rule::prefix_op | Rule::op_neg | Rule::op_not | Rule::op_borrow_mut_ref => {
1225                // TODO: maybe not called?
1226                let op = self.parse_unary_operator(sub)?;
1227                let expr = self.parse_postfix_expression(&self.next_inner_pair(sub)?)?;
1228                Ok(self.create_expr(ExpressionKind::UnaryOp(op, Box::new(expr)), sub))
1229            }
1230
1231            Rule::postfix => self.parse_postfix_expression(sub), // TODO: maybe not called
1232            _ => {
1233                error!(rule=?sub.as_rule(), "rule");
1234                Err(self.create_error_pair(
1235                    SpecificError::UnexpectedExpressionType(Self::pair_to_rule(sub)),
1236                    sub,
1237                ))
1238            }
1239        }
1240    }
1241
1242    fn parse_at_least_two_variable_list(
1243        &self,
1244        pair: &Pair<Rule>,
1245    ) -> Result<Vec<Variable>, ParseError> {
1246        debug_assert_eq!(pair.as_rule(), Rule::at_least_two_variables_list);
1247        let mut variables = Vec::new();
1248        for item_pair in pair.clone().into_inner() {
1249            variables.push(self.parse_variable_item(&item_pair)?);
1250        }
1251        Ok(variables)
1252    }
1253
1254    fn parse_optional_variable_list(&self, pair: &Pair<Rule>) -> Result<Vec<Variable>, ParseError> {
1255        debug_assert_eq!(pair.as_rule(), Rule::optional_variable_list);
1256        let mut variables = Vec::new();
1257        for item_pair in pair.clone().into_inner() {
1258            variables.push(self.parse_variable_item(&item_pair)?);
1259        }
1260        Ok(variables)
1261    }
1262
1263    fn parse_maybe_mut_identifier(&self, pair: &Pair<Rule>) -> Result<Variable, ParseError> {
1264        debug_assert_eq!(pair.as_rule(), Rule::maybe_mut_identifier);
1265        let mut inner = pair.clone().into_inner();
1266        let mut_node = if let Some(peeked) = inner.peek() {
1267            if peeked.as_rule() == Rule::mut_keyword {
1268                // Convert 'mut' to a Node
1269                let node = self.to_node(&peeked);
1270                inner.next(); // consume the 'mut' token
1271                Some(node)
1272            } else {
1273                None
1274            }
1275        } else {
1276            None
1277        };
1278
1279        let name_pair = inner.next().ok_or_else(|| {
1280            self.create_error_pair(
1281                SpecificError::UnexpectedRuleInParseScript(
1282                    "Expected identifier in variable_item".into(),
1283                ),
1284                pair,
1285            )
1286        })?;
1287
1288        if name_pair.as_rule() != Rule::identifier {
1289            return Err(self.create_error_pair(
1290                SpecificError::UnexpectedRuleInParseScript(format!(
1291                    "Expected identifier, found {:?}",
1292                    name_pair.as_rule()
1293                )),
1294                &name_pair,
1295            ));
1296        }
1297
1298        let variable = Variable {
1299            name: self.to_node(&name_pair),
1300            is_mutable: mut_node,
1301        };
1302
1303        Ok(variable)
1304    }
1305
1306    fn parse_variable_item(&self, pair: &Pair<Rule>) -> Result<Variable, ParseError> {
1307        debug_assert_eq!(pair.as_rule(), Rule::variable_item);
1308        let mut inner = pair.clone().into_inner();
1309        self.parse_maybe_mut_identifier(&inner.next().unwrap())
1310    }
1311
1312    fn parse_assignment_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1313        let mut iterator = pair.clone().into_inner();
1314        let lhs_logical =
1315            self.parse_logical(&iterator.next().expect("parse_assignment_expression"))?;
1316        if let Some(assignment_op_pair) = iterator.peek().clone() {
1317            iterator.next();
1318            let assignment_op = self.parse_assignment_op(&assignment_op_pair)?;
1319            let rhs_expr = self.parse_expression(&iterator.next().unwrap())?;
1320            let kind = match assignment_op {
1321                AssignmentOperatorKind::Assign => {
1322                    ExpressionKind::Assignment(Box::new(lhs_logical), Box::from(rhs_expr))
1323                }
1324                AssignmentOperatorKind::Compound(compound) => {
1325                    let op = CompoundOperator {
1326                        node: Self::node_ex(&assignment_op_pair),
1327                        kind: compound,
1328                    };
1329                    ExpressionKind::CompoundAssignment(
1330                        Box::from(lhs_logical),
1331                        op,
1332                        Box::from(rhs_expr),
1333                    )
1334                }
1335            };
1336
1337            Ok(self.create_expr(kind, pair))
1338        } else {
1339            Ok(lhs_logical)
1340        }
1341    }
1342
1343    fn parse_assignment_op(&self, pair: &Pair<Rule>) -> Result<AssignmentOperatorKind, ParseError> {
1344        debug_assert_eq!(pair.as_rule(), Rule::assign_op);
1345        let sub = Self::right_alternative(pair)?;
1346        let op = match sub.as_rule() {
1347            Rule::compound_assign_op => {
1348                AssignmentOperatorKind::Compound(Self::parse_compound_assign_op(&sub)?)
1349            }
1350            Rule::normal_assign_op => AssignmentOperatorKind::Assign,
1351            _ => {
1352                return Err(Self::to_err(
1353                    SpecificError::UnknownAssignmentOperator("strange".to_string()),
1354                    &sub,
1355                ));
1356            }
1357        };
1358
1359        Ok(op)
1360    }
1361
1362    #[allow(clippy::too_many_lines)]
1363    fn parse_destructuring_assignment(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1364        debug_assert_eq!(pair.as_rule(), Rule::destructuring_assignment);
1365        let mut inner = pair.clone().into_inner();
1366
1367        let var_list_pair = inner.next().ok_or_else(|| {
1368            self.create_error_pair(
1369                SpecificError::UnexpectedRuleInParseScript("missing variable_list".to_string()),
1370                pair,
1371            )
1372        })?;
1373
1374        let variables = self.parse_at_least_two_variable_list(&var_list_pair)?;
1375
1376        let rhs_pair = inner.next().ok_or_else(|| {
1377            self.create_error_pair(
1378                SpecificError::UnexpectedRuleInParseScript("missing RHS expression".to_string()),
1379                pair,
1380            )
1381        })?;
1382        let rhs_expr = self.parse_expression(&rhs_pair)?;
1383
1384        Ok(self.create_expr(
1385            ExpressionKind::DestructuringAssignment(variables, Box::new(rhs_expr)),
1386            &rhs_pair,
1387        ))
1388    }
1389
1390    fn right_alternative<'a>(pair: &Pair<'a, Rule>) -> Result<Pair<'a, Rule>, ParseError> {
1391        pair.clone()
1392            .into_inner()
1393            .next()
1394            .ok_or_else(|| Self::to_err(SpecificError::CouldNotMoveRight, pair))
1395    }
1396
1397    pub fn parse_compound_assign_op(
1398        op_pair: &Pair<Rule>,
1399    ) -> Result<CompoundOperatorKind, ParseError> {
1400        debug_assert_eq!(op_pair.as_rule(), Rule::compound_assign_op);
1401
1402        let kind = match Self::right_alternative(op_pair)?.as_rule() {
1403            Rule::add_assign_op => CompoundOperatorKind::Add,
1404            Rule::sub_assign_op => CompoundOperatorKind::Sub,
1405            Rule::mul_assign_op => CompoundOperatorKind::Mul,
1406            Rule::div_assign_op => CompoundOperatorKind::Div,
1407            Rule::modulo_assign_op => CompoundOperatorKind::Modulo,
1408            _ => {
1409                return Err(Self::to_err(
1410                    SpecificError::UnknownOperator(format!(
1411                        "Found unexpected operator rule: {:?}",
1412                        op_pair.as_rule()
1413                    )),
1414                    op_pair,
1415                ));
1416            }
1417        };
1418
1419        Ok(kind)
1420    }
1421
1422    fn parse_maybe_annotation(&self, inner: &mut Pairs<Rule>) -> Result<Option<Type>, ParseError> {
1423        let result = if let Some(peeked) = inner.peek() {
1424            if peeked.as_rule() == Rule::type_coerce {
1425                let type_coerce_pair = inner.next().unwrap();
1426                let mut type_inner = type_coerce_pair.clone().into_inner();
1427                let type_name_pair = type_inner.next().ok_or_else(|| {
1428                    self.create_error_pair(SpecificError::MissingTypeName, &type_coerce_pair)
1429                })?;
