swamp_parser/
lib.rs

1/*
2 * Copyright (c) Peter Bjorklund. All rights reserved. https://github.com/swamp/swamp
3 * Licensed under the MIT License. See LICENSE in the project root for license information.
4 */
5pub mod prelude;
6
7use pest::error::{Error, ErrorVariant, InputLocation};
8use pest::iterators::{Pair, Pairs};
9use pest::{Parser, Position};
10use pest_derive::Parser;
11use std::iter::Peekable;
12use std::str::Chars;
13use swamp_ast::{
14    AssignmentOperatorKind, BinaryOperatorKind, CompoundOperator, CompoundOperatorKind,
15    ConcretePattern, DestructuringPattern, EnumVariantLiteral, ExpressionKind, FieldExpression,
16    FieldName, ForPattern, ForVar, ImportItems, IterableExpression, LocalConstantIdentifier,
17    LocalTypeIdentifierWithOptionalTypeVariables, Mod, NamedStructDef, PatternVariableOrWildcard,
18    QualifiedIdentifier, RangeMode, SpanWithoutFileId, StructTypeField, TypeForParameter,
19    TypeVariable, VariableBinding, prelude::*,
20};
21use swamp_ast::{AttributeLiteralKind, Function};
22use swamp_ast::{GenericParameter, LiteralKind};
23use swamp_ast::{Postfix, PostfixChain};
24use tracing::error;
25
26pub struct ParseResult<'a> {
27    #[allow(dead_code)]
28    script: String, // Pairs are referencing the script
29    pairs: pest::iterators::Pairs<'a, Rule>,
30}
31
32pub struct GeneralError {
33    pub description: String,
34}
35
36#[derive(Debug)]
37pub enum SpecificError {
38    CouldNotMoveDown,
39    CouldNotMoveRight,
40    General(String),
41    ExpectingTypeIdentifier,
42    ExpectingInnerPair,
43    UnexpectedTypeRule(String),
44    ExpectedTypeIdentifier(String),
45    ExpectedLocalTypeIdentifier(String),
46    UnexpectedRuleInParseScript(String),
47    ExpectedControlStatement(String),
48    ExpectedStatement(String),
49    ExpectedIfOrElse(String),
50    MissingFunctionSignature,
51    MissingFunctionBody,
52    ExpectedStatementBlock,
53    ExpectedFunctionDefinition,
54    ExpectedParameter,
55    ExpectedImplItem,
56    ExpectedMemberSignature,
57    ExpectedBlockInWhileLoop,
58    UnexpectedExpressionType(String),
59    UnexpectedAccessType(String),
60    UnknownAssignmentOperator(String),
61    CompoundOperatorCanNotContainMut,
62    InvalidAssignmentTarget,
63    CompoundOperatorCanNotHaveMultipleVariables,
64    ExpectedExpressionAfterPrefixOperator,
65    UnknownOperator(String),
66    UnexpectedPostfixOperator,
67    UnexpectedUnaryOperator(String),
68    InvalidMemberCall,
69    UnknownMatchType,
70    UnexpectedElementInPatternList,
71    InvalidPrecisionValue,
72    InvalidPrecisionType,
73    ExpectedTypeIdentifierAfterPath,
74    UnexpectedPatternListElement(String),
75    MustHaveAtLeastOneArm,
76    UnexpectedMatchArmRule(String),
77    UnknownEnumVariant(String),
78    UnknownLiteral,
79    UnknownPrimary(String),
80    InvalidFormatSpecifier,
81    UnexpectedVariantField,
82    MutOnlyForVariables,
83    UnexpectedTokenInFunctionCall,
84    ExpectedExpressionInInterpolation,
85    UnexpectedRuleInInterpolation,
86    ExpectedForPattern,
87    ExpectedBlock,
88    InvalidForPattern,
89    UnexpectedRuleInElse(String),
90    ExpectedLocationExpression,
91    ExpectedImportPath,
92    ExpectedIdentifier,
93    ExpectedIdentifierAfterPath,
94    ExpectedFieldOrRest,
95    UnknownEscapeCharacter(char),
96    UnfinishedEscapeSequence,
97    InvalidUnicodeEscape,
98    InvalidHexEscape,
99    InvalidUtf8Sequence,
100    MissingTypeName,
101    UnknownTerm(String),
102    UnknownExpr(String),
103    UnexpectedTokenInMutableExpression,
104}
105
106#[derive(Debug)]
107pub struct ParseError {
108    pub span: SpanWithoutFileId,
109    pub specific: SpecificError,
110}
111
112#[derive(Parser)]
113#[grammar = "grammar.pest"]
114pub struct ScriptParser;
115
116pub const UNKNOWN_FILE_ID: u16 = 0xffff;
117
118pub struct AstParser;
119
120impl From<Error<Rule>> for ParseError {
121    fn from(value: Error<Rule>) -> Self {
122        let span = match value.location {
123            InputLocation::Pos(pos) => SpanWithoutFileId {
124                offset: pos as u32,
125                length: 1,
126            },
127            InputLocation::Span((start, end)) => SpanWithoutFileId {
128                offset: start as u32,
129                length: (end - start) as u16,
130            },
131        };
132        Self {
133            span,
134            specific: SpecificError::General(value.variant.to_string()),
135        }
136    }
137}
138
139impl AstParser {
140    fn next_pair<'a>(
141        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
142    ) -> Result<Pair<'a, Rule>, ParseError> {
143        Ok(pairs.next().ok_or_else(|| {
144            Error::new_from_pos(
145                ErrorVariant::CustomError {
146                    message: "Expected more tokens".into(),
147                },
148                Position::from_start(""),
149            )
150        })?)
151    }
152
153    fn expect_next<'a>(
154        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
155        expected_rule: Rule,
156    ) -> Result<Pair<'a, Rule>, ParseError> {
157        let pair = Self::next_pair(pairs)?;
158        if pair.as_rule() != expected_rule {
159            return Err(Error::new_from_span(
160                ErrorVariant::CustomError {
161                    message: format!("Expected {:?}, found {:?}", expected_rule, pair.as_rule()),
162                },
163                pair.as_span(),
164            ))?;
165        }
166        Ok(pair)
167    }
168
169    fn expect_identifier_next<'a>(
170        &self,
171        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
172    ) -> Result<LocalIdentifier, ParseError> {
173        let pair = Self::expect_next(pairs, Rule::identifier)?;
174        Ok(LocalIdentifier::new(self.to_node(&pair)))
175    }
176
177    fn expect_function_identifier_next<'a>(
178        &self,
179        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
180    ) -> Result<LocalIdentifier, ParseError> {
181        let pair = Self::expect_next(pairs, Rule::function_identifier)?;
182        Ok(LocalIdentifier::new(self.to_node(&pair)))
183    }
184
185    fn expect_constant_identifier_next<'a>(
186        &self,
187        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
188    ) -> Result<LocalConstantIdentifier, ParseError> {
189        let pair = Self::expect_next(pairs, Rule::constant_identifier)?;
190        Ok(LocalConstantIdentifier(self.to_node(&pair)))
191    }
192
193    fn _expect_variable_next<'a>(
194        &self,
195        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
196    ) -> Result<Variable, ParseError> {
197        let identifier = self.expect_identifier_next(pairs)?;
198        Ok(Variable {
199            name: identifier.0,
200            is_mutable: None,
201        })
202    }
203
204    fn expect_field_label_next<'a>(
205        &self,
206        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
207    ) -> Result<FieldName, ParseError> {
208        let field_label_pair = Self::expect_next(pairs, Rule::field_label)?;
209        let mut inner = field_label_pair.clone().into_inner();
210        let ident_pair = inner.next().ok_or_else(|| {
211            self.create_error_pair(SpecificError::ExpectedIdentifier, &field_label_pair)
212        })?;
213
214        Ok(FieldName(self.to_node(&ident_pair)))
215    }
216
217    fn parse_dot_identifier<'a>(&self, pair: &Pair<Rule>) -> Result<FieldName, ParseError> {
218        debug_assert_eq!(pair.as_rule(), Rule::dot_identifier);
219        let mut inner = pair.clone().into_inner();
220        let ident_pair = inner
221            .next()
222            .ok_or_else(|| self.create_error_pair(SpecificError::ExpectedIdentifier, pair))?;
223
224        Ok(FieldName(self.to_node(&ident_pair)))
225    }
226
227    fn expect_local_type_identifier_next<'a>(
228        &self,
229        pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
230    ) -> Result<LocalTypeIdentifier, ParseError> {
231        let pair = Self::expect_next(pairs, Rule::type_identifier)?;
232        Ok(LocalTypeIdentifier::new(self.to_node(&pair)))
233    }
234
235    /*
236    fn expect_qualified_type_identifier_next<'a>(
237        &self,
238        inner_pairs: &mut impl Iterator<Item = Pair<'a, Rule>>,
239    ) -> Result<QualifiedTypeIdentifier, ParseError> {
240        let first = Self::next_pair(inner_pairs)?;
241        match first.as_rule() {
242            Rule::module_segments => {
243                let module_path = self.parse_module_segments(first.clone());
244                let type_id = inner_pairs.next().ok_or_else(|| {
245                    self.create_error_pair(SpecificError::ExpectedTypeIdentifierAfterPath, &first)
246                })?;
247
248                let type_identifier = self.parse_local_type_identifier(&type_id)?;
249                Ok(QualifiedTypeIdentifier::new(type_identifier, module_path))
250            }
251            Rule::type_identifier => Ok(QualifiedTypeIdentifier::new(
252                LocalTypeIdentifier(self.to_node(&first)),
253                Vec::new(),
254            )),
255            _ => Err(self.create_error_pair(
256                SpecificError::ExpectedTypeIdentifier(Self::pair_to_rule(&first)),
257                &first,
258            )),
259        }
260    }
261
262     */
263
264    fn convert_into_iterator<'a>(pair: &'a Pair<'a, Rule>) -> impl Iterator<Item = Pair<'a, Rule>> {
265        pair.clone().into_inner()
266    }
267
268    fn create_error_pair(&self, kind: SpecificError, pair: &Pair<Rule>) -> ParseError {
269        ParseError {
270            span: self.to_span(pair.as_span()),
271            specific: kind,
272        }
273    }
274
275    fn to_err(kind: SpecificError, pair: &Pair<Rule>) -> ParseError {
276        ParseError {
277            span: Self::span(pair.as_span()),
278            specific: kind,
279        }
280    }
281
282    fn next_inner_pair<'a>(&self, pair: &Pair<'a, Rule>) -> Result<Pair<'a, Rule>, ParseError> {
283        let _span = pair.as_span();
284        pair.clone()
285            .into_inner()
286            .next()
287            .ok_or_else(move || self.create_error_pair(SpecificError::ExpectingInnerPair, pair))
288    }
289
290    pub fn parse(rule: Rule, raw_script: &str) -> Result<ParseResult<'static>, ParseError> {
291        let pairs = unsafe {
292            std::mem::transmute::<pest::iterators::Pairs<'_, Rule>, pest::iterators::Pairs<'_, Rule>>(
293                ScriptParser::parse(rule, raw_script)?,
294            )
295        };
296        Ok(ParseResult {
297            script: raw_script.to_string(),
298            pairs,
299        })
300    }
301
302    pub fn parse_item(&self, pair: &Pair<Rule>) -> Result<Definition, ParseError> {
303        debug_assert_eq!(pair.as_rule(), Rule::item);
304
305        let mut inner = pair.clone().into_inner();
306        let mut attributes = Vec::new();
307
308        while let Some(attr_pair) = inner.peek() {
309            if attr_pair.as_rule() == Rule::attribute {
310                let attr = self.parse_attribute(&inner.next().unwrap())?;
311                attributes.push(attr);
312            } else {
313                break;
314            }
315        }
316        // The next should be the definition
317        if let Some(def_pair) = inner.next() {
318            let definition_kind = self.parse_definition(&def_pair, &attributes)?;
319            let definition = Definition {
320                node: self.to_node(&def_pair),
321                kind: definition_kind,
322                attributes,
323            };
324            Ok(definition)
325        } else {
326            panic!("must be definition after attributes")
327        }
328    }
329
330    pub fn parse_module(&self, raw_script: &str) -> Result<Module, ParseError> {
331        let result = Self::parse(Rule::program, raw_script)?;
332
333        let mut pairs = result.pairs;
334
335        let program_pair = Self::next_pair(&mut pairs)?;
336
337        let mut expressions = Vec::new();
338        let mut definitions = Vec::new();
339        for pair in Self::convert_into_iterator(&program_pair) {
340            match pair.as_rule() {
341                Rule::item => {
342                    let def = self.parse_item(&pair)?;
343                    definitions.push(def);
344                }
345                Rule::expression => {
346                    let expr = self.parse_expression(&pair)?;
347                    expressions.push(expr);
348                }
349                Rule::EOI => {} // End of Input - do nothing
350                _ => {
351                    return Err(self.create_error_pair(
352                        SpecificError::UnexpectedRuleInParseScript(Self::pair_to_rule(&pair)),
353                        &pair,
354                    ));
355                }
356            }
357        }
358
359        let maybe_expression = match expressions.len() {
360            0 => None,
361            1 => Some(expressions.into_iter().next().unwrap()),
362            _ => Some(Expression {
363                kind: ExpressionKind::Block(expressions),
364                node: Node {
365                    span: SpanWithoutFileId::default(),
366                },
367            }),
368        };
369
370        Ok(Module::new(definitions, maybe_expression))
371    }
372
373    fn parse_definition(
374        &self,
375        pair: &Pair<Rule>,
376        attributes: &[Attribute],
377    ) -> Result<DefinitionKind, ParseError> {
378        let inner_pair = self.next_inner_pair(pair)?;
379        match inner_pair.as_rule() {
380            Rule::impl_def => self.parse_impl_def(&inner_pair),
381            Rule::const_def => self.parse_const_definition(&inner_pair),
382            Rule::struct_def => self.parse_struct_def(&inner_pair),
383            Rule::type_def => self.parse_type_def(&inner_pair),
384            Rule::function_def => self.parse_function_def(&inner_pair, attributes),
385            Rule::use_def => self.parse_use(&inner_pair),
386            Rule::mod_def => self.parse_mod(&inner_pair),
387            Rule::enum_def => self.parse_enum_def(&inner_pair),
388            _ => todo!(),
389        }
390    }
391
392    fn parse_const_definition(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
