1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
use euclid::default::Box2D;
use g_code::emit::{
    Field, Token, Value, ABSOLUTE_DISTANCE_MODE_FIELD, RELATIVE_DISTANCE_MODE_FIELD,
};
use lyon_geom::{point, vector, Point};

type F64Point = Point<f64>;

/// Moves all the commands so that they are beyond a specified position
pub fn set_origin(tokens: &mut [Token<'_>], origin: [f64; 2]) {
    let offset =
        -get_bounding_box(tokens.iter()).min.to_vector() + F64Point::from(origin).to_vector();

    let mut is_relative = false;
    let mut current_position = point(0f64, 0f64);
    let mut should_skip = false;
    for token in tokens {
        match token {
            abs if *abs == Token::Field(ABSOLUTE_DISTANCE_MODE_FIELD) => is_relative = false,
            rel if *rel == Token::Field(RELATIVE_DISTANCE_MODE_FIELD) => is_relative = true,
            // Don't edit M codes for relativity
            Token::Field(Field { letters, .. }) if *letters == "M" => should_skip = true,
            Token::Field(Field { letters, .. }) if *letters == "G" => should_skip = false,
            Token::Field(Field { letters, value }) if *letters == "X" && !should_skip => {
                if let Some(float) = value.as_f64() {
                    if is_relative {
                        current_position += vector(float, 0.)
                    } else {
                        current_position = point(float, 0.);
                    }
                    *value = Value::Float(current_position.x + offset.x)
                }
            }
            Token::Field(Field { letters, value }) if *letters == "Y" && !should_skip => {
                if let Some(float) = value.as_f64() {
                    if is_relative {
                        current_position += vector(0., float)
                    } else {
                        current_position = point(0., float);
                    }
                    *value = Value::Float(current_position.y + offset.y)
                }
            }
            _ => {}
        }
    }
}

fn get_bounding_box<'a, I: Iterator<Item = &'a Token<'a>>>(tokens: I) -> Box2D<f64> {
    let (mut minimum, mut maximum) = (point(0f64, 0f64), point(0f64, 0f64));
    let mut is_relative = false;
    let mut should_skip = false;
    let mut current_position = point(0f64, 0f64);
    for token in tokens {
        match token {
            abs if *abs == Token::Field(ABSOLUTE_DISTANCE_MODE_FIELD) => is_relative = false,
            rel if *rel == Token::Field(RELATIVE_DISTANCE_MODE_FIELD) => is_relative = true,
            // Don't check M codes for relativity
            Token::Field(Field { letters, .. }) if *letters == "M" => should_skip = true,
            Token::Field(Field { letters, .. }) if *letters == "G" => should_skip = false,
            Token::Field(Field { letters, value }) if *letters == "X" && !should_skip => {
                if let Some(value) = value.as_f64() {
                    if is_relative {
                        current_position += vector(value, 0.)
                    } else {
                        current_position = point(value, 0.);
                    }
                    minimum = minimum.min(current_position);
                    maximum = maximum.max(current_position);
                }
            }
            Token::Field(Field { letters, value }) if *letters == "Y" && !should_skip => {
                if let Some(value) = value.as_f64() {
                    if is_relative {
                        current_position += vector(0., value)
                    } else {
                        current_position = point(0., value);
                    }
                    minimum = minimum.min(current_position);
                    maximum = maximum.max(current_position);
                }
            }
            _ => {}
        }
    }
    Box2D::new(minimum, maximum)
}