1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#![no_std]

extern crate bitflags;
extern crate byteorder;
extern crate embedded_hal as hal;

use byteorder::{ByteOrder, LittleEndian};
use hal::blocking::i2c;

pub mod pdo;
pub mod rdo;
pub mod registers;

use pdo::*;
use rdo::*;
use registers::*;

pub const STUSB4500_ADDR: u8 = 0x28;

/// Address enum for STUSB4500
pub enum Address {
    /// Default address with all address pins tied low
    Default,
    /// Address determined by A1 and A0 pins. True = tied high, low = tied low.
    Strap(bool, bool),
    /// Custom address from config file etc
    Custom(u8),
}

impl Address {
    pub(crate) fn addr(&self) -> u8 {
        match self {
            Address::Default => STUSB4500_ADDR,
            Address::Strap(a1, a0) => STUSB4500_ADDR | (*a1 as u8) << 1 | (*a0 as u8) << 0,
            Address::Custom(addr) => *addr,
        }
    }
}

impl Default for Address {
    fn default() -> Self {
        Address::Default
    }
}

#[derive(Debug)]
pub enum Error<I2C> {
    I2CError(I2C),
    InvalidPdo,
    OutaRangePdo,
}

pub enum PdoChannel {
    PDO1,
    PDO2,
    PDO3,
}

pub struct STUSB4500<I2C> {
    i2c: I2C,
    address: u8,
}

impl<I2C, E> STUSB4500<I2C>
where
    I2C: i2c::Write<Error = E> + i2c::Read<Error = E>,
{
    pub fn new(i2c: I2C, address: Address) -> Self {
        STUSB4500 {
            i2c,
            address: address.addr(),
        }
    }

    /// Read all interrupt registers to clear them
    pub fn clear_interrupts(&mut self) -> Result<(), Error<E>> {
        // Read all interrupt registers
        let mut _buf = [0x00; 10];
        self.i2c
            .write(self.address, &[Register::PortStatus0 as u8])
            .map_err(|err| Error::I2CError(err))?;
        self.i2c
            .read(self.address, &mut _buf)
            .map_err(|err| Error::I2CError(err))
    }

    /// Set interrupt mask
    pub fn set_alerts_mask(&mut self, alerts: AlertMask) -> Result<(), Error<E>> {
        self.write(Register::AlertStatus1Mask, alerts.bits())
    }

    /// Get active interrupt flags
    pub fn get_alerts(&mut self) -> Result<Alert, Error<E>> {
        Ok(Alert::from_bits_truncate(
            self.read(Register::AlertStatus1)?,
        ))
    }

    /// Perform a soft reset
    /// Triggers re-negotiation of PDO's.
    pub fn soft_reset(&mut self) -> Result<(), Error<E>> {
        self.write(Register::TXHeaderL, 0x0D)?;
        self.write(Register::PDCommandCtrl, 0x26)?;
        Ok(())
    }

    pub fn set_pdo(&mut self, pdo: PdoChannel, data: &Pdo) -> Result<(), Error<E>> {
        if let Pdo::Fixed { .. } = data {
            self.write_word(
                match pdo {
                    PdoChannel::PDO1 => Register::DPMSNKPDO1,
                    PdoChannel::PDO2 => Register::DPMSNKPDO2,
                    PdoChannel::PDO3 => Register::DPMSNKPDO3,
                },
                data.bits(),
            )
        } else {
            // Can only advertise fixed PDOs
            Err(Error::InvalidPdo)
        }
    }

    pub fn get_pdo(&mut self, pdo: PdoChannel) -> Result<Pdo, Error<E>> {
        Pdo::from_bits(self.read_word(match pdo {
            PdoChannel::PDO1 => Register::DPMSNKPDO1,
            PdoChannel::PDO2 => Register::DPMSNKPDO2,
            PdoChannel::PDO3 => Register::DPMSNKPDO3,
        })?)
        .ok_or(Error::InvalidPdo)
    }

    pub fn get_current_rdo(&mut self) -> Result<Rdo, Error<E>> {
        Ok(Rdo(self.read_word(Register::RDORegStatus)?))
    }

    pub fn set_num_pdo(&mut self, num: u8) -> Result<(), Error<E>> {
        match num {
            1..=3 => self.write(Register::DPMPDONumb, num),
            _ => Err(Error::OutaRangePdo),
        }
    }

    /// Unlock the NVM for reading and writing
    pub fn unlock_nvm(&mut self) -> Result<STUSB4500Nvm<I2C>, Error<E>> {
        STUSB4500Nvm::unlock(self)
    }

    // *****************************************************************
    // Raw access functions

    /// Write a byte register
    pub(crate) fn write(&mut self, register: Register, value: u8) -> Result<(), Error<E>> {
        let buf = [register as u8, value];
        self.i2c
            .write(self.address, &buf)
            .map_err(|err| Error::I2CError(err))
    }

    /// Write a word register
    pub(crate) fn write_word(&mut self, register: Register, word: u32) -> Result<(), Error<E>> {
        let mut buf = [0x00; 5];
        buf[0] = register as u8;
        LittleEndian::write_u32(&mut buf[1..], word);
        self.i2c
            .write(self.address, &buf)
            .map_err(|err| Error::I2CError(err))
    }