393        Ok(DefinitionKind::Constant(self.parse_const_info(pair)?))
394    }
395
396    fn parse_const_info(&self, pair: &Pair<Rule>) -> Result<ConstantInfo, ParseError> {
397        let mut inner = pair.clone().into_inner(); // Self::convert_into_iterator(pair);
398
399        let constant_identifier = self.expect_constant_identifier_next(&mut inner)?;
400
401        let maybe_annotation = self.parse_maybe_annotation(&mut inner)?;
402
403        let expr_pair = Self::next_pair(&mut inner)?;
404        let expression = self.parse_expression(&expr_pair)?;
405
406        Ok(ConstantInfo {
407            constant_identifier,
408            annotation: maybe_annotation,
409            expression: Box::new(expression),
410        })
411    }
412
413    fn module_path_and_items(
414        &self,
415        pair: &Pair<Rule>,
416    ) -> Result<(Vec<Node>, ImportItems), ParseError> {
417        let mut inner = Self::convert_into_iterator(pair);
418        let import_path = Self::next_pair(&mut inner)?;
419
420        let mut segments = Vec::new();
421        for pair in import_path.into_inner() {
422            segments.push(self.to_node(&pair));
423        }
424
425        let items = match inner.next() {
426            Some(found_rule) => match found_rule.as_rule() {
427                Rule::all_imports => ImportItems::All,
428                Rule::import_list => {
429                    let mut imported_items = Vec::new();
430                    for list_item in found_rule.into_inner() {
431                        let item = Self::next_pair(&mut list_item.into_inner())?;
432
433                        let import_item = match item.as_rule() {
434                            Rule::identifier => {
435                                ImportItem::Identifier(LocalIdentifier::new(self.to_node(&item)))
436                            }
437                            Rule::type_identifier => {
438                                ImportItem::Type(LocalTypeIdentifier::new(self.to_node(&item)))
439                            }
440                            _ => {
441                                return Err(self
442                                    .create_error_pair(SpecificError::ExpectedIdentifier, &item));
443                            }
444                        };
445
446                        imported_items.push(import_item);
447                    }
448                    if imported_items.is_empty() {
449                        ImportItems::Nothing
450                    } else {
451                        ImportItems::Items(imported_items)
452                    }
453                }
454                _ => panic!("was not all_imports or import_list"),
455            },
456            None => ImportItems::Nothing,
457        };
458
459        Ok((segments, items))
460    }
461
462    fn parse_use(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
463        let (segments, items) = self.module_path_and_items(pair)?;
464
465        Ok(DefinitionKind::Use(Use {
466            module_path: ModulePath(segments),
467            items,
468        }))
469    }
470
471    fn parse_mod(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
472        let (segments, items) = self.module_path_and_items(pair)?;
473
474        Ok(DefinitionKind::Mod(Mod {
475            module_path: ModulePath(segments),
476            items,
477        }))
478    }
479
480    fn pair_to_rule(rule: &Pair<Rule>) -> String {
481        format!("{:?}", rule.as_rule())
482    }
483
484    fn parse_block(&self, block_pair: &Pair<Rule>) -> Result<Expression, ParseError> {
485        if block_pair.as_rule() != Rule::block {
486            return Err(self.create_error_pair(SpecificError::ExpectedBlock, block_pair));
487        }
488
489        let mut expressions = Vec::new();
490
491        for pair in Self::convert_into_iterator(block_pair) {
492            if pair.as_rule() != Rule::expression {
493                return Err(self.create_error_pair(
494                    SpecificError::UnexpectedRuleInParseScript(format!(
495                        "Expected expression_in_block, got: {:?}",
496                        pair.as_rule()
497                    )),
498                    block_pair,
499                ));
500            }
501
502            match pair.as_rule() {
503                Rule::expression => {
504                    let expr = self.parse_expression(&pair)?;
505                    expressions.push(expr);
506                }
507                _ => {
508                    return Err(self.create_error_pair(
509                        SpecificError::UnexpectedRuleInParseScript(format!(
510                            "Unexpected rule in parse_block: {:?}",
511                            pair.as_rule()
512                        )),
513                        &pair,
514                    ));
515                }
516            }
517        }
518
519        let block_expr = self.create_expr(ExpressionKind::Block(expressions), block_pair);
520        Ok(block_expr)
521    }
522
523    fn parse_with_expr(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
524        let mut inner = Self::convert_into_iterator(pair);
525        let binding_list_pair = inner.next().expect("variable list missing");
526        let binding_list = self.parse_variable_binding_list(&binding_list_pair)?;
527
528        let expr_pair = inner.next().expect("block missing");
529        let expr = self.parse_expression(&expr_pair)?;
530
531        let with_expr = self.create_expr(ExpressionKind::With(binding_list, Box::from(expr)), pair);
532        Ok(with_expr)
533    }
534
535    fn parse_when_expr(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
536        let mut inner = Self::convert_into_iterator(pair);
537        let binding_list =
538            self.parse_variable_binding_list(&inner.next().expect("variable list missing"))?;
539        let expr = self.parse_expression(&inner.next().expect("block missing"))?;
540
541        let next = inner.next();
542        let else_expr = if let Some(found_else) = next {
543            Some(Box::new(self.parse_expression(&found_else)?))
544        } else {
545            None
546        };
547
548        Ok(self.create_expr(
549            ExpressionKind::When(binding_list, Box::from(expr), else_expr),
550            pair,
551        ))
552    }
553
554    fn parse_when_variable_binding(
555        &self,
556        pair: &Pair<Rule>,
557    ) -> Result<VariableBinding, ParseError> {
558        let mut inner = Self::convert_into_iterator(pair);
559
560        let variable = self.parse_variable_item(&inner.next().expect("variable missing"))?;
561
562        let expression = match inner.next() {
563            Some(expr_pair) => Some(self.parse_arg_expression(&expr_pair)?),
564            _ => None,
565        };
566
567        Ok(VariableBinding {
568            variable,
569            expression,
570        })
571    }
572
573    fn parse_variable_binding_list(
574        &self,
575        pair: &Pair<Rule>,
576    ) -> Result<Vec<VariableBinding>, ParseError> {
577        let inner = Self::convert_into_iterator(pair);
578        let mut bindings = Vec::new();
579
580        // Each item in inner will be a variable_binding
581        for binding_pair in inner {
582            if binding_pair.as_rule() == Rule::variable_binding {
583                bindings.push(self.parse_when_variable_binding(&binding_pair)?);
584            }
585        }
586
587        Ok(bindings)
588    }
589    fn parse_if_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
590        let mut inner = Self::convert_into_iterator(pair);
591        let condition = self.parse_expression(&Self::next_pair(&mut inner)?)?;
592        let then_branch = self.parse_expression(&Self::next_pair(&mut inner)?)?;
593        let else_branch = inner
594            .next()
595            .map(|p| {
596                match p.as_rule() {
597                    Rule::if_expr => self.parse_if_expression(&p), // Recursively handle `else if`
598                    _ => self.parse_expression(&p),                // Inline or block `else`
599                }
600            })
601            .transpose()?;
602
603        Ok(self.create_expr(
604            ExpressionKind::If(
605                Box::new(condition),
606                Box::new(then_branch),
607                else_branch.map(Box::new),
608            ),
609            pair,
610        ))
611    }
612
613    #[allow(clippy::too_many_lines)]
614    fn parse_postfix_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
615        assert_eq!(pair.as_rule(), Rule::postfix);
616        let mut inner = pair.clone().into_inner();
617
618        let primary_pair = inner.next().ok_or_else(|| {
619            self.create_error_pair(SpecificError::UnexpectedPostfixOperator, pair)
620        })?;
621        let start_expr = self.parse_term(&primary_pair)?;
622        //info!(?start_expr, "start");
623        let mut postfixes = Vec::new();
624        if inner.len() == 0 {
625            return Ok(start_expr);
626        }
627
628        for op_pair in inner.clone() {
629            //info!(rule=?op_pair.as_rule(), "..continuing chain");
630            match op_pair.as_rule() {
631                Rule::postfix_op => {
632                    let mut sub_inner = op_pair.clone().into_inner();
633                    let child = sub_inner.next().ok_or_else(|| {
634                        self.create_error_pair(SpecificError::UnexpectedPostfixOperator, &op_pair)
635                    })?;
636
637                    match child.as_rule() {
638                        Rule::unwrap_postfix => {
639                            postfixes
640                                .push(Postfix::OptionalChainingOperator(self.to_node(&op_pair)));
641                        }
642
643                        Rule::none_coalesce_postfix => {
644                            let mut postfix_inner = Self::convert_into_iterator(&child);
645                            let expr_pair = postfix_inner.next().expect("must have following");
646                            let default_expression = self.parse_expression(&expr_pair)?;
647                            postfixes.push(Postfix::NoneCoalescingOperator(default_expression));
648                        }
649
650                        Rule::function_call_postfix => {
651                            let (maybe_generics, args) =
652                                self.parse_function_call_postfix(&child)?;
653                            let node = self.to_node(&op_pair);
654                            postfixes.push(Postfix::FunctionCall(node, maybe_generics, args));
655                        }
656
657                        Rule::member_call_postfix => {
658                            let (member_identifier, maybe_generics, args) =
659                                self.parse_member_call_postfix(&child)?;
660
661                            postfixes.push(Postfix::MemberCall(
662                                member_identifier.0,
663                                maybe_generics,
664                                args,
665                            ));
666                        }
667
668                        Rule::member_access_postfix => {
669                            let mut inner = child.into_inner();
670                            let dot_id = Self::next_pair(&mut inner)?;
671                            let identifier = self.parse_dot_identifier(&dot_id)?;
672                            postfixes.push(Postfix::FieldAccess(identifier.0));
673                        }
674
675                        Rule::subscript_postfix => {
676                            let mut arr_inner = child.clone().into_inner();
677
678                            let first_expr_pair = arr_inner.next().ok_or_else(|| {
679                                self.create_error_pair(
680                                    SpecificError::UnexpectedPostfixOperator,
681                                    &child,
682                                )
683                            })?;
684                            let first_expression = self.parse_expression(&first_expr_pair)?;
685
686                            let second_expr_pair = arr_inner.next();
687                            match second_expr_pair {
688                                Some(pair) => {
689                                    let second_expression = self.parse_expression(&pair)?;
690                                    postfixes.push(Postfix::SubscriptTuple(
691                                        first_expression,
692                                        second_expression,
693                                    ));
694                                }
695                                None => {
696                                    postfixes.push(Postfix::Subscript(first_expression));
697                                }
698                            }
699                        }
700
701                        _ => {
702                            return Err(self.create_error_pair(
703                                SpecificError::UnexpectedPostfixOperator,
704                                &child,
705                            ));
706                        }
707                    }
708                }
709                _ => {
710                    return Err(
711                        self.create_error_pair(SpecificError::UnexpectedPostfixOperator, &op_pair)
712                    );
713                }
714            }
715        }
716
717        Ok(self.create_expr(
718            ExpressionKind::PostfixChain(PostfixChain {
719                base: Box::from(start_expr),
720                postfixes,
721            }),
722            pair,
723        ))
724    }
725
726    fn parse_member_call_postfix(
727        &self,
728        pair: &Pair<Rule>,
729    ) -> Result<(FieldName, Option<Vec<GenericParameter>>, Vec<Expression>), ParseError> {
730        debug_assert_eq!(pair.as_rule(), Rule::member_call_postfix);
731
732        let mut inner = pair.clone().into_inner();
733
734        let member_access = Self::next_pair(&mut inner)?;
735        debug_assert_eq!(member_access.as_rule(), Rule::member_access_postfix);
736        let mut ma_inner = member_access.into_inner();
737        let dot_id = Self::next_pair(&mut ma_inner)?;
738        let member_identifier = self.parse_dot_identifier(&dot_id)?;
739
740        let mut generic_args: Option<Vec<GenericParameter>> = None;
741        // Peek at the next rule without consuming it
742        if let Some(peeked_pair) = inner.peek() {
743            if peeked_pair.as_rule() == Rule::generic_arguments {
744                let generic_args_pair = Self::next_pair(&mut inner)?;
745                generic_args = Some(self.parse_generic_arguments(&generic_args_pair)?);
746            }
747        } else {
748            panic!("shouldn't happen in member_call_postfix")
749        }
750
751        let args_pair = Self::next_pair(&mut inner)?;
752        let args = self.parse_function_call_arguments(&args_pair)?;
753
754        Ok((member_identifier, generic_args, args))
755    }
756
757    fn parse_type_def(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
758        let mut inner = Self::convert_into_iterator(pair);
759        let alias_name = self.expect_local_type_identifier_next(&mut inner)?;
760        let referenced_type = self.parse_type(inner.next().expect("should work"))?;
761
762        let alias_type = AliasType {
763            identifier: alias_name,
764            referenced_type,
765        };
766
767        Ok(DefinitionKind::AliasDef(alias_type))
768    }
769
770    fn parse_struct_type_field(&self, pair: &Pair<Rule>) -> Result<StructTypeField, ParseError> {
771        debug_assert_eq!(pair.as_rule(), Rule::struct_type_field);
772
773        let mut field_inner = Self::convert_into_iterator(pair);
774        let field_name = self.expect_field_label_next(&mut field_inner)?;
775        let field_type = self.parse_type(Self::next_pair(&mut field_inner)?)?;
776        let struct_type_field = StructTypeField {
777            field_name,
778            field_type,
779        };
780
781        Ok(struct_type_field)
782    }
783
784    fn parse_struct_type_fields(
785        &self,
786        pair: &Pair<Rule>,
787    ) -> Result<Vec<StructTypeField>, ParseError> {
788        debug_assert_eq!(pair.as_rule(), Rule::struct_type_fields);
789        let mut fields = Vec::new();
790        for field_def in Self::convert_into_iterator(pair) {
791            let anonymous_struct_field = self.parse_struct_type_field(&field_def)?;
792
793            fields.push(anonymous_struct_field);
794        }
795        Ok(fields)
796    }
797
798    fn parse_struct_type(&self, pair: &Pair<Rule>) -> Result<AnonymousStructType, ParseError> {
799        debug_assert_eq!(pair.as_rule(), Rule::struct_type);
800        let fields = Self::right_alternative(pair)?;
801        let fields = self.parse_struct_type_fields(&fields)?;
802        let struct_type = AnonymousStructType::new(fields);
803        Ok(struct_type)
804    }
805
806    fn parse_tuple_type_elements(&self, pair: &Pair<Rule>) -> Result<Vec<Type>, ParseError> {
807        debug_assert_eq!(pair.as_rule(), Rule::tuple_type);
808        let mut types = Vec::new();
809        for type_pair in pair.clone().into_inner() {
810            let type_value = self.parse_type(type_pair)?;
811            types.push(type_value);
812        }
813        Ok(types)
814    }
815
816    fn parse_struct_def(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
817        let mut inner = Self::convert_into_iterator(pair).peekable();
818
819        let name_with_optional_type_params =
820            self.parse_local_type_identifier_with_optional_type_variables(&inner.next().unwrap())?;
821
822        // struct_type is optional
823        // it is valid syntax to just do:
824        // `struct SomeStruct`
825        let struct_type_pair_option = inner.next();
826        let struct_type_result = match struct_type_pair_option {
827            Some(struct_type_pair) => Some(self.parse_struct_type(&struct_type_pair)?),
828            None => None,
829        };
830
831        let struct_type = struct_type_result.map_or_else(
832            || AnonymousStructType::new(vec![]),
833            |found_result| found_result,
834        );
835
836        Ok(DefinitionKind::NamedStructDef(NamedStructDef {
837            identifier: name_with_optional_type_params,
838            struct_type,
839        }))
840    }
841
842    fn parse_function_def(
843        &self,
844        pair: &Pair<Rule>,
845        attributes: &[Attribute],
846    ) -> Result<DefinitionKind, ParseError> {
847        let function_pair = self.next_inner_pair(pair)?;
848
849        match function_pair.as_rule() {
850            Rule::normal_function => {
851                let mut inner = function_pair.clone().into_inner();
852                let signature_pair = inner.next().ok_or_else(|| {
853                    self.create_error_pair(SpecificError::MissingFunctionSignature, &function_pair)
854                })?;
855
856                let signature = self.parse_function_signature(&signature_pair)?;
857
858                let body = self.parse_block(&inner.next().ok_or_else(|| {
859                    self.create_error_pair(SpecificError::MissingFunctionBody, &function_pair)
860                })?)?;
861
862                Ok(DefinitionKind::FunctionDef(Function::Internal(
863                    FunctionWithBody {
864                        declaration: signature,
865                        attributes: attributes.to_vec(),
866                        body,
867                    },
868                )))
869            }
870            Rule::external_function => {
871                let mut inner = function_pair.clone().into_inner();
872                let id = inner.next().unwrap();
873                let signature_pair = inner.next().ok_or_else(|| {
874                    self.create_error_pair(
875                        SpecificError::MissingFunctionSignature,
876                        &function_pair.clone(),
877                    )
878                })?;
879
880                let signature = self.parse_function_signature(&signature_pair)?;
881                Ok(DefinitionKind::FunctionDef(Function::External(
882                    self.to_node(&id),
883                    signature,
884                )))
885            }
886            _ => {
887                Err(self
888                    .create_error_pair(SpecificError::ExpectedFunctionDefinition, &function_pair))
889            }
890        }
891    }
892    fn parse_function_signature(
893        &self,
894        pair: &Pair<Rule>,
895    ) -> Result<FunctionDeclaration, ParseError> {
896        if pair.as_rule() != Rule::function_signature {
897            return Err(self.create_error_pair(SpecificError::MissingFunctionSignature, pair));
898        }
899
900        let mut inner = pair.clone().into_inner();
901
902        let function_name = self.expect_function_identifier_next(&mut inner)?;
903
904        let mut generic_types = Vec::new();
905
906        let mut maybe_next_token = inner.next();
907        if let Some(next_rule) = &maybe_next_token {
908            if next_rule.as_rule() == Rule::generic_type_variables {
909                generic_types = self.parse_generic_type_variables(next_rule)?;
910                maybe_next_token = inner.next();
911            }
912        }
913
914        let (parameters, return_type) = match maybe_next_token {
915            Some(token) if token.as_rule() == Rule::parameter_list => {
916                let params = self.parse_parameters(&token)?;
