1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Contains the [`MachineCmd`] as entry point for the node
//! and the core benchmarking logic.
pub mod hardware;
use std::{boxed::Box, path::Path};
use clap::Parser;
use comfy_table::{Row, Table};
use log::{error, info, warn};
use sc_cli::Result;
use sc_sysinfo::{
benchmark_cpu, benchmark_disk_random_writes, benchmark_disk_sequential_writes,
benchmark_memory, benchmark_sr25519_verify, ExecutionLimit, HwBench, Metric, Requirement,
Requirements, Throughput,
};
// use crate::shared::check_build_profile;
pub use hardware::SUBSTRATE_REFERENCE_HARDWARE;
/// Command to benchmark the hardware.
///
/// Runs multiple benchmarks and prints their output to console.
/// Can be used to gauge if the hardware is fast enough to keep up with a chain's requirements.
/// This command must be integrated by the client since the client can set compiler flags
/// which influence the results.
///
/// You can use the `--base-path` flag to set a location for the disk benchmarks.
#[derive(Debug, Parser)]
pub struct MachineCmd {
/// Path to database.
#[arg(long, short = 'd')]
pub base_path: Option<String>,
/// Run full benchmarks instead of quick hardware check.
#[arg(long, short = 'f')]
pub full: bool,
/// Do not return an error if any check fails.
///
/// Should only be used for debugging.
#[arg(long)]
pub allow_fail: bool,
/// Set a fault tolerance for passing a requirement.
///
/// 10% means that the test would pass even when only 90% score was archived.
/// Can be used to mitigate outliers of the benchmarks.
#[arg(long, default_value_t = 10.0, value_name = "PERCENT")]
pub tolerance: f64,
/// Time limit for the verification benchmark.
#[arg(long, default_value_t = 5.0, value_name = "SECONDS")]
pub verify_duration: f32,
/// Time limit for the hash function benchmark.
#[arg(long, default_value_t = 5.0, value_name = "SECONDS")]
pub hash_duration: f32,
/// Time limit for the memory benchmark.
#[arg(long, default_value_t = 5.0, value_name = "SECONDS")]
pub memory_duration: f32,
/// Time limit for each disk benchmark.
#[arg(long, default_value_t = 5.0, value_name = "SECONDS")]
pub disk_duration: f32,
}
/// Helper for the result of a concrete benchmark.
#[derive(Debug)]
pub struct BenchResult {
/// Did the hardware pass the benchmark?
passed: bool,
/// The absolute score that was archived.
score: Throughput,
/// The score relative to the minimal required score.
///
/// Is in range [0, 1].
rel_score: f64,
}
/// Errors that can be returned by the this command.
#[derive(Debug, thiserror::Error)]
#[allow(missing_docs)]
pub enum Error {
#[error("One of the benchmarks had a score that was lower than its requirement")]
UnmetRequirement,
// #[error("The build profile is unfit for benchmarking: {0}")]
// BadBuildProfile(String),
#[error("Benchmark results are off by at least factor 100")]
BadResults,
}
impl MachineCmd {
/// Benchmarks a specific metric of the hardware and judges the resulting score.
pub fn run_benchmark(&self, requirement: &Requirement, dir: &Path) -> Result<BenchResult> {
// Dispatch the concrete function from `sc-sysinfo`.
let score = self.measure(&requirement.metric, dir)?;
let rel_score = score.as_bytes() / requirement.minimum.as_bytes();
// Sanity check if the result is off by factor >100x.
if rel_score >= 100.0 || rel_score <= 0.01 {
self.check_failed(Error::BadResults)?;
}
let passed = rel_score >= (1.0 - (self.tolerance / 100.0));
Ok(BenchResult {
passed,
score,
rel_score,
})
}
/// Measures a metric of the hardware.
fn measure(&self, metric: &Metric, dir: &Path) -> Result<Throughput> {
let verify_limit = ExecutionLimit::from_secs_f32(self.verify_duration);
let disk_limit = ExecutionLimit::from_secs_f32(self.disk_duration);
let hash_limit = ExecutionLimit::from_secs_f32(self.hash_duration);
let memory_limit = ExecutionLimit::from_secs_f32(self.memory_duration);
let score = match metric {
Metric::Blake2256 => benchmark_cpu(hash_limit),
Metric::Sr25519Verify => benchmark_sr25519_verify(verify_limit),
Metric::MemCopy => benchmark_memory(memory_limit),
Metric::DiskSeqWrite => benchmark_disk_sequential_writes(disk_limit, dir)?,
Metric::DiskRndWrite => benchmark_disk_random_writes(disk_limit, dir)?,
};
Ok(score)
}
pub fn print_full_table(&self, dir: &Path) -> Result<()> {
info!("Running full machine benchmarks...");
let requirements = &SUBSTRATE_REFERENCE_HARDWARE.clone();
let mut results = Vec::new();
for requirement in &requirements.0 {
let result = self.run_benchmark(requirement, &dir)?;
results.push(result);
}
self.print_summary(requirements.clone(), results)?;
Ok(())
}
/// Prints a human-readable summary.