1430                Some(self.parse_type(type_name_pair)?)
1431            } else {
1432                None
1433            }
1434        } else {
1435            None
1436        };
1437        Ok(result)
1438    }
1439
1440    #[allow(clippy::too_many_lines)]
1441    fn parse_variable_definition(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1442        debug_assert_eq!(pair.as_rule(), Rule::variable_definition);
1443        let mut inner = pair.clone().into_inner();
1444        let variable_item = Self::next_pair(&mut inner)?;
1445        let found_var = self.parse_variable_item(&variable_item)?;
1446
1447        let maybe_annotation = self.parse_maybe_annotation(&mut inner)?;
1448
1449        let rhs_expr = self.parse_expression(&inner.next().unwrap())?;
1450
1451        if maybe_annotation.is_some() || found_var.is_mutable.is_some() {
1452            Ok(self.create_expr(
1453                ExpressionKind::VariableDefinition(
1454                    found_var,
1455                    maybe_annotation,
1456                    Box::from(rhs_expr),
1457                ),
1458                pair,
1459            ))
1460        } else {
1461            Ok(self.create_expr(
1462                ExpressionKind::VariableAssignment(found_var, Box::from(rhs_expr)),
1463                pair,
1464            ))
1465        }
1466    }
1467    fn parse_prefix(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1468        debug_assert_eq!(pair.as_rule(), Rule::prefix);
1469        let _span = pair.as_span();
1470        let inner = Self::convert_into_iterator(pair);
1471        let mut expr = None;
1472        let mut prefix_ops = Vec::new();
1473
1474        for part in inner {
1475            match part.as_rule() {
1476                Rule::prefix_op | Rule::op_neg | Rule::op_not => {
1477                    let op = self.parse_unary_operator(&part)?;
1478                    prefix_ops.push(op);
1479                }
1480                _ => {
1481                    expr = Some(self.parse_postfix_expression(&part)?);
1482                    break;
1483                }
1484            }
1485        }
1486
1487        let mut final_expr = expr.ok_or_else(|| {
1488            self.create_error_pair(SpecificError::ExpectedExpressionAfterPrefixOperator, pair)
1489        })?;
1490
1491        for op in prefix_ops.into_iter().rev() {
1492            final_expr = self.create_expr(ExpressionKind::UnaryOp(op, Box::new(final_expr)), pair);
1493        }
1494
1495        Ok(final_expr)
1496    }
1497
1498    fn parse_binary_operator(&self, pair: &Pair<Rule>) -> Result<BinaryOperator, ParseError> {
1499        let op = match pair.as_rule() {
1500            Rule::prefix_op => self.next_inner_pair(pair)?,
1501            _ => pair.clone(),
1502        };
1503
1504        let kind = match op.as_rule() {
1505            Rule::op_add => BinaryOperatorKind::Add,
1506            Rule::op_sub => BinaryOperatorKind::Subtract,
1507            Rule::op_mul => BinaryOperatorKind::Multiply,
1508            Rule::op_div => BinaryOperatorKind::Divide,
1509            Rule::op_mod => BinaryOperatorKind::Modulo,
1510            Rule::op_eq => BinaryOperatorKind::Equal,
1511            Rule::op_neq => BinaryOperatorKind::NotEqual,
1512            Rule::op_lt => BinaryOperatorKind::LessThan,
1513            Rule::op_lte => BinaryOperatorKind::LessEqual,
1514            Rule::op_gt => BinaryOperatorKind::GreaterThan,
1515            Rule::op_gte => BinaryOperatorKind::GreaterEqual,
1516            Rule::op_and => BinaryOperatorKind::LogicalAnd,
1517            Rule::op_or => BinaryOperatorKind::LogicalOr,
1518            Rule::op_none_coalesce => BinaryOperatorKind::NoneCoalescingOperator,
1519            _ => {
1520                panic!("unknown operator")
1521            }
1522        };
1523
1524        Ok(BinaryOperator {
1525            kind,
1526            node: self.to_node(pair),
1527        })
1528    }
1529
1530    fn parse_unary_operator(&self, pair: &Pair<Rule>) -> Result<UnaryOperator, ParseError> {
1531        let op = match pair.as_rule() {
1532            Rule::prefix_op => &self.next_inner_pair(pair)?,
1533            _ => pair,
1534        };
1535
1536        let node = self.to_node(op);
1537        match op.as_rule() {
1538            Rule::op_neg => Ok(UnaryOperator::Negate(node)),
1539            Rule::op_not => Ok(UnaryOperator::Not(node)),
1540            Rule::op_borrow_mut_ref => Ok(UnaryOperator::BorrowMutRef(node)),
1541            _ => Err(self.create_error_pair(
1542                SpecificError::UnexpectedUnaryOperator(Self::pair_to_rule(op)),
1543                op,
1544            )),
1545        }
1546    }
1547
1548    fn parse_module_segments(&self, pair: Pair<Rule>) -> Vec<Node> {
1549        pair.into_inner()
1550            .filter_map(|segment| {
1551                if segment.as_rule() == Rule::identifier {
1552                    Some(self.to_node(&segment))
1553                } else {
1554                    None
1555                }
1556            })
1557            .collect()
1558    }
1559
1560    fn parse_qualified_type_identifier(
1561        &self,
1562        pair: &Pair<Rule>,
1563    ) -> Result<QualifiedTypeIdentifier, ParseError> {
1564        let mut inner_pairs = pair.clone().into_inner();
1565        let mut generic_types = Vec::new();
1566
1567        let first = inner_pairs.next().ok_or_else(|| {
1568            self.create_error_pair(
1569                SpecificError::ExpectedTypeIdentifier(Self::pair_to_rule(pair)),
1570                pair,
1571            )
1572        })?;
1573
1574        match first.as_rule() {
1575            Rule::module_segments => {
1576                let module_path = self.parse_module_segments(first.clone());
1577                let type_id = inner_pairs.next().ok_or_else(|| {
1578                    self.create_error_pair(SpecificError::ExpectedTypeIdentifierAfterPath, &first)
1579                })?;
1580
1581                let type_identifier = self.parse_local_type_identifier(&type_id)?;
1582
1583                // TODO: Maybe loop and check for generic params
1584                if let Some(generic_params) = inner_pairs.next()
1585                    && generic_params.as_rule() == Rule::generic_arguments {
1586                        generic_types = self.parse_generic_arguments(&generic_params)?; // TODO: maybe not used?
1587                    }
1588
1589                Ok(QualifiedTypeIdentifier::new_with_generics(
1590                    type_identifier,
1591                    module_path,
1592                    generic_types,
1593                ))
1594            }
1595            Rule::type_identifier => {
1596                let type_identifier = LocalTypeIdentifier(self.to_node(&first));
1597
1598                // TODO: Maybe loop and check for generic params
1599                if let Some(generic_params) = inner_pairs.next()
1600                    && generic_params.as_rule() == Rule::generic_arguments {
1601                        generic_types = self.parse_generic_arguments(&generic_params)?;
1602                    }
1603
1604                Ok(QualifiedTypeIdentifier::new_with_generics(
1605                    type_identifier,
1606                    Vec::new(),
1607                    generic_types,
1608                ))
1609            }
1610            _ => Err(self.create_error_pair(
1611                SpecificError::ExpectedTypeIdentifier(Self::pair_to_rule(&first)),
1612                &first,
1613            )),
1614        }
1615    }
1616
1617    fn parse_qualified_identifier(
1618        &self,
1619        pair: &Pair<Rule>,
1620    ) -> Result<QualifiedIdentifier, ParseError> {
1621        let mut inner_pairs = pair.clone().into_inner();
1622        let mut generic_types = Vec::new();
1623
1624        let first = inner_pairs
1625            .next()
1626            .ok_or_else(|| self.create_error_pair(SpecificError::ExpectedIdentifier, pair))?;
1627
1628        match first.as_rule() {
1629            Rule::module_segments => {
1630                let module_path = self.parse_module_segments(first.clone());
1631                let id = inner_pairs.next().ok_or_else(|| {
1632                    self.create_error_pair(SpecificError::ExpectedIdentifierAfterPath, &first)
1633                })?;
1634
1635                let identifier = self.to_node(&id);
1636
1637                // TODO: Maybe loop and check for generic params
1638                if let Some(generic_params) = inner_pairs.next()
1639                    && generic_params.as_rule() == Rule::generic_arguments {
1640                        // TODO: maybe not used?