917
918                let ret_type = if let Some(return_type_pair) = inner.next() {
919                    Some(self.parse_return_type(&return_type_pair)?)
920                } else {
921                    None
922                };
923
924                (params, ret_type)
925            }
926
927            Some(token) if token.as_rule() == Rule::return_type => {
928                (Vec::new(), Some(self.parse_return_type(&token)?))
929            }
930            _ => (Vec::new(), None),
931        };
932
933        Ok(FunctionDeclaration {
934            name: function_name.0,
935            params: parameters,
936            self_parameter: None,
937            return_type,
938        })
939    }
940
941    fn parse_return_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
942        let inner_pair = self.next_inner_pair(pair)?;
943        self.parse_type(inner_pair)
944    }
945
946    pub fn parse_parameters(&self, pair: &Pair<Rule>) -> Result<Vec<Parameter>, ParseError> {
947        let mut parameters = Vec::new();
948
949        for param_pair in Self::convert_into_iterator(pair) {
950            match param_pair.as_rule() {
951                Rule::parameter => {
952                    let mut iterator = Self::convert_into_iterator(&param_pair);
953                    let may_mut_pair = iterator.next().unwrap();
954                    let var = self.parse_maybe_mut_identifier(&may_mut_pair)?;
955                    let type_pair = iterator.next().unwrap();
956                    let param_type = self.parse_type(type_pair.clone())?;
957
958                    parameters.push(Parameter {
959                        variable: var,
960                        param_type,
961                    });
962                }
963                Rule::self_parameter => {
964                    panic!("should have been handled before parsing parameters")
965                }
966                _ => {
967                    return Err(
968                        self.create_error_pair(SpecificError::ExpectedParameter, &param_pair)
969                    );
970                }
971            }
972        }
973
974        Ok(parameters)
975    }
976
977    fn parse_impl_def(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
978        let mut inner = Self::convert_into_iterator(pair);
979        let name_with_optional_type_params =
980            self.parse_local_type_identifier_with_optional_type_variables(&inner.next().unwrap())?;
981
982        let mut functions = Vec::new();
983
984        for item_pair in inner {
985            if item_pair.as_rule() == Rule::impl_item {
986                let inner_item = self.next_inner_pair(&item_pair)?;
987                match inner_item.as_rule() {
988                    Rule::external_member_function => {
989                        let mut inner_inner_item = inner_item.into_inner();
990                        let id = inner_inner_item.next().unwrap();
991                        let signature =
992                            self.parse_member_signature(&inner_inner_item.next().unwrap())?;
993                        functions.push(Function::External(self.to_node(&id), signature));
994                    }
995                    Rule::normal_member_function => {
996                        let function_data = self.parse_member_data(&inner_item)?;
997                        functions.push(Function::Internal(function_data));
998                    }
999                    _ => {
1000                        return Err(
1001                            self.create_error_pair(SpecificError::ExpectedImplItem, &inner_item)
1002                        );
1003                    }
1004                }
1005            }
1006        }
1007
1008        Ok(DefinitionKind::ImplDef(
1009            name_with_optional_type_params,
1010            functions,
1011        ))
1012    }
1013
1014    fn parse_member_signature(&self, pair: &Pair<Rule>) -> Result<FunctionDeclaration, ParseError> {
1015        debug_assert_eq!(pair.as_rule(), Rule::member_signature);
1016
1017        let mut inner = pair.clone().into_inner();
1018
1019        let name = self.expect_function_identifier_next(&mut inner)?;
1020
1021        // TODO: Remove the parsing of generic type variables
1022        let mut generic_type_variables = Vec::new();
1023        let maybe_next_token = inner.peek();
1024        if let Some(next_rule) = &maybe_next_token {
1025            if next_rule.as_rule() == Rule::generic_type_variables {
1026                generic_type_variables = self.parse_generic_type_variables(next_rule)?;
1027                let _ = inner.next();
1028            }
1029        }
1030
1031        let mut parameters = Vec::new();
1032        let mut self_parameter = None;
1033        let mut return_type = None;
1034
1035        for next_pair in inner {
1036            match next_pair.as_rule() {
1037                Rule::self_parameter => {
1038                    let mut mut_keyword_node = None;
1039                    let mut self_node = None;
1040
1041                    for pair in next_pair.into_inner() {
1042                        match pair.as_rule() {
1043                            Rule::mut_keyword => {
1044                                mut_keyword_node = Some(self.to_node(&pair));
1045                            }
1046                            Rule::self_identifier => {
1047                                self_node = Some(self.to_node(&pair));
1048                            }
1049                            _ => unreachable!("Unexpected rule in self_parameter"),
1050                        }
1051                    }
1052
1053                    self_parameter = Some(SelfParameter {
1054                        is_mutable: mut_keyword_node,
1055                        self_node: self_node.expect("self node must exist"),
1056                    });
1057                }
1058                Rule::parameter_list => {
1059                    parameters = self.parse_parameters(&next_pair)?;
1060                }
1061                Rule::return_type => {
1062                    return_type = Some(self.parse_return_type(&next_pair)?);
1063                }
1064                _ => {}
1065            }
1066        }
1067
1068        Ok(FunctionDeclaration {
1069            name: name.0,
1070            params: parameters,
1071            self_parameter,
1072            return_type,
1073        })
1074    }
1075
1076    fn parse_member_data(&self, pair: &Pair<Rule>) -> Result<FunctionWithBody, ParseError> {
1077        if pair.as_rule() != Rule::normal_member_function {
1078            return Err(self.create_error_pair(SpecificError::ExpectedMemberSignature, pair));
1079        }
1080
1081        let mut inner = Self::convert_into_iterator(pair).peekable();
1082
1083        let mut attributes = Vec::new();
1084        while let Some(next) = inner.peek() {
1085            if next.as_rule() == Rule::attribute {
1086                let attr_pair = inner.next().unwrap();
1087                let attr = self.parse_attribute(&attr_pair)?;
1088                attributes.push(attr);
1089            } else {
1090                break;
1091            }
1092        }
1093
1094        let signature_pair = Self::next_pair(&mut inner)?;
1095        let signature = self.parse_member_signature(&signature_pair)?;
1096
1097        let block_pair = Self::next_pair(&mut inner)?;
1098        let body = self.parse_block(&block_pair)?;
1099
1100        Ok(FunctionWithBody {
1101            attributes,
1102            declaration: signature,
1103            body,
1104        })
1105    }
1106
1107    fn parse_for_loop(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1108        let mut inner = Self::convert_into_iterator(pair);
1109
1110        let pattern_pair = Self::next_pair(&mut inner)?;
1111        if pattern_pair.as_rule() != Rule::for_pattern {
1112            return Err(self.create_error_pair(SpecificError::ExpectedForPattern, &pattern_pair));
1113        }
1114
1115        let inner_pattern = self.next_inner_pair(&pattern_pair)?;
1116        let pattern = match inner_pattern.as_rule() {
1117            Rule::maybe_mut_identifier => {
1118                let mut inner_iter = inner_pattern.clone().into_inner();
1119                let is_mutable = inner_iter
1120                    .peek()
1121                    .is_some_and(|p| p.as_rule() == Rule::mut_keyword);
1122
1123                let is_mut = if is_mutable {
1124                    let mut_node = self.to_node(&inner_iter.next().unwrap());
1125                    Some(mut_node)
1126                } else {
1127                    None
1128                };
1129
1130                let identifier = if is_mutable {
1131                    self.expect_identifier_next(&mut inner_iter)?.0
1132                } else {
1133                    self.to_node(&inner_pattern)
1134                };
1135
1136                ForPattern::Single(ForVar { identifier, is_mut })
1137            }
1138            Rule::for_pair => {
1139                let mut vars = Self::convert_into_iterator(&inner_pattern);
1140
1141                // Parse first variable in the pair
1142                let first_var_pair = Self::next_pair(&mut vars)?;
1143                let mut first_inner_iter = first_var_pair.clone().into_inner();
1144                let first_is_mut = if first_inner_iter
1145                    .peek()
1146                    .is_some_and(|p| p.as_rule() == Rule::mut_keyword)
1147                {
1148                    Some(self.to_node(&first_inner_iter.next().unwrap()))
1149                } else {
1150                    None
1151                };
1152
1153                let first_identifier = if first_is_mut.is_some() {
1154                    self.expect_identifier_next(&mut first_inner_iter)?.0
1155                } else {
1156                    self.to_node(&first_var_pair)
1157                };
1158
1159                // Parse second variable in the pair
1160                let second_var_pair = Self::next_pair(&mut vars)?;
1161                let mut second_inner_iter = second_var_pair.clone().into_inner();
1162                let second_is_mut = if second_inner_iter
1163                    .peek()
1164                    .is_some_and(|p| p.as_rule() == Rule::mut_keyword)
1165                {
1166                    Some(self.to_node(&second_inner_iter.next().unwrap()))
1167                } else {
1168                    None
1169                };
1170
1171                let second_identifier = if second_is_mut.is_some() {
1172                    self.expect_identifier_next(&mut second_inner_iter)?.0
1173                } else {
1174                    self.to_node(&second_var_pair)
1175                };
1176
1177                ForPattern::Pair(
1178                    ForVar {
1179                        identifier: first_identifier,
1180                        is_mut: first_is_mut,
1181                    },
1182                    ForVar {
1183                        identifier: second_identifier,
1184                        is_mut: second_is_mut,
1185                    },
1186                )
1187            }
1188            _ => {
1189                return Err(
1190                    self.create_error_pair(SpecificError::InvalidForPattern, &inner_pattern)
1191                );
1192            }
1193        };
1194
1195        let next_pair = Self::next_pair(&mut inner)?;
1196        let iterable_expression = self.parse_arg_expression(&next_pair)?;
1197
1198        let mut_expression = IterableExpression {
1199            expression: Box::new(iterable_expression),
1200        };
1201
1202        let body = self.parse_expression(&Self::next_pair(&mut inner)?)?;
1203
1204        // Return the ForLoop statement with MutExpression
1205        Ok(self.create_expr(
1206            ExpressionKind::ForLoop(pattern, mut_expression, Box::from(body)),
1207            pair,
1208        ))
1209    }
1210
1211    fn parse_while_loop(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1212        let mut inner = Self::convert_into_iterator(pair);
1213
1214        let condition = self.parse_expression(&Self::next_pair(&mut inner)?)?;
1215
1216        let body = self.parse_expression(&Self::next_pair(&mut inner)?)?;
1217
1218        Ok(self.create_expr(
1219            ExpressionKind::WhileLoop(Box::from(condition), Box::from(body)),
1220            pair,
1221        ))
1222    }
1223
1224    fn parse_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1225        let sub = &Self::right_alternative(pair)?;
1226        match sub.as_rule() {
1227            /*
1228            // TODO: verify that this block is not needed
1229            Rule::expression => {
1230                let inner = self.next_inner_pair(sub)?;
1231
1232                self.parse_expression(&inner)
1233            }
1234             */
1235            Rule::qualified_identifier => Ok(self.create_expr(
1236                ExpressionKind::VariableReference(Variable::new(self.to_node(sub), None)),
1237                sub,
1238            )),
1239            Rule::block => self.parse_block(sub),
1240
1241            Rule::assignment => self.parse_assignment_expression(sub),
1242            Rule::destructuring_assignment => self.parse_destructuring_assignment(sub),
1243            Rule::variable_definition => self.parse_variable_definition(sub),
1244
1245            Rule::addition => self.parse_addition(sub),
1246            Rule::range => self.parse_range(sub),
1247            Rule::logical => self.parse_logical(sub),
1248            Rule::comparison => self.parse_comparison(sub),
1249            Rule::multiplication => self.parse_multiplication(sub),
1250
1251            Rule::prefix => self.parse_prefix(sub),
1252
1253            Rule::match_expr => self.parse_match_expr(sub),
1254            Rule::initializer_list => self.parse_initializer_list_literal(sub),
1255            Rule::initializer_pair_list => self.parse_initializer_pair_list(sub),
1256            Rule::guard_expr => self.parse_guard_expr_list(sub),
1257            Rule::with_expr => self.parse_with_expr(sub),
1258            Rule::when_expr => self.parse_when_expr(sub),
1259            Rule::if_expr => self.parse_if_expression(sub),
1260            Rule::for_loop => self.parse_for_loop(sub),
1261            Rule::while_loop => self.parse_while_loop(sub),
1262
1263            //            Rule::expression | Rule::literal => self.parse_expr(pair),
1264            Rule::prefix_op | Rule::op_neg | Rule::op_not | Rule::op_borrow_mut_ref => {
1265                // TODO: maybe not called?