pub fn print_summary(
&self,
requirements: Requirements,
results: Vec<BenchResult>,
) -> Result<()> {
// Use a table for nicer console output.
let mut table = Table::new();
table.set_header(["Category", "Function", "Score", "Minimum", "Result"]);
// Count how many passed and how many failed.
let (mut passed, mut failed) = (0, 0);
for (requirement, result) in requirements.0.iter().zip(results.iter()) {
if result.passed {
passed += 1
} else {
failed += 1
}
table.add_row(result.to_row(requirement));
}
// Print the table and a summary.
info!(
"\n{}\nFrom {} benchmarks in total, {} passed and {} failed ({:.0?}% fault tolerance).",
table,
passed + failed,
passed,
failed,
self.tolerance
);
// Print the final result.
if failed != 0 {
info!("The hardware fails to meet the requirements");
self.check_failed(Error::UnmetRequirement)?;
} else {
info!("The hardware meets the requirements ");
}
Ok(())
}
/// Returns `Ok` if [`self.allow_fail`] is set and otherwise the error argument.
fn check_failed(&self, e: Error) -> Result<()> {
if !self.allow_fail {
error!("Failing since --allow-fail is not set");
Err(sc_cli::Error::Application(Box::new(e)))
} else {
warn!("Ignoring error since --allow-fail is set: {:?}", e);
Ok(())
}
}
/// Validates the CLI arguments.
pub fn validate_args(&self) -> Result<()> {
if self.tolerance > 100.0 || self.tolerance < 0.0 {
return Err("The --tolerance argument is out of range".into());
}
Ok(())
}
}
impl BenchResult {
/// Format [`Self`] as row that can be printed in a table.
fn to_row(&self, req: &Requirement) -> Row {
let passed = if self.passed { "✅ Pass" } else { "❌ Fail" };
vec![
req.metric.category().into(),
req.metric.name().into(),
format!("{}", self.score),
format!("{}", req.minimum),
format!("{} ({: >5.1?} %)", passed, self.rel_score * 100.0),
]
.into()
}
}
fn status_emoji(s: bool) -> String {
if s {
"✅".into()
} else {
"❌".into()
}
}
/// Whether the hardware requirements are met by the provided benchmark results.
pub fn check_hardware(hwbench: &HwBench) -> bool {
info!("Performing quick hardware check...");
let req = &SUBSTRATE_REFERENCE_HARDWARE;
let mut cpu_ok = true;
let mut mem_ok = true;
let mut dsk_seq_write_ok = true;
let mut dsk_rnd_write_ok = true;
for requirement in req.0.iter() {
match requirement.metric {
Metric::Blake2256 => {
if requirement.minimum > hwbench.cpu_hashrate_score {
cpu_ok = false;
}
info!(
"🏁 CPU score: {} ({})",
hwbench.cpu_hashrate_score,
format!(
"{} Blake2256: expected minimum {}",
status_emoji(cpu_ok),
requirement.minimum
)
);
}
Metric::MemCopy => {
if requirement.minimum > hwbench.memory_memcpy_score {
mem_ok = false;
}
info!(
"🏁 Memory score: {} ({})",
hwbench.memory_memcpy_score,
format!(
"{} MemCopy: expected minimum {}",
status_emoji(mem_ok),
requirement.minimum
)
);
}
Metric::DiskSeqWrite => {
if let Some(score) = hwbench.disk_sequential_write_score {
if requirement.minimum > score {
dsk_seq_write_ok = false;
}
info!(
"🏁 Disk score (seq. writes): {} ({})",
score,
format!(
"{} DiskSeqWrite: expected minimum {}",
status_emoji(dsk_seq_write_ok),
requirement.minimum
)
);
}
}
Metric::DiskRndWrite => {
if let Some(score) = hwbench.disk_random_write_score {
if requirement.minimum > score {
dsk_rnd_write_ok = false;
}
info!(
"🏁 Disk score (rand. writes): {} ({})",
score,
format!(
"{} DiskRndWrite: expected minimum {}",
status_emoji(dsk_rnd_write_ok),
requirement.minimum
)
);
}
}
Metric::Sr25519Verify => {}
}
}
cpu_ok && mem_ok && dsk_seq_write_ok && dsk_rnd_write_ok
}