1641                        generic_types = self.parse_generic_arguments(&generic_params)?;
1642                    }
1643
1644                Ok(QualifiedIdentifier::new_with_generics(
1645                    identifier,
1646                    module_path,
1647                    generic_types,
1648                ))
1649            }
1650            Rule::identifier => {
1651                let type_identifier = self.to_node(&first);
1652
1653                // TODO: Maybe loop and check for generic params
1654                if let Some(generic_params) = inner_pairs.next()
1655                    && generic_params.as_rule() == Rule::generic_arguments {
1656                        // TODO: maybe not used
1657                        generic_types = self.parse_generic_arguments(&generic_params)?;
1658                    }
1659
1660                Ok(QualifiedIdentifier::new_with_generics(
1661                    type_identifier,
1662                    Vec::new(),
1663                    generic_types,
1664                ))
1665            }
1666            _ => Err(self.create_error_pair(SpecificError::ExpectedIdentifier, &first)),
1667        }
1668    }
1669
1670    fn parse_qualified_identifier_expression(
1671        &self,
1672        pair: &Pair<Rule>,
1673    ) -> Result<Expression, ParseError> {
1674        let qualified_identifier = self.parse_qualified_identifier(pair)?;
1675        Ok(self.create_expr(
1676            ExpressionKind::IdentifierReference(qualified_identifier),
1677            pair,
1678        ))
1679    }
1680
1681    fn parse_generic_arguments(
1682        &self,
1683        pair: &Pair<Rule>,
1684    ) -> Result<Vec<GenericParameter>, ParseError> {
1685        debug_assert_eq!(pair.as_rule(), Rule::generic_arguments);
1686
1687        let inner_pairs = pair.clone().into_inner();
1688        let mut generic_types = Vec::new();
1689
1690        for generic_parameter_pair in inner_pairs {
1691            let generic_parameter = match generic_parameter_pair.as_rule() {
1692                Rule::type_name => GenericParameter::Type(self.parse_type(generic_parameter_pair)?),
1693                Rule::generic_argument_int_tuple => {
1694                    let mut pairs = generic_parameter_pair.clone().into_inner();
1695                    let first = pairs.next().unwrap();
1696                    let second = pairs.next().unwrap();
1697                    let first_node = self.to_node(&first);
1698                    let second_node = self.to_node(&second);
1699                    GenericParameter::UnsignedTupleInt(first_node, second_node)
1700                }
1701                Rule::unsigned_int_lit => {
1702                    GenericParameter::UnsignedInt(self.to_node(&generic_parameter_pair))
1703                }
1704                _ => panic!("unknown generic parameter"),
1705            };
1706
1707            generic_types.push(generic_parameter);
1708        }
1709
1710        Ok(generic_types)
1711    }
1712
1713    fn parse_local_type_identifier_node(&self, pair: &Pair<Rule>) -> Result<Node, ParseError> {
1714        if pair.as_rule() != Rule::type_identifier {
1715            return Err(self.create_error_pair(
1716                SpecificError::ExpectedTypeIdentifier(format!("{:?}", pair.as_rule())),
1717                pair,
1718            ));
1719        }
1720        Ok(self.to_node(pair))
1721    }
1722
1723    fn parse_generic_type_variables(
1724        &self,
1725        pair: &Pair<Rule>,
1726    ) -> Result<Vec<TypeVariable>, ParseError> {
1727        debug_assert_eq!(pair.as_rule(), Rule::generic_type_variables);
1728        let mut type_params = Vec::new();
1729
1730        let inner = Self::convert_into_iterator(pair);
1731        for type_variable in inner {
1732            let mut inner_type_var = type_variable.into_inner();
1733            let type_identifier_pair = inner_type_var.next().unwrap();
1734
1735            type_params.push(TypeVariable(
1736                self.parse_local_type_identifier_node(&type_identifier_pair)?,
1737            ));
1738        }
1739        Ok(type_params)
1740    }
1741
1742    fn parse_local_type_identifier_with_optional_type_variables(
1743        &self,
1744        pair: &Pair<Rule>,
1745    ) -> Result<LocalTypeIdentifierWithOptionalTypeVariables, ParseError> {
1746        debug_assert_eq!(
1747            pair.as_rule(),
1748            Rule::type_identifier_optional_type_variables
1749        );
1750
1751        let mut inner = pair.clone().into_inner();
1752        let name = self.expect_local_type_identifier_next(&mut inner)?;
1753
1754        let type_variables = if let Some(generic_params_pair) = inner.peek() {
1755            // Peek to see if generic params exist
1756            if generic_params_pair.as_rule() == Rule::generic_type_variables {
1757                let _ = inner.next().unwrap(); // Consume the generic_type_params pair
1758                self.parse_generic_type_variables(&generic_params_pair)?
1759            } else {
1760                Vec::new()
1761            }
1762        } else {
1763            Vec::new()
1764        };
1765
1766        Ok(LocalTypeIdentifierWithOptionalTypeVariables {
1767            name: name.0,
1768            type_variables,
1769        })
1770    }
1771
1772    fn parse_struct_fields_expressions<'a>(
1773        &self,
1774        field_list_pair: &Pair<Rule>,
1775    ) -> Result<(Vec<FieldExpression>, bool), ParseError> {
1776        let mut fields = Vec::new();
1777        let mut has_rest = false;
1778
1779        for field_pair in field_list_pair.clone().into_inner() {
1780            match field_pair.as_rule() {
1781                Rule::struct_field => {
1782                    let mut field_inner = field_pair.into_inner();
1783                    let ident = self.expect_field_label_next(&mut field_inner)?;
1784                    let field_name = FieldName(ident.0);
1785                    let field_value = self.parse_expression(&field_inner.next().unwrap())?;
1786
1787                    fields.push(FieldExpression {
1788                        field_name,
1789                        expression: field_value,
1790                    });
1791                }
1792                Rule::rest_fields => {
1793                    has_rest = true;
1794                }
1795                _ => {
1796                    return Err(
1797                        self.create_error_pair(SpecificError::ExpectedFieldOrRest, &field_pair)
1798                    );
1799                }
1800            }
1801        }
1802
1803        Ok((fields, has_rest))
1804    }
1805
1806    fn parse_anonymous_struct_literal(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1807        let (fields, has_rest) = self.parse_anonymous_struct_literal_fields(pair)?;
1808        Ok(self.create_expr(
1809            ExpressionKind::AnonymousStructLiteral(fields, has_rest),
1810            pair,
1811        ))
1812    }
1813
1814    fn parse_anonymous_struct_literal_fields(
1815        &self,
1816        pair: &Pair<Rule>,
1817    ) -> Result<(Vec<FieldExpression>, bool), ParseError> {
1818        debug_assert_eq!(pair.as_rule(), Rule::anonymous_struct_literal);
1819        let mut inner = Self::convert_into_iterator(pair);
1820        let (field_expressions, detected_rest) =
1821            self.parse_struct_fields_expressions(&inner.next().unwrap())?;
1822
1823        Ok((field_expressions, detected_rest))
1824    }
1825
1826    fn parse_struct_literal_optional_fields(
1827        &self,
1828        pair: &Pair<Rule>,
1829    ) -> Result<(Vec<FieldExpression>, bool), ParseError> {
1830        debug_assert_eq!(pair.as_rule(), Rule::struct_literal_optional_field_list);
1831        let mut inner = Self::convert_into_iterator(pair);
1832        let (field_expressions, detected_rest) = if let Some(field_list) = inner.next() {
1833            self.parse_struct_fields_expressions(&field_list)?
1834        } else {
1835            (vec![], false)
1836        };
1837
1838        Ok((field_expressions, detected_rest))
1839    }
1840
1841    fn parse_struct_literal(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1842        let mut inner = Self::convert_into_iterator(pair);
1843
1844        let type_pair = inner.next().unwrap();
1845
1846        let struct_name = self.parse_qualified_type_identifier(&type_pair)?;
1847
1848        let anon_fields = inner.next().unwrap();
1849
1850        let (fields, has_rest) = self.parse_struct_literal_optional_fields(&anon_fields)?;
1851
1852        Ok(self.create_expr(
1853            ExpressionKind::NamedStructLiteral(struct_name, fields, has_rest),
1854            pair,
1855        ))
1856    }
1857
1858    fn parse_context_access(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1859        Ok(self.create_expr(ExpressionKind::ContextAccess, pair))
1860    }
1861
1862    fn parse_static_member_reference(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1863        let mut inner = pair.clone().into_inner();
1864
1865        let type_identifier = self.parse_qualified_type_identifier(&inner.next().unwrap())?;
1866        let member_name = self.expect_identifier_next(&mut inner)?;
1867
1868        Ok(self.create_expr(
1869            ExpressionKind::StaticMemberFunctionReference(type_identifier, member_name.0),
1870            pair,
1871        ))
1872    }
1873
1874    fn parse_constant_reference(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1875        debug_assert_eq!(pair.as_rule(), Rule::constant_reference);
1876        let mut inner_pairs = pair.clone().into_inner();
1877
1878        let mut first = inner_pairs.next().unwrap();
1879
1880        let module_path = if first.as_rule() == Rule::module_segments {
1881            let path = self.parse_module_segments(first.clone());
1882            first = inner_pairs.next().unwrap();
1883            Some(ModulePath(path))
1884        } else {
1885            None
1886        };
1887
1888        let identifier = QualifiedConstantIdentifier::new(self.to_node(&first), module_path);
1889
1890        Ok(self.create_expr(ExpressionKind::ConstantReference(identifier), pair))
1891    }
1892
1893    fn parse_term(&self, pair2: &Pair<Rule>) -> Result<Expression, ParseError> {
1894        debug_assert_eq!(pair2.as_rule(), Rule::term);
1895        let sub = &Self::right_alternative(pair2)?;
1896        match sub.as_rule() {
1897            Rule::qualified_identifier => self.parse_qualified_identifier_expression(sub),
1898            Rule::static_member_reference => self.parse_static_member_reference(sub),
1899
1900            Rule::enum_literal => {
1901                Ok(self.create_expr(ExpressionKind::Literal(self.parse_enum_literal(sub)?), sub))
1902            }
1903            Rule::constant_reference => self.parse_constant_reference(sub),
1904            Rule::parenthesized => {
1905                let inner = self.next_inner_pair(sub)?;
1906                self.parse_expression(&inner)
1907            }
1908            Rule::basic_literal => {
1909                let (literal, node) = self.parse_basic_literal(sub)?;
1910                Ok(self.create_expr_span(ExpressionKind::Literal(literal), node))
1911            }
1912            Rule::struct_literal => self.parse_struct_literal(sub),
1913            Rule::anonymous_struct_literal => self.parse_anonymous_struct_literal(sub),
1914            Rule::initializer_list => self.parse_initializer_list_literal(sub),
1915            Rule::initializer_pair_list => self.parse_initializer_pair_list(sub),
1916
1917            Rule::interpolated_string => self.parse_interpolated_string(sub),
1918
1919            Rule::lambda => self.parse_lambda(sub),
1920            Rule::context_access => self.parse_context_access(sub),
1921
1922            _ => {
1923                Err(self
1924                    .create_error_pair(SpecificError::UnknownTerm(Self::pair_to_rule(sub)), sub))
1925            }
1926        }
1927    }
1928
1929    fn parse_interpolated_string(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1930        let mut parts = Vec::new();
1931
1932        for part_pair in Self::convert_into_iterator(pair) {
1933            match part_pair.as_rule() {
1934                Rule::text => {
1935                    parts.push(StringPart::Literal(
1936                        self.to_node(&part_pair),
1937                        self.unescape_string(&part_pair, false)?,
1938                    ));
1939                }
1940                Rule::interpolation => {
1941                    let inner = self.next_inner_pair(&part_pair.clone())?;
1942                    let expr = match inner.as_rule() {
1943                        Rule::expression => self.parse_expression(&inner)?,
1944                        _ => {
1945                            return Err(self.create_error_pair(
1946                                SpecificError::ExpectedExpressionInInterpolation,
1947                                &inner,
1948                            ));
1949                        }
1950                    };
1951
1952                    let format = match Self::convert_into_iterator(&part_pair).nth(1) {