1266                let op = self.parse_unary_operator(sub)?;
1267                let expr = self.parse_postfix_expression(&self.next_inner_pair(sub)?)?;
1268                Ok(self.create_expr(ExpressionKind::UnaryOp(op, Box::new(expr)), sub))
1269            }
1270
1271            //Rule::mut_expression => self.parse_mutable_or_immutable_expression(pair),
1272            Rule::postfix => self.parse_postfix_expression(sub), // TODO: maybe not called
1273            _ => {
1274                error!(rule=?sub.as_rule(), "rule");
1275                Err(self.create_error_pair(
1276                    SpecificError::UnexpectedExpressionType(Self::pair_to_rule(sub)),
1277                    sub,
1278                ))
1279            }
1280        }
1281    }
1282
1283    fn parse_at_least_two_variable_list(
1284        &self,
1285        pair: &Pair<Rule>,
1286    ) -> Result<Vec<Variable>, ParseError> {
1287        debug_assert_eq!(pair.as_rule(), Rule::at_least_two_variables_list);
1288        let mut variables = Vec::new();
1289        for item_pair in pair.clone().into_inner() {
1290            variables.push(self.parse_variable_item(&item_pair)?);
1291        }
1292        Ok(variables)
1293    }
1294
1295    fn parse_optional_variable_list(&self, pair: &Pair<Rule>) -> Result<Vec<Variable>, ParseError> {
1296        debug_assert_eq!(pair.as_rule(), Rule::optional_variable_list);
1297        let mut variables = Vec::new();
1298        for item_pair in pair.clone().into_inner() {
1299            variables.push(self.parse_variable_item(&item_pair)?);
1300        }
1301        Ok(variables)
1302    }
1303
1304    fn parse_maybe_mut_identifier(&self, pair: &Pair<Rule>) -> Result<Variable, ParseError> {
1305        debug_assert_eq!(pair.as_rule(), Rule::maybe_mut_identifier);
1306        let mut inner = pair.clone().into_inner();
1307        let mut_node = if let Some(peeked) = inner.peek() {
1308            if peeked.as_rule() == Rule::mut_keyword {
1309                // Convert 'mut' to a Node
1310                let node = self.to_node(&peeked);
1311                inner.next(); // consume the 'mut' token
1312                Some(node)
1313            } else {
1314                None
1315            }
1316        } else {
1317            None
1318        };
1319
1320        let name_pair = inner.next().ok_or_else(|| {
1321            self.create_error_pair(
1322                SpecificError::UnexpectedRuleInParseScript(
1323                    "Expected identifier in variable_item".into(),
1324                ),
1325                pair,
1326            )
1327        })?;
1328
1329        if name_pair.as_rule() != Rule::identifier {
1330            return Err(self.create_error_pair(
1331                SpecificError::UnexpectedRuleInParseScript(format!(
1332                    "Expected identifier, found {:?}",
1333                    name_pair.as_rule()
1334                )),
1335                &name_pair,
1336            ));
1337        }
1338
1339        let variable = Variable {
1340            name: self.to_node(&name_pair),
1341            is_mutable: mut_node,
1342        };
1343
1344        Ok(variable)
1345    }
1346
1347    fn parse_variable_item(&self, pair: &Pair<Rule>) -> Result<Variable, ParseError> {
1348        debug_assert_eq!(pair.as_rule(), Rule::variable_item);
1349        let mut inner = pair.clone().into_inner();
1350        self.parse_maybe_mut_identifier(&inner.next().unwrap())
1351    }
1352
1353    fn parse_assignment_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1354        let mut iterator = pair.clone().into_inner();
1355        let lhs_logical =
1356            self.parse_logical(&iterator.next().expect("parse_assignment_expression"))?;
1357        if let Some(assignment_op_pair) = iterator.peek().clone() {
1358            iterator.next();
1359            let assignment_op = self.parse_assignment_op(&assignment_op_pair)?;
1360            let rhs_expr = self.parse_expression(&iterator.next().unwrap())?;
1361            let kind = match assignment_op {
1362                AssignmentOperatorKind::Assign => {
1363                    ExpressionKind::Assignment(Box::new(lhs_logical), Box::from(rhs_expr))
1364                }
1365                AssignmentOperatorKind::Compound(compound) => {
1366                    let op = CompoundOperator {
1367                        node: Self::node_ex(&assignment_op_pair),
1368                        kind: compound,
1369                    };
1370                    ExpressionKind::CompoundAssignment(
1371                        Box::from(lhs_logical),
1372                        op,
1373                        Box::from(rhs_expr),
1374                    )
1375                }
1376            };
1377
1378            Ok(self.create_expr(kind, pair))
1379        } else {
1380            Ok(lhs_logical)
1381        }
1382    }
1383
1384    fn parse_assignment_op(&self, pair: &Pair<Rule>) -> Result<AssignmentOperatorKind, ParseError> {
1385        debug_assert_eq!(pair.as_rule(), Rule::assign_op);
1386        let sub = Self::right_alternative(pair)?;
1387        let op = match sub.as_rule() {
1388            Rule::compound_assign_op => {
1389                AssignmentOperatorKind::Compound(Self::parse_compound_assign_op(&sub)?)
1390            }
1391            Rule::normal_assign_op => AssignmentOperatorKind::Assign,
1392            _ => {
1393                return Err(Self::to_err(
1394                    SpecificError::UnknownAssignmentOperator("strange".to_string()),
1395                    &sub,
1396                ));
1397            }
1398        };
1399
1400        Ok(op)
1401    }
1402
1403    #[allow(clippy::too_many_lines)]
1404    fn parse_destructuring_assignment(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1405        debug_assert_eq!(pair.as_rule(), Rule::destructuring_assignment);
1406        let mut inner = pair.clone().into_inner();
1407
1408        let var_list_pair = inner.next().ok_or_else(|| {
1409            self.create_error_pair(
1410                SpecificError::UnexpectedRuleInParseScript("missing variable_list".to_string()),
1411                pair,
1412            )
1413        })?;
1414
1415        let variables = self.parse_at_least_two_variable_list(&var_list_pair)?;
1416
1417        let rhs_pair = inner.next().ok_or_else(|| {
1418            self.create_error_pair(
1419                SpecificError::UnexpectedRuleInParseScript("missing RHS expression".to_string()),
1420                pair,
1421            )
1422        })?;
1423        let rhs_expr = self.parse_expression(&rhs_pair)?;
1424
1425        Ok(self.create_expr(
1426            ExpressionKind::DestructuringAssignment(variables, Box::new(rhs_expr)),
1427            &rhs_pair,
1428        ))
1429    }
1430
1431    fn right_alternative<'a>(pair: &Pair<'a, Rule>) -> Result<Pair<'a, Rule>, ParseError> {
1432        pair.clone()
1433            .into_inner()
1434            .next()
1435            .ok_or_else(|| Self::to_err(SpecificError::CouldNotMoveRight, pair))
1436    }
1437
1438    pub fn parse_compound_assign_op(
1439        op_pair: &Pair<Rule>,
1440    ) -> Result<CompoundOperatorKind, ParseError> {
1441        debug_assert_eq!(op_pair.as_rule(), Rule::compound_assign_op);
1442
1443        let kind = match Self::right_alternative(op_pair)?.as_rule() {
1444            Rule::add_assign_op => CompoundOperatorKind::Add,
1445            Rule::sub_assign_op => CompoundOperatorKind::Sub,
1446            Rule::mul_assign_op => CompoundOperatorKind::Mul,
1447            Rule::div_assign_op => CompoundOperatorKind::Div,
1448            Rule::modulo_assign_op => CompoundOperatorKind::Modulo,
1449            _ => {
1450                return Err(Self::to_err(
1451                    SpecificError::UnknownOperator(format!(
1452                        "Found unexpected operator rule: {:?}",
1453                        op_pair.as_rule()
1454                    )),
1455                    op_pair,
1456                ));
1457            }
1458        };
1459
1460        Ok(kind)
1461    }
1462
1463    fn parse_maybe_annotation(&self, inner: &mut Pairs<Rule>) -> Result<Option<Type>, ParseError> {
1464        let result = if let Some(peeked) = inner.peek() {
1465            if peeked.as_rule() == Rule::type_coerce {
1466                let type_coerce_pair = inner.next().unwrap();
1467                let mut type_inner = type_coerce_pair.clone().into_inner();
1468                let type_name_pair = type_inner.next().ok_or_else(|| {
1469                    self.create_error_pair(SpecificError::MissingTypeName, &type_coerce_pair)
1470                })?;
1471                Some(self.parse_type(type_name_pair)?)
1472            } else {
1473                None
1474            }
1475        } else {
1476            None
1477        };
1478        Ok(result)
1479    }
1480
1481    #[allow(clippy::too_many_lines)]
1482    fn parse_variable_definition(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1483        debug_assert_eq!(pair.as_rule(), Rule::variable_definition);
1484        let mut inner = pair.clone().into_inner();
1485        let variable_item = Self::next_pair(&mut inner)?;
1486        let found_var = self.parse_variable_item(&variable_item)?;
1487
1488        let maybe_annotation = self.parse_maybe_annotation(&mut inner)?;
1489
1490        let rhs_expr = self.parse_expression(&inner.next().unwrap())?;
1491
1492        if maybe_annotation.is_some() || found_var.is_mutable.is_some() {
1493            Ok(self.create_expr(
1494                ExpressionKind::VariableDefinition(
1495                    found_var,
1496                    maybe_annotation,
1497                    Box::from(rhs_expr),
1498                ),
1499                pair,
1500            ))
1501        } else {
1502            Ok(self.create_expr(
1503                ExpressionKind::VariableAssignment(found_var, Box::from(rhs_expr)),
1504                pair,
1505            ))
1506        }
1507    }
1508    fn parse_prefix(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1509        debug_assert_eq!(pair.as_rule(), Rule::prefix);
1510        let _span = pair.as_span();
1511        let inner = Self::convert_into_iterator(pair);
1512        let mut expr = None;
1513        let mut prefix_ops = Vec::new();
1514
1515        for part in inner {
1516            match part.as_rule() {
1517                Rule::prefix_op | Rule::op_neg | Rule::op_not => {
1518                    let op = self.parse_unary_operator(&part)?;
1519                    prefix_ops.push(op);
1520                }
1521                _ => {
1522                    expr = Some(self.parse_postfix_expression(&part)?);
1523                    break;
1524                }
1525            }
1526        }
1527
1528        let mut final_expr = expr.ok_or_else(|| {
1529            self.create_error_pair(SpecificError::ExpectedExpressionAfterPrefixOperator, pair)
1530        })?;
1531
1532        for op in prefix_ops.into_iter().rev() {
1533            final_expr = self.create_expr(ExpressionKind::UnaryOp(op, Box::new(final_expr)), pair);
1534        }
1535
1536        Ok(final_expr)
1537    }
1538
1539    fn parse_binary_operator(&self, pair: &Pair<Rule>) -> Result<BinaryOperator, ParseError> {
1540        let op = match pair.as_rule() {
1541            Rule::prefix_op => self.next_inner_pair(pair)?,
1542            _ => pair.clone(),
1543        };
1544
1545        let kind = match op.as_rule() {
1546            Rule::op_add => BinaryOperatorKind::Add,
1547            Rule::op_sub => BinaryOperatorKind::Subtract,
1548            Rule::op_mul => BinaryOperatorKind::Multiply,
1549            Rule::op_div => BinaryOperatorKind::Divide,
1550            Rule::op_mod => BinaryOperatorKind::Modulo,
1551            Rule::op_eq => BinaryOperatorKind::Equal,
1552            Rule::op_neq => BinaryOperatorKind::NotEqual,
1553            Rule::op_lt => BinaryOperatorKind::LessThan,
1554            Rule::op_lte => BinaryOperatorKind::LessEqual,
1555            Rule::op_gt => BinaryOperatorKind::GreaterThan,
1556            Rule::op_gte => BinaryOperatorKind::GreaterEqual,
1557            Rule::op_and => BinaryOperatorKind::LogicalAnd,
1558            Rule::op_or => BinaryOperatorKind::LogicalOr,
1559            _ => {
1560                panic!("unknown operator")
1561            }
1562        };
1563
1564        Ok(BinaryOperator {
1565            kind,
1566            node: self.to_node(pair),
1567        })
1568    }
1569
1570    fn parse_unary_operator(&self, pair: &Pair<Rule>) -> Result<UnaryOperator, ParseError> {
1571        let op = match pair.as_rule() {
1572            Rule::prefix_op => &self.next_inner_pair(pair)?,
1573            _ => pair,
1574        };
1575
1576        let node = self.to_node(op);
1577        match op.as_rule() {
1578            Rule::op_neg => Ok(UnaryOperator::Negate(node)),
1579            Rule::op_not => Ok(UnaryOperator::Not(node)),
1580            Rule::op_borrow_mut_ref => Ok(UnaryOperator::BorrowMutRef(node)),
1581            _ => Err(self.create_error_pair(
1582                SpecificError::UnexpectedUnaryOperator(Self::pair_to_rule(op)),
1583                op,
1584            )),
1585        }
1586    }
1587
1588    fn parse_module_segments(&self, pair: Pair<Rule>) -> Vec<Node> {
1589        pair.into_inner()
1590            .filter_map(|segment| {
1591                if segment.as_rule() == Rule::identifier {
1592                    Some(self.to_node(&segment))
1593                } else {
1594                    None
1595                }
1596            })
1597            .collect()
1598    }
1599
1600    fn parse_qualified_type_identifier(
1601        &self,
1602        pair: &Pair<Rule>,
1603    ) -> Result<QualifiedTypeIdentifier, ParseError> {
1604        let mut inner_pairs = pair.clone().into_inner();
1605        let mut generic_types = Vec::new();
1606
1607        let first = inner_pairs.next().ok_or_else(|| {
1608            self.create_error_pair(
1609                SpecificError::ExpectedTypeIdentifier(Self::pair_to_rule(pair)),
1610                pair,
1611            )
1612        })?;
1613
1614        match first.as_rule() {
1615            Rule::module_segments => {
1616                let module_path = self.parse_module_segments(first.clone());
1617                let type_id = inner_pairs.next().ok_or_else(|| {
1618                    self.create_error_pair(SpecificError::ExpectedTypeIdentifierAfterPath, &first)
1619                })?;
1620
1621                let type_identifier = self.parse_local_type_identifier(&type_id)?;
1622
1623                // TODO: Maybe loop and check for generic params
1624                if let Some(generic_params) = inner_pairs.next() {
1625                    if generic_params.as_rule() == Rule::generic_arguments {
1626                        generic_types = self.parse_generic_arguments(&generic_params)?; // TODO: maybe not used?