1953                        Some(fmt) => {
1954                            if fmt.as_rule() == Rule::format_specifier {
1955                                Some(self.parse_format_specifier(&fmt)?)
1956                            } else {
1957                                None
1958                            }
1959                        }
1960                        _ => None,
1961                    };
1962
1963                    parts.push(StringPart::Interpolation(Box::new(expr), format));
1964                }
1965                _ => {
1966                    return Err(self.create_error_pair(
1967                        SpecificError::UnexpectedRuleInInterpolation,
1968                        &part_pair,
1969                    ));
1970                }
1971            }
1972        }
1973
1974        Ok(self.create_expr(ExpressionKind::InterpolatedString(parts), pair))
1975    }
1976
1977    fn parse_format_specifier(&self, pair: &Pair<Rule>) -> Result<FormatSpecifier, ParseError> {
1978        let node = self.to_node(pair);
1979        match pair.as_str() {
1980            "x" => Ok(FormatSpecifier::LowerHex(node)),
1981            "X" => Ok(FormatSpecifier::UpperHex(node)),
1982            "b" => Ok(FormatSpecifier::Binary(node)),
1983            "f" => Ok(FormatSpecifier::Float(node)),
1984            s if s.starts_with("..") => {
1985                let precision: u32 = s[2..s.len() - 1].parse().map_err(|_| {
1986                    self.create_error_pair(SpecificError::InvalidPrecisionValue, pair)
1987                })?;
1988                let typ = match s.chars().last().unwrap() {
1989                    'f' => PrecisionType::Float(node),
1990                    's' => PrecisionType::String(node),
1991                    _ => {
1992                        return Err(
1993                            self.create_error_pair(SpecificError::InvalidPrecisionType, pair)
1994                        )?;
1995                    }
1996                };
1997                Ok(FormatSpecifier::Precision(
1998                    precision,
1999                    self.to_node(pair),
2000                    typ,
2001                ))
2002            }
2003            _ => Err(self.create_error_pair(SpecificError::InvalidFormatSpecifier, pair)),
2004        }
2005    }
2006
2007    fn parse_enum_literal(&self, pair: &Pair<Rule>) -> Result<LiteralKind, ParseError> {
2008        let mut inner = Self::convert_into_iterator(pair);
2009
2010        let enum_type = self.parse_qualified_type_identifier(&inner.next().unwrap())?;
2011
2012        let variant_pair = Self::expect_next(&mut inner, Rule::type_identifier)?;
2013        let variant_type_identifier = LocalTypeIdentifier::new(self.to_node(&variant_pair));
2014
2015        let enum_variant_literal = match inner.next() {
2016            Some(fields_pair) => match fields_pair.as_rule() {
2017                Rule::struct_literal_optional_field_list => {
2018                    let (field_expressions, detected_rest) =
2019                        self.parse_struct_literal_optional_fields(&fields_pair)?;
2020                    EnumVariantLiteral::Struct(
2021                        enum_type,
2022                        variant_type_identifier,
2023                        field_expressions,
2024                        detected_rest,
2025                    )
2026                }
2027                Rule::tuple_fields => {
2028                    let mut expressions = vec![];
2029                    for field in Self::convert_into_iterator(&fields_pair) {
2030                        let field_value = self.parse_expression(&field)?;
2031                        expressions.push(field_value);
2032                    }
2033                    EnumVariantLiteral::Tuple(enum_type, variant_type_identifier, expressions)
2034                }
2035                _ => {
2036                    error!("{:?}, {}", fields_pair.as_rule(), "strange");
2037                    return Err(
2038                        self.create_error_pair(SpecificError::UnexpectedVariantField, &fields_pair)
2039                    );
2040                }
2041            },
2042            _ => EnumVariantLiteral::Simple(enum_type, variant_type_identifier),
2043        };
2044
2045        Ok(LiteralKind::EnumVariant(enum_variant_literal))
2046    }
2047
2048    fn unescape_unicode(
2049        &self,
2050        chars: &mut Peekable<Chars>,
2051        octets: &mut Vec<u8>,
2052        pair: &Pair<Rule>,
2053    ) -> Result<(), ParseError> {
2054        match chars.next() {
2055            Some('(') => {
2056                let mut hex_digits = String::new();
2057
2058                while let Some(&c) = chars.peek() {
2059                    if c == ')' {
2060                        break;
2061                    }
2062                    if c.is_ascii_hexdigit() && hex_digits.len() < 6 {
2063                        hex_digits.push(c);
2064                        chars.next();
2065                    } else {
2066                        return Err(
2067                            self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2068                        );
2069                    }
2070                }
2071
2072                match chars.next() {
2073                    Some(')') => {
2074                        if hex_digits.is_empty() {
2075                            return Err(
2076                                self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2077                            );
2078                        }
2079
2080                        let code = u32::from_str_radix(&hex_digits, 16).map_err(|_| {
2081                            self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2082                        })?;
2083
2084                        if code > 0x0010_FFFF {
2085                            return Err(
2086                                self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2087                            );
2088                        }
2089
2090                        if let Some(c) = std::char::from_u32(code) {
2091                            let mut buf = [0; 4];
2092                            let encoded = c.encode_utf8(&mut buf);
2093                            octets.extend_from_slice(encoded.as_bytes());
2094                        } else {
2095                            return Err(
2096                                self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2097                            );
2098                        }
2099                    }
2100                    _ => {
2101                        return Err(
2102                            self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2103                        );
2104                    }
2105                }
2106            }
2107            _ => {
2108                return Err(self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair));
2109            }
2110        }
2111        Ok(())
2112    }
2113
2114    fn unescape_hex(
2115        &self,
2116        chars: &mut Peekable<Chars>,
2117        pair: &Pair<Rule>,
2118    ) -> Result<u8, ParseError> {
2119        let mut hex_digits = String::new();
2120        for _ in 0..2 {
2121            match chars.next() {
2122                Some(h) if h.is_ascii_hexdigit() => {
2123                    hex_digits.push(h);
2124                }
2125                _ => {
2126                    return Err(self.create_error_pair(SpecificError::InvalidHexEscape, pair));
2127                }
2128            }
2129        }
2130        u8::from_str_radix(&hex_digits, 16)
2131            .map_err(|_| self.create_error_pair(SpecificError::InvalidHexEscape, pair))
2132    }
2133
2134    fn unescape_string(&self, pair: &Pair<Rule>, is_literal: bool) -> Result<String, ParseError> {
2135        let mut octets = Vec::new();
2136
2137        let raw = if is_literal {
2138            &pair.as_str()[1..pair.as_str().len() - 1]
2139        } else {
2140            pair.as_str()
2141        };
2142
2143        let mut chars = raw.chars().peekable();
2144
2145        while let Some(ch) = chars.next() {
2146            if ch == '\\' {
2147                let Some(next_ch) = chars.next() else {
2148                    return Err(
2149                        self.create_error_pair(SpecificError::UnfinishedEscapeSequence, pair)
2150                    );
2151                };
2152                match next_ch {
2153                    'n' => {
2154                        octets.push(b'\n');
2155                    }
2156                    't' => {
2157                        octets.push(b'\t');
2158                    }
2159                    '\\' => {
2160                        octets.push(b'\\');
2161                    }
2162                    '"' => {
2163                        octets.push(b'"');
2164                    }
2165                    '\'' => {
2166                        octets.push(b'\'');
2167                    }
2168                    // Two hexadecimal digits that result in an `u8`
2169                    'x' => {
2170                        let code = self.unescape_hex(&mut chars, pair)?;
2171                        octets.push(code);
2172                    }
2173                    // Unicode character
2174                    'u' => {
2175                        self.unescape_unicode(&mut chars, &mut octets, pair)?;
2176                    }
2177
2178                    other => {
2179                        return Err(self.create_error_pair(
2180                            SpecificError::UnknownEscapeCharacter(other),
2181                            pair,
2182                        ));
2183                    }
2184                }
2185            } else {
2186                let mut buf = [0; 4];
2187                let utf8_bytes = ch.encode_utf8(&mut buf);
2188                octets.extend_from_slice(utf8_bytes.as_bytes());
2189            }
2190        }
2191
2192        let output = String::from_utf8(octets)
2193            .map_err(|_| self.create_error_pair(SpecificError::InvalidUtf8Sequence, pair))?;
2194
2195        Ok(output)
2196    }
2197
2198    fn parse_basic_literal(&self, pair: &Pair<Rule>) -> Result<(LiteralKind, Node), ParseError> {
2199        debug_assert_eq!(pair.as_rule(), Rule::basic_literal);
2200        let inner = self.next_inner_pair(pair)?;
2201        let literal_kind = match inner.as_rule() {
2202            Rule::int_lit => LiteralKind::Int,
2203            Rule::float_lit => LiteralKind::Float,
2204            Rule::string_lit => {
2205                let processed_string = self.unescape_string(&inner, true)?;
2206                LiteralKind::String(processed_string)
2207            }
2208            Rule::bool_lit => LiteralKind::Bool,
2209            Rule::none_lit => LiteralKind::None,
2210            Rule::tuple_lit => {
2211                let mut expressions = Vec::new();
2212                for expr_pair in Self::convert_into_iterator(&inner) {
2213                    expressions.push(self.parse_expression(&expr_pair)?);
2214                }
2215                LiteralKind::Tuple(expressions)
2216            }
2217            _ => return Err(self.create_error_pair(SpecificError::UnknownLiteral, &inner)),
2218        };
2219        Ok((literal_kind, self.to_node(&inner)))
2220    }
2221
2222    fn parse_initializer_list_literal(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2223        let mut elements = Vec::new();
2224        for element in Self::convert_into_iterator(pair) {
2225            elements.push(self.parse_expression(&element)?);
2226        }
2227        Ok(self.create_expr(
2228            ExpressionKind::Literal(LiteralKind::InternalInitializerList(elements)),
2229            pair,
2230        ))
2231    }
2232
2233    fn parse_initializer_pair_list(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2234        let mut entries = Vec::new();
2235
2236        for entry_pair in Self::convert_into_iterator(pair) {
2237            if entry_pair.as_rule() == Rule::map_entry {
2238                let mut entry_inner = Self::convert_into_iterator(&entry_pair);
2239                let key = self.parse_expression(&Self::next_pair(&mut entry_inner)?)?;
2240                let value = self.parse_expression(&Self::next_pair(&mut entry_inner)?)?;
2241                entries.push((key, value));
2242            }
2243        }
2244
2245        Ok(self.create_expr(
2246            ExpressionKind::Literal(LiteralKind::InternalInitializerPairList(entries)),
2247            pair,
2248        ))
2249    }
2250
2251    fn assert_end(pairs: &mut Pairs<Rule>) {
2252        assert!(pairs.next().is_none());
2253    }
2254
2255    fn parse_function_call_postfix(
2256        &self,
2257        pair: &Pair<Rule>,
2258    ) -> Result<(Option<Vec<GenericParameter>>, Vec<Expression>), ParseError> {
2259        debug_assert_eq!(pair.as_rule(), Rule::function_call_postfix);
2260        let mut inner = pair.clone().into_inner();
2261
2262        let mut generic_args: Option<Vec<GenericParameter>> = None;
2263        let args_pair: Pair<Rule>; // To hold the function_call_args pair
2264
2265        if let Some(first_inner) = inner.peek() {
2266            if first_inner.as_rule() == Rule::generic_arguments {
2267                let generic_args_pair = Self::next_pair(&mut inner)?;
2268                generic_args = Some(self.parse_generic_arguments(&generic_args_pair)?);
2269
2270                args_pair = Self::next_pair(&mut inner)?;
2271            } else {
2272                args_pair = Self::next_pair(&mut inner)?;
2273            }
2274        } else {
2275            panic!("problem in function_call_postfix");
2276        }
2277
2278        debug_assert_eq!(args_pair.as_rule(), Rule::function_call_args);
2279
2280        let regular_args = self.parse_function_call_arguments(&args_pair)?;
2281
2282        Self::assert_end(&mut inner);
2283
2284        Ok((generic_args, regular_args))
2285    }
2286
2287    fn parse_arg_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2288        debug_assert_eq!(pair.as_rule(), Rule::arg_expression);
2289        let mut inner = pair.clone().into_inner();
2290        self.parse_logical(&inner.next().unwrap())
2291    }
2292
2293    fn parse_function_call_arguments(
2294        &self,
2295        pair: &Pair<Rule>,
2296    ) -> Result<Vec<Expression>, ParseError> {
2297        debug_assert_eq!(pair.as_rule(), Rule::function_call_args);
2298        let inner = pair.clone().into_inner();
2299        let mut args = Vec::new();
2300
2301        // Parse arguments
2302        for arg_pair in inner {
2303            let expr = self.parse_arg_expression(&arg_pair)?;
2304            args.push(expr);
2305        }
2306
2307        Ok(args)
2308    }
2309
2310    #[allow(clippy::too_many_lines)]
2311    fn parse_type(&self, pair: Pair<Rule>) -> Result<Type, ParseError> {
2312        match pair.as_rule() {
2313            Rule::type_name => {
2314                let mut inner = pair.clone().into_inner();
2315                let base_type = if let Some(inner_pair) = inner.next() {
2316                    self.parse_type(inner_pair)?
2317                } else {
2318                    panic!("shouldn't get to here")
2319                };
2320
2321                let optional_marker = inner
2322                    .find(|p| p.as_rule() == Rule::optional_marker)
2323                    .map(|marker_pair| self.to_node(&marker_pair));
2324                if let Some(found_optional_marker) = optional_marker {
2325                    Ok(Type::Optional(Box::new(base_type), found_optional_marker))
2326                } else {
2327                    Ok(base_type)
2328                }
2329            }
2330
2331            Rule::base_type => {
2332                let mut inner = pair.into_inner();
2333                let first = inner.next().unwrap();
2334                let base_type = self.parse_type(first)?;
2335
2336                Ok(base_type)
2337            }
2338            Rule::function_type => {
2339                let mut function_inner = pair.into_inner();
2340
2341                // Parse parameter types
2342                let param_types = if let Some(params) = function_inner
2343                    .next()
2344                    .filter(|p| p.as_rule() == Rule::function_params)
2345                {
2346                    params
2347                        .into_inner()
2348                        .map(|param| {
2349                            Ok(TypeForParameter {
2350                                ast_type: self.parse_type(param).unwrap(),
2351                                is_mutable: false,
2352                            })
2353                        })
2354                        .collect::<Result<Vec<_>, ParseError>>()?