1627                    }
1628                }
1629
1630                Ok(QualifiedTypeIdentifier::new_with_generics(
1631                    type_identifier,
1632                    module_path,
1633                    generic_types,
1634                ))
1635            }
1636            Rule::type_identifier => {
1637                let type_identifier = LocalTypeIdentifier(self.to_node(&first));
1638
1639                // TODO: Maybe loop and check for generic params
1640                if let Some(generic_params) = inner_pairs.next() {
1641                    if generic_params.as_rule() == Rule::generic_arguments {
1642                        generic_types = self.parse_generic_arguments(&generic_params)?;
1643                    }
1644                }
1645
1646                Ok(QualifiedTypeIdentifier::new_with_generics(
1647                    type_identifier,
1648                    Vec::new(),
1649                    generic_types,
1650                ))
1651            }
1652            _ => Err(self.create_error_pair(
1653                SpecificError::ExpectedTypeIdentifier(Self::pair_to_rule(&first)),
1654                &first,
1655            )),
1656        }
1657    }
1658
1659    fn parse_qualified_identifier(
1660        &self,
1661        pair: &Pair<Rule>,
1662    ) -> Result<QualifiedIdentifier, ParseError> {
1663        let mut inner_pairs = pair.clone().into_inner();
1664        let mut generic_types = Vec::new();
1665
1666        let first = inner_pairs
1667            .next()
1668            .ok_or_else(|| self.create_error_pair(SpecificError::ExpectedIdentifier, pair))?;
1669
1670        match first.as_rule() {
1671            Rule::module_segments => {
1672                let module_path = self.parse_module_segments(first.clone());
1673                let id = inner_pairs.next().ok_or_else(|| {
1674                    self.create_error_pair(SpecificError::ExpectedIdentifierAfterPath, &first)
1675                })?;
1676
1677                let identifier = self.to_node(&id);
1678
1679                // TODO: Maybe loop and check for generic params
1680                if let Some(generic_params) = inner_pairs.next() {
1681                    if generic_params.as_rule() == Rule::generic_arguments {
1682                        // TODO: maybe not used?
1683                        generic_types = self.parse_generic_arguments(&generic_params)?;
1684                    }
1685                }
1686
1687                Ok(QualifiedIdentifier::new_with_generics(
1688                    identifier,
1689                    module_path,
1690                    generic_types,
1691                ))
1692            }
1693            Rule::identifier => {
1694                let type_identifier = self.to_node(&first);
1695
1696                // TODO: Maybe loop and check for generic params
1697                if let Some(generic_params) = inner_pairs.next() {
1698                    if generic_params.as_rule() == Rule::generic_arguments {
1699                        // TODO: maybe not used
1700                        generic_types = self.parse_generic_arguments(&generic_params)?;
1701                    }
1702                }
1703
1704                Ok(QualifiedIdentifier::new_with_generics(
1705                    type_identifier,
1706                    Vec::new(),
1707                    generic_types,
1708                ))
1709            }
1710            _ => Err(self.create_error_pair(SpecificError::ExpectedIdentifier, &first)),
1711        }
1712    }
1713
1714    fn parse_qualified_identifier_expression(
1715        &self,
1716        pair: &Pair<Rule>,
1717    ) -> Result<Expression, ParseError> {
1718        let qualified_identifier = self.parse_qualified_identifier(pair)?;
1719        Ok(self.create_expr(
1720            ExpressionKind::IdentifierReference(qualified_identifier),
1721            pair,
1722        ))
1723    }
1724
1725    fn parse_generic_arguments(
1726        &self,
1727        pair: &Pair<Rule>,
1728    ) -> Result<Vec<GenericParameter>, ParseError> {
1729        debug_assert_eq!(pair.as_rule(), Rule::generic_arguments);
1730
1731        let inner_pairs = pair.clone().into_inner();
1732        let mut generic_types = Vec::new();
1733
1734        for generic_parameter_pair in inner_pairs {
1735            let generic_parameter = match generic_parameter_pair.as_rule() {
1736                Rule::type_name => GenericParameter::Type(self.parse_type(generic_parameter_pair)?),
1737                Rule::generic_argument_int_tuple => {
1738                    let mut pairs = generic_parameter_pair.clone().into_inner();
1739                    let first = pairs.next().unwrap();
1740                    let second = pairs.next().unwrap();
1741                    let first_node = self.to_node(&first);
1742                    let second_node = self.to_node(&second);
1743                    GenericParameter::UnsignedTupleInt(first_node, second_node)
1744                }
1745                Rule::unsigned_int_lit => {
1746                    GenericParameter::UnsignedInt(self.to_node(&generic_parameter_pair))
1747                }
1748                _ => panic!("unknown generic parameter"),
1749            };
1750
1751            generic_types.push(generic_parameter);
1752        }
1753
1754        Ok(generic_types)
1755    }
1756
1757    fn parse_local_type_identifier_node(&self, pair: &Pair<Rule>) -> Result<Node, ParseError> {
1758        if pair.as_rule() != Rule::type_identifier {
1759            return Err(self.create_error_pair(
1760                SpecificError::ExpectedTypeIdentifier(format!("{:?}", pair.as_rule())),
1761                pair,
1762            ));
1763        }
1764        Ok(self.to_node(pair))
1765    }
1766
1767    fn parse_generic_type_variables(
1768        &self,
1769        pair: &Pair<Rule>,
1770    ) -> Result<Vec<TypeVariable>, ParseError> {
1771        debug_assert_eq!(pair.as_rule(), Rule::generic_type_variables);
1772        let mut type_params = Vec::new();
1773
1774        let inner = Self::convert_into_iterator(pair);
1775        for type_variable in inner {
1776            let mut inner_type_var = type_variable.into_inner();
1777            let type_identifier_pair = inner_type_var.next().unwrap();
1778
1779            type_params.push(TypeVariable(
1780                self.parse_local_type_identifier_node(&type_identifier_pair)?,
1781            ));
1782        }
1783        Ok(type_params)
1784    }
1785
1786    fn parse_local_type_identifier_with_optional_type_variables(
1787        &self,
1788        pair: &Pair<Rule>,
1789    ) -> Result<LocalTypeIdentifierWithOptionalTypeVariables, ParseError> {
1790        debug_assert_eq!(
1791            pair.as_rule(),
1792            Rule::type_identifier_optional_type_variables
1793        );
1794
1795        let mut inner = pair.clone().into_inner();
1796        let name = self.expect_local_type_identifier_next(&mut inner)?;
1797
1798        let type_variables = if let Some(generic_params_pair) = inner.peek() {
1799            // Peek to see if generic params exist
1800            if generic_params_pair.as_rule() == Rule::generic_type_variables {
1801                let _ = inner.next().unwrap(); // Consume the generic_type_params pair
1802                self.parse_generic_type_variables(&generic_params_pair)?
1803            } else {
1804                Vec::new()
1805            }
1806        } else {
1807            Vec::new()
1808        };
1809
1810        Ok(LocalTypeIdentifierWithOptionalTypeVariables {
1811            name: name.0,
1812            type_variables,
1813        })
1814    }
1815
1816    fn parse_struct_fields_expressions<'a>(
1817        &self,
1818        field_list_pair: &Pair<Rule>,
1819    ) -> Result<(Vec<FieldExpression>, bool), ParseError> {
1820        let mut fields = Vec::new();
1821        let mut has_rest = false;
1822
1823        for field_pair in field_list_pair.clone().into_inner() {
1824            match field_pair.as_rule() {
1825                Rule::struct_field => {
1826                    let mut field_inner = field_pair.into_inner();
1827                    let ident = self.expect_field_label_next(&mut field_inner)?;
1828                    let field_name = FieldName(ident.0);
1829                    let field_value = self.parse_expression(&field_inner.next().unwrap())?;
1830
1831                    fields.push(FieldExpression {
1832                        field_name,
1833                        expression: field_value,
1834                    });
1835                }
1836                Rule::rest_fields => {
1837                    has_rest = true;
1838                }
1839                _ => {
1840                    return Err(
1841                        self.create_error_pair(SpecificError::ExpectedFieldOrRest, &field_pair)
1842                    );
1843                }
1844            }
1845        }
1846
1847        Ok((fields, has_rest))
1848    }
1849
1850    fn parse_anonymous_struct_literal(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1851        let (fields, has_rest) = self.parse_anonymous_struct_literal_fields(pair)?;
1852        Ok(self.create_expr(
1853            ExpressionKind::AnonymousStructLiteral(fields, has_rest),
1854            pair,
1855        ))
1856    }
1857
1858    fn parse_anonymous_struct_literal_fields(
1859        &self,
1860        pair: &Pair<Rule>,
1861    ) -> Result<(Vec<FieldExpression>, bool), ParseError> {
1862        debug_assert_eq!(pair.as_rule(), Rule::anonymous_struct_literal);
1863        let mut inner = Self::convert_into_iterator(pair);
1864        let (field_expressions, detected_rest) =
1865            self.parse_struct_fields_expressions(&inner.next().unwrap())?;
1866
1867        Ok((field_expressions, detected_rest))
1868    }
1869
1870    fn parse_struct_literal_optional_fields(
1871        &self,
1872        pair: &Pair<Rule>,
1873    ) -> Result<(Vec<FieldExpression>, bool), ParseError> {
1874        debug_assert_eq!(pair.as_rule(), Rule::struct_literal_optional_field_list);
1875        let mut inner = Self::convert_into_iterator(pair);
1876        let (field_expressions, detected_rest) = if let Some(field_list) = inner.next() {
1877            self.parse_struct_fields_expressions(&field_list)?
1878        } else {
1879            (vec![], false)
1880        };
1881
1882        Ok((field_expressions, detected_rest))
1883    }
1884
1885    fn parse_struct_literal(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1886        let mut inner = Self::convert_into_iterator(pair);
1887
1888        let type_pair = inner.next().unwrap();
1889
1890        let struct_name = self.parse_qualified_type_identifier(&type_pair)?;
1891
1892        let anon_fields = inner.next().unwrap();
1893
1894        let (fields, has_rest) = self.parse_struct_literal_optional_fields(&anon_fields)?;
1895
1896        Ok(self.create_expr(
1897            ExpressionKind::NamedStructLiteral(struct_name, fields, has_rest),
1898            pair,
1899        ))
1900    }
1901
1902    fn parse_context_access(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1903        Ok(self.create_expr(ExpressionKind::ContextAccess, pair))
1904    }
1905
1906    fn parse_static_member_reference(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1907        let mut inner = pair.clone().into_inner();
1908
1909        let type_identifier = self.parse_qualified_type_identifier(&inner.next().unwrap())?;
1910        let member_name = self.expect_identifier_next(&mut inner)?;
1911
1912        Ok(self.create_expr(
1913            ExpressionKind::StaticMemberFunctionReference(type_identifier, member_name.0),
1914            pair,
1915        ))
1916    }
1917
1918    fn parse_constant_reference(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1919        debug_assert_eq!(pair.as_rule(), Rule::constant_reference);
1920        let mut inner_pairs = pair.clone().into_inner();
1921
1922        let mut first = inner_pairs.next().unwrap();
1923
1924        let module_path = if first.as_rule() == Rule::module_segments {
1925            let path = self.parse_module_segments(first.clone());
1926            first = inner_pairs.next().unwrap();
1927            Some(ModulePath(path))
1928        } else {
1929            None
1930        };
1931
1932        let identifier = QualifiedConstantIdentifier::new(self.to_node(&first), module_path);
1933
1934        Ok(self.create_expr(ExpressionKind::ConstantReference(identifier), pair))
1935    }
1936
1937    fn parse_term(&self, pair2: &Pair<Rule>) -> Result<Expression, ParseError> {
1938        debug_assert_eq!(pair2.as_rule(), Rule::term);
1939        let sub = &Self::right_alternative(pair2)?;
1940        match sub.as_rule() {
1941            Rule::qualified_identifier => self.parse_qualified_identifier_expression(sub),
1942            Rule::static_member_reference => self.parse_static_member_reference(sub),
1943
1944            Rule::enum_literal => {
1945                Ok(self.create_expr(ExpressionKind::Literal(self.parse_enum_literal(sub)?), sub))
1946            }
1947            Rule::constant_reference => self.parse_constant_reference(sub),
1948            Rule::parenthesized => {
1949                let inner = self.next_inner_pair(sub)?;
1950                self.parse_expression(&inner)
1951            }
1952            Rule::basic_literal => {
1953                let (literal, node) = self.parse_basic_literal(sub)?;
1954                Ok(self.create_expr_span(ExpressionKind::Literal(literal), node))
1955            }
1956            Rule::struct_literal => self.parse_struct_literal(sub),
1957            Rule::anonymous_struct_literal => self.parse_anonymous_struct_literal(sub),
1958            Rule::initializer_list => self.parse_initializer_list_literal(sub),
1959            Rule::initializer_pair_list => self.parse_initializer_pair_list(sub),
1960
1961            Rule::interpolated_string => self.parse_interpolated_string(sub),
1962
1963            Rule::lambda => self.parse_lambda(sub),
1964            Rule::context_access => self.parse_context_access(sub),
1965
1966            _ => {
1967                Err(self
1968                    .create_error_pair(SpecificError::UnknownTerm(Self::pair_to_rule(sub)), sub))
1969            }
1970        }
1971    }
1972
1973    fn parse_interpolated_string(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
1974        let mut parts = Vec::new();
1975
1976        for part_pair in Self::convert_into_iterator(pair) {
1977            match part_pair.as_rule() {
1978                Rule::text => {
1979                    parts.push(StringPart::Literal(
1980                        self.to_node(&part_pair),
1981                        self.unescape_string(&part_pair, false)?,
1982                    ));
1983                }
1984                Rule::interpolation => {
1985                    let inner = self.next_inner_pair(&part_pair.clone())?;
1986                    let expr = match inner.as_rule() {
1987                        Rule::expression => self.parse_expression(&inner)?,
1988                        _ => {
1989                            return Err(self.create_error_pair(
1990                                SpecificError::ExpectedExpressionInInterpolation,
1991                                &inner,
1992                            ));
1993                        }
1994                    };
1995
1996                    let format = match Self::convert_into_iterator(&part_pair).nth(1) {
1997                        Some(fmt) => {
1998                            if fmt.as_rule() == Rule::format_specifier {
1999                                Some(self.parse_format_specifier(&fmt)?)
2000                            } else {
2001                                None
2002                            }
2003                        }
2004                        _ => None,
2005                    };
2006
2007                    parts.push(StringPart::Interpolation(Box::new(expr), format));
2008                }
2009                _ => {
2010                    return Err(self.create_error_pair(
2011                        SpecificError::UnexpectedRuleInInterpolation,
2012                        &part_pair,
2013                    ));
2014                }
2015            }
2016        }
2017
2018        Ok(self.create_expr(ExpressionKind::InterpolatedString(parts), pair))
2019    }
2020
2021    fn parse_format_specifier(&self, pair: &Pair<Rule>) -> Result<FormatSpecifier, ParseError> {
2022        let node = self.to_node(pair);
2023        match pair.as_str() {
2024            "x" => Ok(FormatSpecifier::LowerHex(node)),
2025            "X" => Ok(FormatSpecifier::UpperHex(node)),
2026            "b" => Ok(FormatSpecifier::Binary(node)),
2027            "f" => Ok(FormatSpecifier::Float(node)),
2028            s if s.starts_with("..") => {
2029                let precision: u32 = s[2..s.len() - 1].parse().map_err(|_| {
2030                    self.create_error_pair(SpecificError::InvalidPrecisionValue, pair)
2031                })?;
2032                let typ = match s.chars().last().unwrap() {
2033                    'f' => PrecisionType::Float(node),
2034                    's' => PrecisionType::String(node),
2035                    _ => {
2036                        return Err(
2037                            self.create_error_pair(SpecificError::InvalidPrecisionType, pair)
2038                        )?;
2039                    }
2040                };
2041                Ok(FormatSpecifier::Precision(
2042                    precision,
2043                    self.to_node(pair),
2044                    typ,
2045                ))
2046            }
2047            _ => Err(self.create_error_pair(SpecificError::InvalidFormatSpecifier, pair)),
2048        }
2049    }
2050
2051    fn parse_enum_literal(&self, pair: &Pair<Rule>) -> Result<LiteralKind, ParseError> {
2052        let mut inner = Self::convert_into_iterator(pair);
2053
2054        // Parse enum type name
2055        let enum_type = self.parse_qualified_type_identifier(&inner.next().unwrap())?;
2056
2057        // Parse variant name
2058        let variant_pair = Self::expect_next(&mut inner, Rule::type_identifier)?;
2059        let variant_type_identifier = LocalTypeIdentifier::new(self.to_node(&variant_pair));
2060
2061        // Parse fields if they exist
2062        let enum_variant_literal = match inner.next() {
2063            Some(fields_pair) => match fields_pair.as_rule() {
2064                Rule::struct_literal_optional_field_list => {
2065                    let (field_expressions, detected_rest) =
2066                        self.parse_struct_literal_optional_fields(&fields_pair)?;
2067                    EnumVariantLiteral::Struct(
2068                        enum_type,
2069                        variant_type_identifier,
2070                        field_expressions,
2071                        detected_rest,
2072                    )
2073                }
2074                Rule::tuple_fields => {
2075                    let mut expressions = vec![];
2076                    for field in Self::convert_into_iterator(&fields_pair) {
2077                        let field_value = self.parse_expression(&field)?;
2078                        expressions.push(field_value);
2079                    }
2080                    EnumVariantLiteral::Tuple(enum_type, variant_type_identifier, expressions)
2081                }
2082                _ => {
2083                    error!("{:?}, {}", fields_pair.as_rule(), "strange");
2084                    return Err(
2085                        self.create_error_pair(SpecificError::UnexpectedVariantField, &fields_pair)
2086                    );
2087                }
2088            },
2089            _ => EnumVariantLiteral::Simple(enum_type, variant_type_identifier),
2090        };
2091
2092        Ok(LiteralKind::EnumVariant(enum_variant_literal))
2093    }
2094
2095    fn unescape_unicode(
2096        &self,
2097        chars: &mut Peekable<Chars>,
2098        octets: &mut Vec<u8>,
2099        pair: &Pair<Rule>,
2100    ) -> Result<(), ParseError> {
2101        match chars.next() {
2102            Some('(') => {
2103                let mut hex_digits = String::new();
2104
2105                while let Some(&c) = chars.peek() {
2106                    if c == ')' {
2107                        break;
2108                    }
2109                    if c.is_ascii_hexdigit() && hex_digits.len() < 6 {
2110                        hex_digits.push(c);
2111                        chars.next();
2112                    } else {
2113                        return Err(
2114                            self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2115                        );
2116                    }
2117                }
2118
2119                match chars.next() {
2120                    Some(')') => {
2121                        if hex_digits.is_empty() {
2122                            return Err(
2123                                self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2124                            );
2125                        }
2126
2127                        let code = u32::from_str_radix(&hex_digits, 16).map_err(|_| {
2128                            self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2129                        })?;
2130
2131                        if code > 0x0010_FFFF {
2132                            return Err(
2133                                self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2134                            );
2135                        }
2136
2137                        if let Some(c) = std::char::from_u32(code) {
2138                            let mut buf = [0; 4];
2139                            let encoded = c.encode_utf8(&mut buf);
2140                            octets.extend_from_slice(encoded.as_bytes());
2141                        } else {
2142                            return Err(
2143                                self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2144                            );
2145                        }
2146                    }
2147                    _ => {
2148                        return Err(
2149                            self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair)
2150                        );
2151                    }
2152                }
2153            }
2154            _ => {
2155                return Err(self.create_error_pair(SpecificError::InvalidUnicodeEscape, pair));
2156            }
2157        }
2158        Ok(())
2159    }
2160
2161    fn unescape_hex(
2162        &self,
2163        chars: &mut Peekable<Chars>,
2164        pair: &Pair<Rule>,
2165    ) -> Result<u8, ParseError> {
2166        let mut hex_digits = String::new();
2167        for _ in 0..2 {
2168            match chars.next() {
2169                Some(h) if h.is_ascii_hexdigit() => {
2170                    hex_digits.push(h);
2171                }
2172                _ => {
2173                    return Err(self.create_error_pair(SpecificError::InvalidHexEscape, pair));
2174                }
2175            }
2176        }
2177        u8::from_str_radix(&hex_digits, 16)
2178            .map_err(|_| self.create_error_pair(SpecificError::InvalidHexEscape, pair))
2179    }
2180
2181    fn unescape_string(&self, pair: &Pair<Rule>, is_literal: bool) -> Result<String, ParseError> {
2182        let mut octets = Vec::new();
2183
2184        let raw = if is_literal {
2185            &pair.as_str()[1..pair.as_str().len() - 1]
2186        } else {
2187            pair.as_str()
2188        };
2189
2190        let mut chars = raw.chars().peekable();
2191
2192        while let Some(ch) = chars.next() {
2193            if ch == '\\' {
2194                let Some(next_ch) = chars.next() else {
2195                    return Err(
2196                        self.create_error_pair(SpecificError::UnfinishedEscapeSequence, pair)
2197                    );
2198                };
2199                match next_ch {
2200                    'n' => {
2201                        octets.push(b'\n');
2202                    }
2203                    't' => {
2204                        octets.push(b'\t');
2205                    }
2206                    '\\' => {
2207                        octets.push(b'\\');
2208                    }
2209                    '"' => {
2210                        octets.push(b'"');
2211                    }
2212                    '\'' => {
2213                        octets.push(b'\'');
2214                    }
2215                    // Two hexadecimal digits that result in an `u8`
2216                    'x' => {
2217                        let code = self.unescape_hex(&mut chars, pair)?;
2218                        octets.push(code);
2219                    }
2220                    // Unicode character
2221                    'u' => {
2222                        self.unescape_unicode(&mut chars, &mut octets, pair)?;
2223                    }
2224
2225                    other => {
2226                        return Err(self.create_error_pair(
2227                            SpecificError::UnknownEscapeCharacter(other),
2228                            pair,
2229                        ));
2230                    }
2231                }
2232            } else {
2233                let mut buf = [0; 4];
2234                let utf8_bytes = ch.encode_utf8(&mut buf);
2235                octets.extend_from_slice(utf8_bytes.as_bytes());
2236            }
2237        }
2238
2239        let output = String::from_utf8(octets)
2240            .map_err(|_| self.create_error_pair(SpecificError::InvalidUtf8Sequence, pair))?;
2241
2242        Ok(output)
2243    }
2244
2245    fn parse_basic_literal(&self, pair: &Pair<Rule>) -> Result<(LiteralKind, Node), ParseError> {
2246        debug_assert_eq!(pair.as_rule(), Rule::basic_literal);
2247        let inner = self.next_inner_pair(pair)?;
2248        let literal_kind = match inner.as_rule() {
2249            Rule::int_lit => LiteralKind::Int,
2250            Rule::float_lit => LiteralKind::Float,
2251            Rule::string_lit => {
2252                let processed_string = self.unescape_string(&inner, true)?;
2253                LiteralKind::String(processed_string)
2254            }
2255            Rule::bool_lit => LiteralKind::Bool,
2256            Rule::none_lit => LiteralKind::None,
2257            Rule::tuple_lit => {
2258                let mut expressions = Vec::new();
2259                for expr_pair in Self::convert_into_iterator(&inner) {
2260                    expressions.push(self.parse_expression(&expr_pair)?);
2261                }
2262                LiteralKind::Tuple(expressions)
2263            }
2264            _ => return Err(self.create_error_pair(SpecificError::UnknownLiteral, &inner)),
2265        };
2266        Ok((literal_kind, self.to_node(&inner)))
2267    }
2268
2269    fn parse_initializer_list_literal(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2270        let mut elements = Vec::new();
2271        for element in Self::convert_into_iterator(pair) {
2272            elements.push(self.parse_expression(&element)?);
2273        }
2274        Ok(self.create_expr(
2275            ExpressionKind::Literal(LiteralKind::InternalInitializerList(elements)),
2276            pair,
2277        ))
2278    }
2279
2280    fn parse_initializer_pair_list(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2281        let mut entries = Vec::new();
2282
2283        for entry_pair in Self::convert_into_iterator(pair) {
2284            if entry_pair.as_rule() == Rule::map_entry {
2285                let mut entry_inner = Self::convert_into_iterator(&entry_pair);
2286                let key = self.parse_expression(&Self::next_pair(&mut entry_inner)?)?;
2287                let value = self.parse_expression(&Self::next_pair(&mut entry_inner)?)?;
2288                entries.push((key, value));
2289            }
2290        }
2291
2292        Ok(self.create_expr(
2293            ExpressionKind::Literal(LiteralKind::InternalInitializerPairList(entries)),
2294            pair,
2295        ))
2296    }
2297
2298    fn assert_end(pairs: &mut Pairs<Rule>) {
2299        assert!(pairs.next().is_none());
2300    }
2301
2302    fn parse_function_call_postfix(
2303        &self,
2304        pair: &Pair<Rule>,
2305    ) -> Result<(Option<Vec<GenericParameter>>, Vec<Expression>), ParseError> {
2306        debug_assert_eq!(pair.as_rule(), Rule::function_call_postfix);
2307        let mut inner = pair.clone().into_inner();
2308
2309        let mut generic_args: Option<Vec<GenericParameter>> = None;
2310        let args_pair: Pair<Rule>; // To hold the function_call_args pair
2311
2312        if let Some(first_inner) = inner.peek() {
2313            if first_inner.as_rule() == Rule::generic_arguments {
2314                let generic_args_pair = Self::next_pair(&mut inner)?;
2315                generic_args = Some(self.parse_generic_arguments(&generic_args_pair)?);
2316
2317                args_pair = Self::next_pair(&mut inner)?;
2318            } else {
2319                args_pair = Self::next_pair(&mut inner)?;
2320            }
2321        } else {
2322            panic!("problem in function_call_postfix");
2323        }
2324
2325        debug_assert_eq!(args_pair.as_rule(), Rule::function_call_args);
2326
2327        let regular_args = self.parse_function_call_arguments(&args_pair)?;
2328
2329        Self::assert_end(&mut inner);
2330
2331        Ok((generic_args, regular_args))
2332    }
2333
2334    fn parse_arg_expression(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2335        debug_assert_eq!(pair.as_rule(), Rule::arg_expression);
2336        let mut inner = pair.clone().into_inner();
2337        self.parse_logical(&inner.next().unwrap())
2338    }
2339
2340    fn parse_function_call_arguments(
2341        &self,
2342        pair: &Pair<Rule>,
2343    ) -> Result<Vec<Expression>, ParseError> {
2344        debug_assert_eq!(pair.as_rule(), Rule::function_call_args);
2345        let inner = pair.clone().into_inner();
2346        let mut args = Vec::new();
2347
2348        // Parse arguments
2349        for arg_pair in inner {
2350            let expr = self.parse_arg_expression(&arg_pair)?;
2351            args.push(expr);
2352        }
2353
2354        Ok(args)
2355    }
2356
2357    #[allow(clippy::too_many_lines)]
2358    fn parse_type(&self, pair: Pair<Rule>) -> Result<Type, ParseError> {
2359        match pair.as_rule() {
2360            Rule::type_name => {
2361                let mut inner = pair.clone().into_inner();
2362                let base_type = if let Some(inner_pair) = inner.next() {
2363                    self.parse_type(inner_pair)?