2355                } else {
2356                    Vec::new()
2357                };
2358
2359                // Parse return type
2360                let return_type = self.parse_type(function_inner.next().unwrap())?;
2361
2362                Ok(Type::Function(param_types, Box::new(return_type)))
2363            }
2364
2365            Rule::qualified_type_identifier => {
2366                let qualified_id = self.parse_qualified_type_identifier(&pair)?;
2367                Ok(Type::Named(qualified_id))
2368            }
2369            Rule::tuple_type => {
2370                let elements = self.parse_tuple_type_elements(&pair)?;
2371                Ok(Type::Tuple(elements))
2372            }
2373            Rule::fixed_capacity_array_type => self.parse_fixed_capacity_array_type(&pair),
2374            Rule::slice_view_type => self.parse_slice_view_type(&pair),
2375
2376            Rule::fixed_capacity_map_type => self.parse_fixed_capacity_map_type(&pair),
2377            Rule::dynamic_map_type => self.parse_dynamic_map_type(&pair),
2378
2379            Rule::struct_type => {
2380                let element_type = self.parse_struct_type(&pair)?;
2381                Ok(Type::AnonymousStruct(element_type))
2382            }
2383
2384            Rule::unit_type => Ok(Type::Unit),
2385
2386            _ => Err(self.create_error_pair(
2387                SpecificError::UnexpectedTypeRule(format!("{:?}", pair.as_rule())),
2388                &pair,
2389            )),
2390        }
2391    }
2392
2393    fn parse_fixed_capacity_map_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
2394        let mut inner = pair.clone().into_inner();
2395        let key_type = self.parse_type(Self::next_pair(&mut inner)?)?;
2396        let value_type = self.parse_type(Self::next_pair(&mut inner)?)?;
2397        let size_pair = inner.next().unwrap();
2398        let size_node = self.to_node(&size_pair);
2399
2400        Ok(Type::FixedCapacityMap(
2401            Box::new(key_type),
2402            Box::new(value_type),
2403            size_node,
2404        ))
2405    }
2406
2407    fn parse_dynamic_map_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
2408        let mut inner = pair.clone().into_inner();
2409        let key_type = self.parse_type(Self::next_pair(&mut inner)?)?;
2410        let value_type = self.parse_type(Self::next_pair(&mut inner)?)?;
2411
2412        Ok(Type::DynamicLengthMap(
2413            Box::new(key_type),
2414            Box::new(value_type),
2415        ))
2416    }
2417
2418    fn parse_fixed_capacity_array_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
2419        let mut inner = pair.clone().into_inner();
2420        let element_type = self.parse_type(inner.next().unwrap())?;
2421        let size_pair = inner.next().unwrap();
2422        let size_node = self.to_node(&size_pair);
2423        Ok(Type::FixedCapacityArray(Box::new(element_type), size_node))
2424    }
2425
2426    fn parse_slice_view_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
2427        let mut inner = pair.clone().into_inner();
2428        let element_type = self.parse_type(inner.next().unwrap())?;
2429        Ok(Type::Slice(Box::new(element_type)))
2430    }
2431
2432    #[allow(unused)] // TODO: Use this again
2433    fn parse_local_type_identifier(
2434        &self,
2435        pair: &Pair<Rule>,
2436    ) -> Result<LocalTypeIdentifier, ParseError> {
2437        if pair.as_rule() != Rule::type_identifier {
2438            return Err(self.create_error_pair(
2439                SpecificError::ExpectedTypeIdentifier(format!("{:?}", pair.as_rule())),
2440                pair,
2441            ));
2442        }
2443        Ok(LocalTypeIdentifier::new(self.to_node(pair)))
2444    }
2445
2446    fn parse_enum_def(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
2447        let mut inner = Self::convert_into_iterator(pair);
2448
2449        let name_with_optional_type_params =
2450            self.parse_local_type_identifier_with_optional_type_variables(&inner.next().unwrap())?;
2451
2452        let mut variants = Vec::new();
2453
2454        if let Some(variants_pair) = inner.next()
2455            && variants_pair.as_rule() == Rule::enum_variants {
2456                for variant_pair in Self::convert_into_iterator(&variants_pair) {
2457                    if variant_pair.as_rule() == Rule::enum_variant {
2458                        let variant =
2459                            self.parse_enum_variant(&self.next_inner_pair(&variant_pair)?)?;
2460
2461                        variants.push(variant);
2462                    }
2463                }
2464            }
2465
2466        Ok(DefinitionKind::EnumDef(
2467            name_with_optional_type_params,
2468            variants,
2469        ))
2470    }
2471
2472    fn parse_enum_variant(&self, pair: &Pair<Rule>) -> Result<EnumVariantType, ParseError> {
2473        let enum_variant = match pair.as_rule() {
2474            Rule::simple_variant => EnumVariantType::Simple(self.to_node(pair)),
2475            Rule::direct_variant => {
2476                let mut inner = Self::convert_into_iterator(pair);
2477                let name = self.expect_local_type_identifier_next(&mut inner)?;
2478                let type_name = self.parse_type(inner.next().unwrap())?;
2479                EnumVariantType::Direct(name.0, type_name)
2480            }
2481            Rule::tuple_variant => {
2482                let mut inner = Self::convert_into_iterator(pair);
2483                let name = self.expect_local_type_identifier_next(&mut inner)?;
2484
2485                let tuple_elements = self.parse_tuple_type_elements(&inner.next().unwrap())?;
2486
2487                // Convert single-element tuples to direct variants for consistency
2488                if tuple_elements.len() == 1 {
2489                    EnumVariantType::Direct(name.0, tuple_elements.into_iter().next().unwrap())
2490                } else {
2491                    EnumVariantType::Tuple(name.0, tuple_elements)
2492                }
2493            }
2494            Rule::struct_variant => {
2495                let mut inner = Self::convert_into_iterator(pair);
2496                let name = self.expect_local_type_identifier_next(&mut inner)?;
2497
2498                let struct_type = self.parse_struct_type(&inner.next().unwrap())?;
2499                EnumVariantType::Struct(name.0, struct_type)
2500            }
2501            _ => {
2502                return Err(self.create_error_pair(
2503                    SpecificError::UnknownEnumVariant(Self::pair_to_rule(pair)),
2504                    pair,
2505                ));
2506            }
2507        };
2508
2509        Ok(enum_variant)
2510    }
2511
2512    fn parse_match_expr(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2513        let mut inner = Self::convert_into_iterator(pair);
2514        let value = self.parse_arg_expression(&Self::next_pair(&mut inner)?)?;
2515        let arms_pair = Self::next_pair(&mut inner)?;
2516        let mut arms = Vec::new();
2517
2518        for arm_pair in Self::convert_into_iterator(&arms_pair) {
2519            if arm_pair.as_rule() == Rule::match_arm {
2520                let mut arm_inner = Self::convert_into_iterator(&arm_pair);
2521                let pattern = self.parse_match_pattern(&Self::next_pair(&mut arm_inner)?)?;
2522
2523                // Handle both block and direct expression cases
2524                let expr = match Self::next_pair(&mut arm_inner)? {
2525                    block if block.as_rule() == Rule::block => self.parse_block(&block)?,
2526                    expr => self.parse_expression(&expr)?,
2527                };
2528
2529                arms.push(MatchArm {
2530                    pattern,
2531                    expression: expr,
2532                });
2533            }
2534        }
2535
2536        if arms.is_empty() {
2537            return Err(self.create_error_pair(SpecificError::MustHaveAtLeastOneArm, pair));
2538        }
2539
2540        Ok(self.create_expr(ExpressionKind::Match(Box::new(value), arms), pair))
2541    }
2542
2543    fn parse_match_pattern(&self, pair: &Pair<Rule>) -> Result<Pattern, ParseError> {
2544        let mut inner = Self::convert_into_iterator(pair);
2545        let pattern_inside = inner.next().expect("should have inner");
2546        match pattern_inside.as_rule() {
2547            Rule::normal_pattern => {
2548                let (concrete_pattern, pattern_node) =
2549                    self.parse_normal_match_pattern(&pattern_inside)?;
2550                let inner_pairs: Vec<_> = pattern_inside.clone().into_inner().collect();
2551                let has_guard = inner_pairs
2552                    .get(1)
2553                    .is_some_and(|p| p.as_rule() == Rule::guard_clause);
2554
2555                let guard_clause = if has_guard {
2556                    Some(self.parse_guard_clause(&inner_pairs[1])?)
2557                } else {
2558                    None
2559                };
2560                Ok(Pattern::ConcretePattern(
2561                    pattern_node,
2562                    concrete_pattern,
2563                    guard_clause,
2564                ))
2565            }
2566            Rule::wildcard_pattern => Ok(Pattern::Wildcard(self.to_node(pair))),
2567            _ => Err(self.create_error_pair(SpecificError::MustHaveAtLeastOneArm, pair)),
2568        }
2569    }
2570
2571    fn parse_guard_clause(&self, pair: &Pair<Rule>) -> Result<GuardClause, ParseError> {
2572        let inner = Self::right_alternative(pair)?;
2573        let clause = match inner.as_rule() {
2574            Rule::wildcard_pattern => GuardClause::Wildcard(Self::node_ex(pair)),
2575            Rule::expression => {
2576                let mut iterator = inner.into_inner();
2577                let result = self.parse_expression(&Self::next_pair(&mut iterator)?)?;
2578                GuardClause::Expression(result)
2579            }
2580            _ => {
2581                return Err(Self::to_err(
2582                    SpecificError::UnknownExpr("guard_clause".to_string()),
2583                    pair,
2584                ))?;
2585            }
2586        };
2587
2588        Ok(clause)
2589    }
2590
2591    fn parse_guard_expr_list(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2592        let mut guard_exprs = Vec::new();
2593
2594        for expr_pair in Self::convert_into_iterator(pair) {
2595            match expr_pair.as_rule() {
2596                Rule::guard_item => {
2597                    let mut guard_inner = Self::convert_into_iterator(&expr_pair);
2598                    let guard_clause = Self::next_pair(&mut guard_inner)?;
2599                    let condition = self.parse_guard_clause(&guard_clause)?;
2600                    let result = self.parse_expression(&Self::next_pair(&mut guard_inner)?)?;
2601                    guard_exprs.push(GuardExpr {
2602                        clause: condition,
2603                        result,
2604                    });
2605                }
2606
2607                _ => {
2608                    panic!("Unexpected rule: {:?}", expr_pair.as_rule());
2609                }
2610            }
2611        }
2612
2613        Ok(self.create_expr(ExpressionKind::Guard(guard_exprs), pair))
2614    }
2615
2616    fn parse_enum_pattern(
2617        &self,
2618        pattern_type: &Pair<Rule>,
2619    ) -> Result<(ConcretePattern, Node), ParseError> {
2620        let mut inner = pattern_type.clone().into_inner(); // Clone first, then use into_inner()
2621        let variant = self.expect_local_type_identifier_next(&mut inner)?;
2622
2623        // Check for the optional destructuring_pattern
2624        let destructuring = if let Some(destructuring_node) = inner.next() {
2625            self.parse_destructuring_pattern(&destructuring_node)?
2626        } else {
2627            // No payload, it's a unit-like enum like `Red`, `Green`, `Blue`
2628            DestructuringPattern::Unit
2629        };
2630
2631        Ok((
2632            ConcretePattern::EnumPattern(variant.0, destructuring),
2633            self.to_node(pattern_type),
2634        ))
2635    }
2636
2637    fn parse_destructuring_pattern(
2638        &self,
2639        pair: &Pair<Rule>,
2640    ) -> Result<DestructuringPattern, ParseError> {
2641        let mut inner = Self::convert_into_iterator(pair);
2642        let destructuring_type = inner.next().expect("should have inner");
2643
2644        match destructuring_type.as_rule() {
2645            Rule::struct_destruct => {
2646                let fields = self.parse_struct_destructuring_fields(&destructuring_type)?;
2647                Ok(DestructuringPattern::Struct { fields })
2648            }
2649            Rule::tuple_destruct => {
2650                let elements = self.parse_tuple_destructuring_elements(&destructuring_type)?;
2651                if elements.is_empty() {
2652                    Ok(DestructuringPattern::Unit)
2653                }
2654                // Never create tuples with one element - convert to direct destructuring
2655                else if elements.len() == 1 {
2656                    match &elements[0] {
2657                        PatternVariableOrWildcard::Variable(var) => {
2658                            Ok(DestructuringPattern::None {
2659                                variable: var.clone(),
2660                            })
2661                        }
2662                        PatternVariableOrWildcard::Wildcard(_) => {
2663                            // For wildcards, we still need tuple destructuring
2664                            Ok(DestructuringPattern::Tuple { elements })
2665                        }
2666                    }
2667                } else {
2668                    assert!(!elements.is_empty(), "tuples can not be zero");
2669                    assert!(elements.len() > 1, "tuples must be at least two");
2670                    Ok(DestructuringPattern::Tuple { elements })
2671                }
2672            }
2673            Rule::maybe_mut_identifier => {
2674                let variable = self.parse_maybe_mut_identifier(&destructuring_type)?;
2675                Ok(DestructuringPattern::None { variable })
2676            }
2677            _ => Err(self.create_error_pair(SpecificError::UnknownMatchType, &destructuring_type)),
2678        }
2679    }
2680
2681    fn parse_struct_destructuring_fields(
2682        &self,
2683        pair: &Pair<Rule>,
2684    ) -> Result<Vec<Variable>, ParseError> {
2685        let mut fields = Vec::new();
2686        for field_pair in Self::convert_into_iterator(pair) {
2687            match field_pair.as_rule() {
2688                Rule::pattern_variable => {
2689                    let mut inner = Self::convert_into_iterator(&field_pair);
2690                    let variable_pair = inner.next().expect("should have inner");
2691                    let variable = self.parse_maybe_mut_identifier(&variable_pair)?;
2692                    fields.push(variable);
2693                }
2694                _ => {} // Skip other rules like commas
2695            }
2696        }
2697        Ok(fields)
2698    }
2699
2700    fn parse_tuple_destructuring_elements(
2701        &self,
2702        pair: &Pair<Rule>,
2703    ) -> Result<Vec<PatternVariableOrWildcard>, ParseError> {
2704        let mut elements = Vec::new();
2705        for element_pair in Self::convert_into_iterator(pair) {
2706            match element_pair.as_rule() {
2707                Rule::pattern_variable_or_wildcard => {
2708                    let mut inner = Self::convert_into_iterator(&element_pair);
2709                    let element_inner = inner.next().expect("should have inner");
2710
2711                    match element_inner.as_rule() {
2712                        Rule::maybe_mut_identifier => {
2713                            let variable = self.parse_maybe_mut_identifier(&element_inner)?;
2714                            elements.push(PatternVariableOrWildcard::Variable(variable));
2715                        }
2716                        _ => {
2717                            // Handle wildcard "_"
2718                            if element_inner.as_str() == "_" {
2719                                elements.push(PatternVariableOrWildcard::Wildcard(
2720                                    self.to_node(&element_inner),
2721                                ));
2722                            } else {
2723                                return Err(self.create_error_pair(
2724                                    SpecificError::UnknownMatchType,
2725                                    &element_inner,
2726                                ));
2727                            }
2728                        }
2729                    }
2730                }
2731                _ => {} // Skip other rules like commas
2732            }
2733        }
2734        Ok(elements)
2735    }
2736
2737    fn parse_normal_match_pattern(
2738        &self,
2739        pair: &Pair<Rule>,
2740    ) -> Result<(ConcretePattern, Node), ParseError> {
2741        let mut inner = Self::convert_into_iterator(pair);
2742        let pattern = inner.next().expect("should have inner");
2743
2744        match pattern.as_rule() {
2745            Rule::pattern => {
2746                let mut pattern_inner = Self::convert_into_iterator(&pattern);
2747                let pattern_type = pattern_inner.next().expect("should have inner");
2748
2749                match pattern_type.as_rule() {
2750                    Rule::enum_pattern => self.parse_enum_pattern(&pattern_type),
2751                    Rule::basic_literal => {
2752                        let (literal, node) = self.parse_basic_literal(&pattern_type)?;
2753                        Ok((ConcretePattern::Literal(literal), node))
2754                    }
2755                    _ => {
2756                        Err(self.create_error_pair(SpecificError::UnknownMatchType, &pattern_type))
2757                    }
2758                }
2759            }
2760            _ => Err(self.create_error_pair(SpecificError::UnknownMatchType, &pattern)),
2761        }
2762    }
2763
2764    fn to_node(&self, pair: &Pair<Rule>) -> Node {
2765        let pair_span = pair.as_span();
2766        let span = SpanWithoutFileId {
2767            offset: pair_span.start() as u32,
2768            length: (pair_span.end() - pair_span.start()) as u16,
2769        };
2770
2771        Node { span }
2772    }
2773
2774    fn node_ex(pair: &Pair<Rule>) -> Node {
2775        let pair_span = pair.as_span();
2776        let span = SpanWithoutFileId {
2777            offset: pair_span.start() as u32,
2778            length: (pair_span.end() - pair_span.start()) as u16,
2779        };
2780
2781        Node { span }
2782    }
2783
2784    fn to_span(&self, pest_span: pest::Span) -> SpanWithoutFileId {
2785        SpanWithoutFileId {
2786            offset: pest_span.start() as u32,
2787            length: (pest_span.end() - pest_span.start()) as u16,
2788        }
2789    }
2790
2791    fn span(pest_span: pest::Span) -> SpanWithoutFileId {
2792        SpanWithoutFileId {
2793            offset: pest_span.start() as u32,
2794            length: (pest_span.end() - pest_span.start()) as u16,
2795        }
2796    }
2797
2798    fn create_expr(&self, kind: ExpressionKind, pair: &Pair<Rule>) -> Expression {
2799        self.create_expr_span(kind, self.to_node(pair))
2800    }
2801
2802    const fn create_expr_span(&self, kind: ExpressionKind, node: Node) -> Expression {
2803        //info!(?kind, ?node, "create_expr()");
2804        Expression { kind, node }
2805    }
2806
2807    fn parse_multiplication(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2808        let mut inner = pair.clone().into_inner();
2809        let mut expr = self.parse_prefix(&inner.next().unwrap())?;
2810        while let Some(op) = inner.next() {
2811            // Expect the next token to be a multiplication operator, then the next operand.
2812            let operator = self.parse_binary_operator(&op)?; // op_mul, op_div, or op_mod
2813            let right = self.parse_prefix(&inner.next().unwrap())?;
2814            expr = self.create_expr(
2815                ExpressionKind::BinaryOp(Box::new(expr), operator, Box::new(right)),
2816                pair,
2817            );
2818        }
2819        Ok(expr)
2820    }
2821
2822    fn parse_addition(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2823        let mut inner = pair.clone().into_inner();
2824        let mut expr = self.parse_multiplication(&inner.next().unwrap())?;
2825        while let Some(op) = inner.next() {
2826            let operator = self.parse_binary_operator(&op)?; // op_add or op_sub
2827            let right = self.parse_multiplication(&inner.next().unwrap())?;
2828            expr = self.create_expr(
2829                ExpressionKind::BinaryOp(Box::new(expr), operator, Box::new(right)),
2830                pair,
2831            );
2832        }
2833        Ok(expr)
2834    }
2835
2836    fn parse_comparison(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2837        let mut inner = pair.clone().into_inner();
2838        let mut expr = self.parse_addition(&inner.next().unwrap())?;
2839        while let Some(op) = inner.next() {
2840            let operator = self.parse_binary_operator(&op)?; // e.g. op_lt, op_eq, etc.