2364                } else {
2365                    panic!("shouldn't get to here")
2366                };
2367
2368                let optional_marker = inner
2369                    .find(|p| p.as_rule() == Rule::optional_marker)
2370                    .map(|marker_pair| self.to_node(&marker_pair));
2371                if let Some(found_optional_marker) = optional_marker {
2372                    Ok(Type::Optional(Box::new(base_type), found_optional_marker))
2373                } else {
2374                    Ok(base_type)
2375                }
2376            }
2377
2378            Rule::base_type => {
2379                let mut inner = pair.into_inner();
2380                let first = inner.next().unwrap();
2381                let base_type = self.parse_type(first)?;
2382
2383                Ok(base_type)
2384            }
2385            Rule::function_type => {
2386                let mut function_inner = pair.into_inner();
2387
2388                // Parse parameter types
2389                let param_types = if let Some(params) = function_inner
2390                    .next()
2391                    .filter(|p| p.as_rule() == Rule::function_params)
2392                {
2393                    params
2394                        .into_inner()
2395                        .map(|param| {
2396                            Ok(TypeForParameter {
2397                                ast_type: self.parse_type(param).unwrap(),
2398                                is_mutable: false,
2399                            })
2400                        })
2401                        .collect::<Result<Vec<_>, ParseError>>()?
2402                } else {
2403                    Vec::new()
2404                };
2405
2406                // Parse return type
2407                let return_type = self.parse_type(function_inner.next().unwrap())?;
2408
2409                Ok(Type::Function(param_types, Box::new(return_type)))
2410            }
2411
2412            Rule::qualified_type_identifier => {
2413                let qualified_id = self.parse_qualified_type_identifier(&pair)?;
2414                Ok(Type::Named(qualified_id))
2415            }
2416            Rule::tuple_type => {
2417                let elements = self.parse_tuple_type_elements(&pair)?;
2418                Ok(Type::Tuple(elements))
2419            }
2420            Rule::fixed_capacity_array_type => self.parse_fixed_capacity_array_type(&pair),
2421            Rule::slice_view_type => self.parse_slice_view_type(&pair),
2422
2423            Rule::fixed_capacity_map_type => self.parse_fixed_capacity_map_type(&pair),
2424            Rule::dynamic_map_type => self.parse_dynamic_map_type(&pair),
2425
2426            Rule::struct_type => {
2427                let element_type = self.parse_struct_type(&pair)?;
2428                Ok(Type::AnonymousStruct(element_type))
2429            }
2430
2431            Rule::unit_type => Ok(Type::Unit),
2432
2433            _ => Err(self.create_error_pair(
2434                SpecificError::UnexpectedTypeRule(format!("{:?}", pair.as_rule())),
2435                &pair,
2436            )),
2437        }
2438    }
2439
2440    fn parse_fixed_capacity_map_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
2441        let mut inner = pair.clone().into_inner();
2442        let key_type = self.parse_type(Self::next_pair(&mut inner)?)?;
2443        let value_type = self.parse_type(Self::next_pair(&mut inner)?)?;
2444        let size_pair = inner.next().unwrap();
2445        let size_node = self.to_node(&size_pair);
2446
2447        Ok(Type::FixedCapacityMap(
2448            Box::new(key_type),
2449            Box::new(value_type),
2450            size_node,
2451        ))
2452    }
2453
2454    fn parse_dynamic_map_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
2455        let mut inner = pair.clone().into_inner();
2456        let key_type = self.parse_type(Self::next_pair(&mut inner)?)?;
2457        let value_type = self.parse_type(Self::next_pair(&mut inner)?)?;
2458
2459        Ok(Type::DynamicLengthMap(
2460            Box::new(key_type),
2461            Box::new(value_type),
2462        ))
2463    }
2464
2465    fn parse_fixed_capacity_array_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
2466        let mut inner = pair.clone().into_inner();
2467        let element_type = self.parse_type(inner.next().unwrap())?;
2468        let size_pair = inner.next().unwrap();
2469        let size_node = self.to_node(&size_pair);
2470        Ok(Type::FixedCapacityArray(Box::new(element_type), size_node))
2471    }
2472
2473    fn parse_slice_view_type(&self, pair: &Pair<Rule>) -> Result<Type, ParseError> {
2474        let mut inner = pair.clone().into_inner();
2475        let element_type = self.parse_type(inner.next().unwrap())?;
2476        Ok(Type::Slice(Box::new(element_type)))
2477    }
2478
2479    #[allow(unused)] // TODO: Use this again
2480    fn parse_local_type_identifier(
2481        &self,
2482        pair: &Pair<Rule>,
2483    ) -> Result<LocalTypeIdentifier, ParseError> {
2484        if pair.as_rule() != Rule::type_identifier {
2485            return Err(self.create_error_pair(
2486                SpecificError::ExpectedTypeIdentifier(format!("{:?}", pair.as_rule())),
2487                pair,
2488            ));
2489        }
2490        Ok(LocalTypeIdentifier::new(self.to_node(pair)))
2491    }
2492
2493    fn parse_enum_def(&self, pair: &Pair<Rule>) -> Result<DefinitionKind, ParseError> {
2494        let mut inner = Self::convert_into_iterator(pair);
2495
2496        let name_with_optional_type_params =
2497            self.parse_local_type_identifier_with_optional_type_variables(&inner.next().unwrap())?;
2498
2499        let mut variants = Vec::new();
2500
2501        if let Some(variants_pair) = inner.next() {
2502            if variants_pair.as_rule() == Rule::enum_variants {
2503                for variant_pair in Self::convert_into_iterator(&variants_pair) {
2504                    if variant_pair.as_rule() == Rule::enum_variant {
2505                        let variant =
2506                            self.parse_enum_variant(&self.next_inner_pair(&variant_pair)?)?;
2507
2508                        variants.push(variant);
2509                    }
2510                }
2511            }
2512        }
2513
2514        Ok(DefinitionKind::EnumDef(
2515            name_with_optional_type_params,
2516            variants,
2517        ))
2518    }
2519
2520    fn parse_enum_variant(&self, pair: &Pair<Rule>) -> Result<EnumVariantType, ParseError> {
2521        let enum_variant = match pair.as_rule() {
2522            Rule::simple_variant => EnumVariantType::Simple(self.to_node(pair)),
2523            Rule::direct_variant => {
2524                let mut inner = Self::convert_into_iterator(pair);
2525                let name = self.expect_local_type_identifier_next(&mut inner)?;
2526                let type_name = self.parse_type(inner.next().unwrap())?;
2527                EnumVariantType::Direct(name.0, type_name)
2528            }
2529            Rule::tuple_variant => {
2530                let mut inner = Self::convert_into_iterator(pair);
2531                let name = self.expect_local_type_identifier_next(&mut inner)?;
2532
2533                let tuple_elements = self.parse_tuple_type_elements(&inner.next().unwrap())?;
2534
2535                // Convert single-element tuples to direct variants for consistency
2536                if tuple_elements.len() == 1 {
2537                    EnumVariantType::Direct(name.0, tuple_elements.into_iter().next().unwrap())
2538                } else {
2539                    EnumVariantType::Tuple(name.0, tuple_elements)
2540                }
2541            }
2542            Rule::struct_variant => {
2543                let mut inner = Self::convert_into_iterator(pair);
2544                let name = self.expect_local_type_identifier_next(&mut inner)?;
2545
2546                let struct_type = self.parse_struct_type(&inner.next().unwrap())?;
2547                EnumVariantType::Struct(name.0, struct_type)
2548            }
2549            _ => {
2550                return Err(self.create_error_pair(
2551                    SpecificError::UnknownEnumVariant(Self::pair_to_rule(pair)),
2552                    pair,
2553                ));
2554            }
2555        };
2556
2557        Ok(enum_variant)
2558    }
2559
2560    fn parse_match_expr(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2561        let mut inner = Self::convert_into_iterator(pair);
2562        let value = self.parse_arg_expression(&Self::next_pair(&mut inner)?)?;
2563        let arms_pair = Self::next_pair(&mut inner)?;
2564        let mut arms = Vec::new();
2565
2566        for arm_pair in Self::convert_into_iterator(&arms_pair) {
2567            if arm_pair.as_rule() == Rule::match_arm {
2568                let mut arm_inner = Self::convert_into_iterator(&arm_pair);
2569                let pattern = self.parse_match_pattern(&Self::next_pair(&mut arm_inner)?)?;
2570
2571                // Handle both block and direct expression cases
2572                let expr = match Self::next_pair(&mut arm_inner)? {
2573                    block if block.as_rule() == Rule::block => self.parse_block(&block)?,
2574                    expr => self.parse_expression(&expr)?,
2575                };
2576
2577                arms.push(MatchArm {
2578                    pattern,
2579                    expression: expr,
2580                });
2581            }
2582        }
2583
2584        if arms.is_empty() {
2585            return Err(self.create_error_pair(SpecificError::MustHaveAtLeastOneArm, pair));
2586        }
2587
2588        Ok(self.create_expr(ExpressionKind::Match(Box::new(value), arms), pair))
2589    }
2590
2591    fn parse_match_pattern(&self, pair: &Pair<Rule>) -> Result<Pattern, ParseError> {
2592        let mut inner = Self::convert_into_iterator(pair);
2593        let pattern_inside = inner.next().expect("should have inner");
2594        match pattern_inside.as_rule() {
2595            Rule::normal_pattern => {
2596                let (concrete_pattern, pattern_node) =
2597                    self.parse_normal_match_pattern(&pattern_inside)?;
2598                let inner_pairs: Vec<_> = pattern_inside.clone().into_inner().collect();
2599                let has_guard = inner_pairs
2600                    .get(1)
2601                    .is_some_and(|p| p.as_rule() == Rule::guard_clause);
2602
2603                let guard_clause = if has_guard {
2604                    Some(self.parse_guard_clause(&inner_pairs[1])?)
2605                } else {
2606                    None
2607                };
2608                Ok(Pattern::ConcretePattern(
2609                    pattern_node,
2610                    concrete_pattern,
2611                    guard_clause,
2612                ))
2613            }
2614            Rule::wildcard_pattern => Ok(Pattern::Wildcard(self.to_node(pair))),
2615            _ => Err(self.create_error_pair(SpecificError::MustHaveAtLeastOneArm, pair)),
2616        }
2617    }
2618
2619    fn parse_guard_clause(&self, pair: &Pair<Rule>) -> Result<GuardClause, ParseError> {
2620        let inner = Self::right_alternative(pair)?;
2621        let clause = match inner.as_rule() {
2622            Rule::wildcard_pattern => GuardClause::Wildcard(Self::node_ex(pair)),
2623            Rule::expression => {
2624                let mut iterator = inner.into_inner();
2625                let result = self.parse_expression(&Self::next_pair(&mut iterator)?)?;
2626                GuardClause::Expression(result)
2627            }
2628            _ => {
2629                return Err(Self::to_err(
2630                    SpecificError::UnknownExpr("guard_clause".to_string()),
2631                    pair,
2632                ))?;
2633            }
2634        };
2635
2636        Ok(clause)
2637    }
2638
2639    fn parse_guard_expr_list(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2640        let mut guard_exprs = Vec::new();
2641
2642        for expr_pair in Self::convert_into_iterator(pair) {
2643            match expr_pair.as_rule() {
2644                Rule::guard_item => {
2645                    let mut guard_inner = Self::convert_into_iterator(&expr_pair);
2646                    let guard_clause = Self::next_pair(&mut guard_inner)?;
2647                    let condition = self.parse_guard_clause(&guard_clause)?;
2648                    let result = self.parse_expression(&Self::next_pair(&mut guard_inner)?)?;
2649                    guard_exprs.push(GuardExpr {
2650                        clause: condition,
2651                        result,
2652                    });
2653                }
2654
2655                _ => {
2656                    panic!("Unexpected rule: {:?}", expr_pair.as_rule());
2657                }
2658            }
2659        }
2660
2661        Ok(self.create_expr(ExpressionKind::Guard(guard_exprs), pair))
2662    }
2663
2664    fn parse_enum_pattern(
2665        &self,
2666        pattern_type: &Pair<Rule>,
2667    ) -> Result<(ConcretePattern, Node), ParseError> {
2668        let mut inner = pattern_type.clone().into_inner(); // Clone first, then use into_inner()
2669        let variant = self.expect_local_type_identifier_next(&mut inner)?;
2670
2671        // Check for the optional destructuring_pattern
2672        let destructuring = if let Some(destructuring_node) = inner.next() {
2673            self.parse_destructuring_pattern(&destructuring_node)?
2674        } else {
2675            // No payload, it's a unit-like enum like `Red`, `Green`, `Blue`
2676            DestructuringPattern::Unit
2677        };
2678
2679        Ok((
2680            ConcretePattern::EnumPattern(variant.0, destructuring),
2681            self.to_node(pattern_type),
2682        ))
2683    }
2684
2685    fn parse_destructuring_pattern(
2686        &self,
2687        pair: &Pair<Rule>,
2688    ) -> Result<DestructuringPattern, ParseError> {
2689        let mut inner = Self::convert_into_iterator(pair);
2690        let destructuring_type = inner.next().expect("should have inner");
2691
2692        match destructuring_type.as_rule() {
2693            Rule::struct_destruct => {
2694                let fields = self.parse_struct_destructuring_fields(&destructuring_type)?;
2695                Ok(DestructuringPattern::Struct { fields })
2696            }
2697            Rule::tuple_destruct => {
2698                let elements = self.parse_tuple_destructuring_elements(&destructuring_type)?;
2699                // Never create tuples with one element - convert to direct destructuring
2700                if elements.len() == 1 {
2701                    match &elements[0] {
2702                        PatternVariableOrWildcard::Variable(var) => {
2703                            Ok(DestructuringPattern::None {
2704                                variable: var.clone(),
2705                            })
2706                        }
2707                        PatternVariableOrWildcard::Wildcard(_) => {
2708                            // For wildcards, we still need tuple destructuring
2709                            Ok(DestructuringPattern::Tuple { elements })
2710                        }
2711                    }
2712                } else {
2713                    Ok(DestructuringPattern::Tuple { elements })
2714                }
2715            }
2716            Rule::maybe_mut_identifier => {
2717                let variable = self.parse_maybe_mut_identifier(&destructuring_type)?;
2718                Ok(DestructuringPattern::None { variable })
2719            }
2720            _ => Err(self.create_error_pair(SpecificError::UnknownMatchType, &destructuring_type)),
2721        }
2722    }
2723
2724    fn parse_struct_destructuring_fields(
2725        &self,
2726        pair: &Pair<Rule>,
2727    ) -> Result<Vec<Variable>, ParseError> {
2728        let mut fields = Vec::new();
2729        for field_pair in Self::convert_into_iterator(pair) {
2730            match field_pair.as_rule() {
2731                Rule::pattern_variable => {
2732                    let mut inner = Self::convert_into_iterator(&field_pair);
2733                    let variable_pair = inner.next().expect("should have inner");
2734                    let variable = self.parse_maybe_mut_identifier(&variable_pair)?;
2735                    fields.push(variable);
2736                }
2737                _ => {} // Skip other rules like commas
2738            }
2739        }
2740        Ok(fields)
2741    }
2742
2743    fn parse_tuple_destructuring_elements(
2744        &self,
2745        pair: &Pair<Rule>,
2746    ) -> Result<Vec<PatternVariableOrWildcard>, ParseError> {
2747        let mut elements = Vec::new();
2748        for element_pair in Self::convert_into_iterator(pair) {
2749            match element_pair.as_rule() {
2750                Rule::pattern_variable_or_wildcard => {
2751                    let mut inner = Self::convert_into_iterator(&element_pair);
2752                    let element_inner = inner.next().expect("should have inner");
2753
2754                    match element_inner.as_rule() {
2755                        Rule::maybe_mut_identifier => {
2756                            let variable = self.parse_maybe_mut_identifier(&element_inner)?;
2757                            elements.push(PatternVariableOrWildcard::Variable(variable));
2758                        }
2759                        _ => {
2760                            // Handle wildcard "_"
2761                            if element_inner.as_str() == "_" {
2762                                elements.push(PatternVariableOrWildcard::Wildcard(
2763                                    self.to_node(&element_inner),
2764                                ));
2765                            } else {
2766                                return Err(self.create_error_pair(
2767                                    SpecificError::UnknownMatchType,
2768                                    &element_inner,
2769                                ));
2770                            }
2771                        }
2772                    }
2773                }
2774                _ => {} // Skip other rules like commas
2775            }
2776        }
2777        Ok(elements)
2778    }
2779
2780    fn parse_normal_match_pattern(
2781        &self,
2782        pair: &Pair<Rule>,
2783    ) -> Result<(ConcretePattern, Node), ParseError> {
2784        let mut inner = Self::convert_into_iterator(pair);
2785        let pattern = inner.next().expect("should have inner");
2786
2787        match pattern.as_rule() {
2788            Rule::pattern => {
2789                let mut pattern_inner = Self::convert_into_iterator(&pattern);
2790                let pattern_type = pattern_inner.next().expect("should have inner");
2791
2792                match pattern_type.as_rule() {
2793                    Rule::enum_pattern => self.parse_enum_pattern(&pattern_type),
2794                    Rule::basic_literal => {
2795                        let (literal, node) = self.parse_basic_literal(&pattern_type)?;
2796                        Ok((ConcretePattern::Literal(literal), node))
2797                    }
2798                    _ => {
2799                        Err(self.create_error_pair(SpecificError::UnknownMatchType, &pattern_type))
2800                    }
2801                }
2802            }
2803            _ => Err(self.create_error_pair(SpecificError::UnknownMatchType, &pattern)),
2804        }
2805    }
2806
2807    fn to_node(&self, pair: &Pair<Rule>) -> Node {
2808        let pair_span = pair.as_span();
2809        let span = SpanWithoutFileId {
2810            offset: pair_span.start() as u32,
2811            length: (pair_span.end() - pair_span.start()) as u16,
2812        };
2813
2814        Node { span }
2815    }
2816
2817    fn node_ex(pair: &Pair<Rule>) -> Node {
2818        let pair_span = pair.as_span();
2819        let span = SpanWithoutFileId {
2820            offset: pair_span.start() as u32,
2821            length: (pair_span.end() - pair_span.start()) as u16,
2822        };
2823
2824        Node { span }
2825    }
2826
2827    fn to_span(&self, pest_span: pest::Span) -> SpanWithoutFileId {
2828        SpanWithoutFileId {
2829            offset: pest_span.start() as u32,
2830            length: (pest_span.end() - pest_span.start()) as u16,
2831        }
2832    }
2833
2834    fn span(pest_span: pest::Span) -> SpanWithoutFileId {
2835        SpanWithoutFileId {
2836            offset: pest_span.start() as u32,
2837            length: (pest_span.end() - pest_span.start()) as u16,
2838        }
2839    }
2840
2841    fn create_expr(&self, kind: ExpressionKind, pair: &Pair<Rule>) -> Expression {
2842        self.create_expr_span(kind, self.to_node(pair))
2843    }
2844
2845    const fn create_expr_span(&self, kind: ExpressionKind, node: Node) -> Expression {
2846        //info!(?kind, ?node, "create_expr()");
2847        Expression { kind, node }
2848    }
2849
2850    fn parse_multiplication(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2851        let mut inner = pair.clone().into_inner();
2852        let mut expr = self.parse_prefix(&inner.next().unwrap())?;
2853        while let Some(op) = inner.next() {
2854            // Expect the next token to be a multiplication operator, then the next operand.
2855            let operator = self.parse_binary_operator(&op)?; // op_mul, op_div, or op_mod
2856            let right = self.parse_prefix(&inner.next().unwrap())?;
2857            expr = self.create_expr(
2858                ExpressionKind::BinaryOp(Box::new(expr), operator, Box::new(right)),
2859                pair,
2860            );
2861        }
2862        Ok(expr)
2863    }
2864
2865    fn parse_addition(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2866        let mut inner = pair.clone().into_inner();
2867        let mut expr = self.parse_multiplication(&inner.next().unwrap())?;
2868        while let Some(op) = inner.next() {
2869            let operator = self.parse_binary_operator(&op)?; // op_add or op_sub
2870            let right = self.parse_multiplication(&inner.next().unwrap())?;
2871            expr = self.create_expr(
2872                ExpressionKind::BinaryOp(Box::new(expr), operator, Box::new(right)),
2873                pair,
2874            );
2875        }
2876        Ok(expr)
2877    }
2878
2879    fn parse_comparison(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2880        let mut inner = pair.clone().into_inner();
2881        let mut expr = self.parse_addition(&inner.next().unwrap())?;
2882        while let Some(op) = inner.next() {
2883            let operator = self.parse_binary_operator(&op)?; // e.g. op_lt, op_eq, etc.
2884            let right = self.parse_addition(&inner.next().unwrap())?;
2885            expr = self.create_expr(
2886                ExpressionKind::BinaryOp(Box::new(expr), operator, Box::new(right)),
2887                pair,
2888            );
2889        }
2890        Ok(expr)
2891    }
2892
2893    fn parse_range(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2894        let mut inner = pair.clone().into_inner();
2895        let left = self.parse_comparison(&inner.next().unwrap())?;
2896        if let Some(op) = inner.next() {
2897            let right = self.parse_comparison(&inner.next().unwrap())?;
2898            match op.as_rule() {
2899                Rule::exclusive_range_op => {
2900                    return Ok(self.create_expr(
2901                        ExpressionKind::Range(
2902                            Box::new(left),
2903                            Box::new(right),
2904                            RangeMode::Exclusive,
2905                        ),
2906                        pair,
2907                    ));
2908                }
2909                Rule::inclusive_range_op => {
2910                    return Ok(self.create_expr(
2911                        ExpressionKind::Range(
2912                            Box::new(left),
2913                            Box::new(right),
2914                            RangeMode::Inclusive,
2915                        ),
2916                        pair,
2917                    ));
2918                }
2919                _ => {}
2920            }
2921            let operator = self.parse_binary_operator(&op)?; // inclusive_range_op or exclusive_range_op
2922            Ok(self.create_expr(
2923                ExpressionKind::BinaryOp(Box::new(left), operator, Box::new(right)),
2924                pair,
2925            ))
2926        } else {
2927            Ok(left)
2928        }
2929    }
2930
2931    fn parse_logical(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2932        debug_assert_eq!(pair.as_rule(), Rule::logical);
2933        let mut inner = pair.clone().into_inner();
2934        let mut expr = self.parse_range(&inner.next().unwrap())?;
2935        while let Some(op) = inner.next() {
2936            let operator = self.parse_binary_operator(&op)?; // op_and or op_or
2937            let right = self.parse_range(&inner.next().unwrap())?;
2938            expr = self.create_expr(
2939                ExpressionKind::BinaryOp(Box::new(expr), operator, Box::new(right)),
2940                pair,
2941            );
2942        }
2943        Ok(expr)
2944    }
2945
2946    fn parse_lambda(&self, pair: &Pair<Rule>) -> Result<Expression, ParseError> {
2947        debug_assert_eq!(pair.as_rule(), Rule::lambda);
2948        let mut inner = pair.clone().into_inner();
2949        let variable_list_pair = inner.next().unwrap();
2950        let variable_list = self.parse_optional_variable_list(&variable_list_pair)?;
2951        let expression_pair = inner.next().unwrap();
2952        let expression = self.parse_expression(&expression_pair)?;
2953
2954        Ok(self.create_expr(
2955            ExpressionKind::Lambda(variable_list, Box::new(expression)),
2956            pair,
2957        ))
2958    }
2959
2960    pub fn parse_attribute(&self, pair: &Pair<Rule>) -> Result<Attribute, ParseError> {
2961        let inner = pair.clone().into_inner().next().unwrap();
2962        let is_inner = match inner.as_rule() {
2963            Rule::outer_attribute => false,
2964            Rule::inner_attribute => true,
2965            _ => panic!("must be attribute"),
2966        };
2967        let meta_item = inner.into_inner().next().unwrap();
2968        let (path, args) = self.parse_meta_item(&meta_item)?;
2969
2970        Ok(Attribute {
2971            is_inner,
2972            path,
2973            args,
2974            node: self.to_node(pair),
2975        })
2976    }
2977
2978    fn parse_any_meta_item_to_arg(&self, pair: &Pair<Rule>) -> Result<AttributeArg, ParseError> {
2979        debug_assert_eq!(pair.as_rule(), Rule::meta_item);
2980        let matched_alternative = pair.clone().into_inner().next().unwrap();
2981
2982        match matched_alternative.as_rule() {
2983            Rule::meta_path => {
2984                let path_pair = matched_alternative.clone().into_inner().next().unwrap();
2985                let path = self.parse_qualified_identifier(&path_pair)?;
2986                Ok(AttributeArg::Path(path))
2987            }
2988            Rule::meta_key_value => {
2989                let mut inner_items = matched_alternative.clone().into_inner();
2990                let key_pair = inner_items.next().unwrap();
2991                let value_pair = inner_items.next().unwrap();
2992                let key = self.parse_qualified_identifier(&key_pair)?;
2993                let value_arg = self.parse_meta_value(&value_pair)?;
2994                Ok(AttributeArg::Function(key, vec![value_arg]))
2995            }
2996            Rule::meta_list => {
2997                let mut inner_items = matched_alternative.clone().into_inner();
2998                let path_pair = inner_items.next().unwrap();
2999                let path = self.parse_qualified_identifier(&path_pair)?;
3000                let args = if let Some(list_pair) = inner_items.next() {
3001                    self.parse_meta_item_list(&list_pair)?
3002                } else {
3003                    vec![]
3004                };
3005                Ok(AttributeArg::Function(path, args))
3006            }
3007            _ => panic!("unexpected rule inside meta_item"),
3008        }
3009    }
3010
3011    fn parse_meta_item(
3012        &self,
3013        pair: &Pair<Rule>,
3014    ) -> Result<(QualifiedIdentifier, Vec<AttributeArg>), ParseError> {
3015        debug_assert_eq!(pair.as_rule(), Rule::meta_item);
3016        let arg = self.parse_any_meta_item_to_arg(pair)?;
3017
3018        match arg {
3019            AttributeArg::Path(path) => Ok((path, vec![])),
3020            AttributeArg::Function(path, args) => Ok((path, args)),
3021            AttributeArg::Literal(_) => panic!(),
3022        }
3023    }
3024
3025    fn parse_meta_item_list(&self, pair: &Pair<Rule>) -> Result<Vec<AttributeArg>, ParseError> {
3026        let mut args = Vec::new();
3027        for item in pair.clone().into_inner() {
3028            args.push(self.parse_meta_item_arg(&item)?);
3029        }
3030        Ok(args)
3031    }
3032
3033    fn parse_meta_item_arg(&self, pair: &Pair<Rule>) -> Result<AttributeArg, ParseError> {
3034        self.parse_any_meta_item_to_arg(pair)
3035    }
3036
3037    fn parse_meta_value(&self, pair: &Pair<Rule>) -> Result<AttributeArg, ParseError> {
3038        let matched_alternative = self.next_inner_pair(pair)?;
3039        match matched_alternative.as_rule() {
3040            Rule::basic_literal => {
3041                let (kind, node) = self.parse_basic_literal(&matched_alternative)?;
3042                Ok(AttributeArg::Literal(match kind {
3043                    LiteralKind::Int => AttributeValue::Literal(node, AttributeLiteralKind::Int),
3044                    LiteralKind::String(s) => {
3045                        AttributeValue::Literal(node, AttributeLiteralKind::String(s))
3046                    }
3047                    LiteralKind::Bool => AttributeValue::Literal(node, AttributeLiteralKind::Bool),
3048                    _ => panic!("not supported"),
3049                }))
3050            }
3051            Rule::meta_path => {
3052                let path = self.parse_qualified_identifier(
3053                    &matched_alternative.clone().into_inner().next().unwrap(),
3054                )?;
3055                Ok(AttributeArg::Path(path))
3056            }
3057            Rule::meta_list => {
3058                let mut inner = matched_alternative.clone().into_inner();
3059                let path = self.parse_qualified_identifier(&inner.next().unwrap())?;
3060                let args = if let Some(list) = inner.next() {
3061                    self.parse_meta_item_list(&list)?
3062                } else {
3063                    vec![]
3064                };
3065                Ok(AttributeArg::Function(path, args))
3066            }
3067            _ => panic!("unexpected meta_value {:?}", pair.as_rule()),
3068        }
3069    }
3070}