2841            let right = self.parse_addition(&inner.next().unwrap())?;
2842            expr = self.create_expr(
2843                ExpressionKind::BinaryOp(Box::new(expr), operator, Box::new(right)),
2844                pair,
2845            );
2846        }
2847        Ok(expr)
2848    }
2849
2850    fn parse_range(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2851        let mut inner = pair.clone().into_inner();
2852        let left = self.parse_comparison(&inner.next().unwrap())?;
2853        if let Some(op) = inner.next() {
2854            let right = self.parse_comparison(&inner.next().unwrap())?;
2855            match op.as_rule() {
2856                Rule::exclusive_range_op => {
2857                    return Ok(self.create_expr(
2858                        ExpressionKind::Range(
2859                            Box::new(left),
2860                            Box::new(right),
2861                            RangeMode::Exclusive,
2862                        ),
2863                        pair,
2864                    ));
2865                }
2866                Rule::inclusive_range_op => {
2867                    return Ok(self.create_expr(
2868                        ExpressionKind::Range(
2869                            Box::new(left),
2870                            Box::new(right),
2871                            RangeMode::Inclusive,
2872                        ),
2873                        pair,
2874                    ));
2875                }
2876                _ => {}
2877            }
2878            let operator = self.parse_binary_operator(&op)?; // inclusive_range_op or exclusive_range_op
2879            Ok(self.create_expr(
2880                ExpressionKind::BinaryOp(Box::new(left), operator, Box::new(right)),
2881                pair,
2882            ))
2883        } else {
2884            Ok(left)
2885        }
2886    }
2887
2888    fn parse_none_coalesce(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2889        debug_assert_eq!(pair.as_rule(), Rule::none_coalesce);
2890        let mut inner = pair.clone().into_inner();
2891        let mut expr = self.parse_range(&inner.next().unwrap())?;
2892        while let Some(op) = inner.next() {
2893            let operator = self.parse_binary_operator(&op)?; // op_and or op_or
2894
2895            assert!(!(operator.kind != BinaryOperatorKind::NoneCoalescingOperator), "expected ?? in none_coalesce, got {operator:?}");
2896
2897            let right = self.parse_range(&inner.next().unwrap())?;
2898            expr = self.create_expr(
2899                ExpressionKind::BinaryOp(Box::new(expr), operator, Box::new(right)),
2900                pair,
2901            );
2902        }
2903        Ok(expr)
2904    }
2905
2906    fn parse_logical(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2907        debug_assert_eq!(pair.as_rule(), Rule::logical);
2908
2909        let mut inner = pair.clone().into_inner();
2910        // first, parse a full coalesce-expression (so "a ?? b" binds tighter than "&&")
2911        let mut expr = self.parse_none_coalesce(&inner.next().unwrap())?;
2912
2913        while let Some(op_pair) = inner.next() {
2914            let operator = self.parse_binary_operator(&op_pair)?; // && or ||
2915            let right = self.parse_none_coalesce(&inner.next().unwrap())?;
2916            expr = self.create_expr(
2917                ExpressionKind::BinaryOp(Box::new(expr), operator, Box::new(right)),
2918                pair,
2919            );
2920        }
2921
2922        Ok(expr)
2923    }
2924
2925    fn parse_lambda(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2926        debug_assert_eq!(pair.as_rule(), Rule::lambda);
2927        let mut inner = pair.clone().into_inner();
2928        let variable_list_pair = inner.next().unwrap();
2929        let variable_list = self.parse_optional_variable_list(&variable_list_pair)?;
2930        let expression_pair = inner.next().unwrap();
2931        let expression = self.parse_expression(&expression_pair)?;
2932
2933        Ok(self.create_expr(
2934            ExpressionKind::Lambda(variable_list, Box::new(expression)),
2935            pair,
2936        ))
2937    }
2938
2939    pub fn parse_attribute(&self, pair: &Pair<Rule>) -> Result<Attribute, ParseError> {
2940        let inner = pair.clone().into_inner().next().unwrap();
2941        let is_inner = match inner.as_rule() {
2942            Rule::outer_attribute => false,
2943            Rule::inner_attribute => true,
2944            _ => panic!("must be attribute"),
2945        };
2946        let meta_item = inner.into_inner().next().unwrap();
2947        let (path, args) = self.parse_meta_item(&meta_item)?;
2948
2949        Ok(Attribute {
2950            is_inner,
2951            path,
2952            args,
2953            node: self.to_node(pair),
2954        })
2955    }
2956
2957    fn parse_any_meta_item_to_arg(&self, pair: &Pair<Rule>) -> Result<AttributeArg, ParseError> {
2958        debug_assert_eq!(pair.as_rule(), Rule::meta_item);
2959        let matched_alternative = pair.clone().into_inner().next().unwrap();
2960
2961        match matched_alternative.as_rule() {
2962            Rule::meta_path => {
2963                let path_pair = matched_alternative.clone().into_inner().next().unwrap();
2964                let path = self.parse_qualified_identifier(&path_pair)?;
2965                Ok(AttributeArg::Path(path))
2966            }
2967            Rule::meta_key_value => {
2968                let mut inner_items = matched_alternative.clone().into_inner();
2969                let key_pair = inner_items.next().unwrap();
2970                let value_pair = inner_items.next().unwrap();
2971                let key = self.parse_qualified_identifier(&key_pair)?;
2972                let value_arg = self.parse_meta_value(&value_pair)?;
2973                Ok(AttributeArg::Function(key, vec![value_arg]))
2974            }
2975            Rule::meta_list => {
2976                let mut inner_items = matched_alternative.clone().into_inner();
2977                let path_pair = inner_items.next().unwrap();
2978                let path = self.parse_qualified_identifier(&path_pair)?;
2979                let args = if let Some(list_pair) = inner_items.next() {
2980                    self.parse_meta_item_list(&list_pair)?
2981                } else {
2982                    vec![]
2983                };
2984                Ok(AttributeArg::Function(path, args))
2985            }
2986            _ => panic!("unexpected rule inside meta_item"),
2987        }
2988    }
2989
2990    fn parse_meta_item(
2991        &self,
2992        pair: &Pair<Rule>,
2993    ) -> Result<(QualifiedIdentifier, Vec<AttributeArg>), ParseError> {
2994        debug_assert_eq!(pair.as_rule(), Rule::meta_item);
2995        let arg = self.parse_any_meta_item_to_arg(pair)?;
2996
2997        match arg {
2998            AttributeArg::Path(path) => Ok((path, vec![])),
2999            AttributeArg::Function(path, args) => Ok((path, args)),
3000            AttributeArg::Literal(_) => panic!(),
3001        }
3002    }
3003
3004    fn parse_meta_item_list(&self, pair: &Pair<Rule>) -> Result<Vec<AttributeArg>, ParseError> {
3005        let mut args = Vec::new();
3006        for item in pair.clone().into_inner() {
3007            args.push(self.parse_meta_item_arg(&item)?);
3008        }
3009        Ok(args)
3010    }
3011
3012    fn parse_meta_item_arg(&self, pair: &Pair<Rule>) -> Result<AttributeArg, ParseError> {
3013        self.parse_any_meta_item_to_arg(pair)
3014    }
3015
3016    fn parse_meta_value(&self, pair: &Pair<Rule>) -> Result<AttributeArg, ParseError> {
3017        let matched_alternative = self.next_inner_pair(pair)?;
3018        match matched_alternative.as_rule() {
3019            Rule::basic_literal => {
3020                let (kind, node) = self.parse_basic_literal(&matched_alternative)?;
3021                Ok(AttributeArg::Literal(match kind {
3022                    LiteralKind::Int => AttributeValue::Literal(node, AttributeLiteralKind::Int),
3023                    LiteralKind::String(s) => {
3024                        AttributeValue::Literal(node, AttributeLiteralKind::String(s))
3025                    }
3026                    LiteralKind::Bool => AttributeValue::Literal(node, AttributeLiteralKind::Bool),
3027                    _ => panic!("not supported"),
3028                }))
3029            }
3030            Rule::meta_path => {
3031                let path = self.parse_qualified_identifier(
3032                    &matched_alternative.clone().into_inner().next().unwrap(),
3033                )?;
3034                Ok(AttributeArg::Path(path))
3035            }
3036            Rule::meta_list => {
3037                let mut inner = matched_alternative.clone().into_inner();
3038                let path = self.parse_qualified_identifier(&inner.next().unwrap())?;
3039                let args = if let Some(list) = inner.next() {
3040                    self.parse_meta_item_list(&list)?
3041                } else {
3042                    vec![]
3043                };
3044                Ok(AttributeArg::Function(path, args))
3045            }
3046            _ => panic!("unexpected meta_value {:?}", pair.as_rule()),
3047        }
3048    }
3049}