    /// Read a byte register
    pub(crate) fn read(&mut self, register: Register) -> Result<u8, Error<E>> {
        let mut buf = [0x00; 1];
        self.i2c
            .write(self.address, &[register as u8])
            .map_err(|err| Error::I2CError(err))?;
        self.i2c
            .read(self.address, &mut buf)
            .map_err(|err| Error::I2CError(err))?;
        Ok(buf[0])
    }

    /// Read a word register
    pub(crate) fn read_word(&mut self, register: Register) -> Result<u32, Error<E>> {
        let mut buf = [0x00; 4];
        self.i2c
            .write(self.address, &[register as u8])
            .map_err(|err| Error::I2CError(err))?;
        self.i2c
            .read(self.address, &mut buf)
            .map_err(|err| Error::I2CError(err))?;
        Ok(LittleEndian::read_u32(&buf))
    }
}

pub struct STUSB4500Nvm<'a, I2C> {
    inner: &'a mut STUSB4500<I2C>,
}

impl<I2C, E> STUSB4500Nvm<'_, I2C>
where
    I2C: i2c::Write<Error = E> + i2c::Read<Error = E>,
{
    const DEFAULT_PASSWORD: u8 = 0x47;

    pub(crate) fn unlock(inner: &mut STUSB4500<I2C>) -> Result<STUSB4500Nvm<I2C>, Error<E>> {
        inner.write(Register::NvmPassword, STUSB4500Nvm::<I2C>::DEFAULT_PASSWORD)?;
        inner.write(Register::NvmCtrl0, 0x00)?;
        inner.write(
            Register::NvmCtrl0,
            (NvmCtrl0::Power | NvmCtrl0::Enable).bits(),
        )?;

        Ok(STUSB4500Nvm { inner })
    }

    /// Lock the NVM
    pub fn lock(self) -> Result<(), Error<E>> {
        self.inner
            .write(Register::NvmCtrl0, NvmCtrl0::Enable.bits())?;
        self.inner.write(Register::NvmCtrl1, 0x00)?;
        self.inner.write(Register::NvmPassword, 0x00)
    }

    /// Read the NVM data (all five sectors)
    ///
    /// The NVM data is used to set the configuration on power-up. It can be decoded by the [GUI
    /// application][gui].
    ///
    /// [gui]: https://www.st.com/en/embedded-software/stsw-stusb002.html
    pub fn read_sectors(&mut self) -> Result<[[u8; 8]; 5], Error<E>> {
        let mut buf = [[0x00; 8]; 5];
        for (i, sector) in buf.iter_mut().enumerate() {
            *sector = self.read_sector(i as u8)?;
        }
        Ok(buf)
    }

    /// Write the NVM data (all five sectors)
    ///
    /// The NVM data is used to set the configuration on power-up. It can be generated by the [GUI
    /// application][gui].
    ///
    /// [gui]: https://www.st.com/en/embedded-software/stsw-stusb002.html
    pub fn write_sectors(&mut self, sectors: [[u8; 8]; 5]) -> Result<(), Error<E>> {
        self.erase_sectors()?;
        for (i, sector) in sectors.iter().enumerate() {
            self.write_sector(i as u8, sector)?;
        }
        Ok(())
    }

    fn issue_request(&mut self) -> Result<(), Error<E>> {
        self.issue_request_with_sector(0)
    }

    fn issue_request_with_sector(&mut self, sector: u8) -> Result<(), Error<E>> {
        self.inner.write(
            Register::NvmCtrl0,
            sector | (NvmCtrl0::Power | NvmCtrl0::Enable | NvmCtrl0::Request).bits(),
        )?;

        while NvmCtrl0::from_bits_truncate(self.inner.read(Register::NvmCtrl0)?)
            .contains(NvmCtrl0::Request)
        {}

        Ok(())
    }

    fn read_sector(&mut self, sector: u8) -> Result<[u8; 8], Error<E>> {
        self.inner
            .write(Register::NvmCtrl1, NvmCtrl1Opcode::ReadSector as u8)?;
        self.issue_request_with_sector(sector)?;

        let mut buf = [0x00; 8];
        self.inner
            .i2c
            .write(self.inner.address, &[Register::RWBuffer as u8])
            .map_err(|err| Error::I2CError(err))?;
        self.inner
            .i2c
            .read(self.inner.address, &mut buf)
            .map_err(|err| Error::I2CError(err))?;
        Ok(buf)
    }

    fn write_sector(&mut self, sector: u8, data: &[u8; 8]) -> Result<(), Error<E>> {
        let mut buf = [0x00; 9];
        buf[0] = Register::RWBuffer as u8;
        buf[1..].copy_from_slice(data);

        self.inner
            .i2c
            .write(self.inner.address, &buf)
            .map_err(|err| Error::I2CError(err))?;
        self.inner
            .write(Register::NvmCtrl1, NvmCtrl1Opcode::LoadPlr as u8)?;
        self.issue_request()?;

        self.inner
            .write(Register::NvmCtrl1, NvmCtrl1Opcode::WriteSector as u8)?;
        self.issue_request_with_sector(sector)
    }

    fn erase_sectors(&mut self) -> Result<(), Error<E>> {
        self.inner.write(
            Register::NvmCtrl1,
            NvmCtrl1Opcode::LoadSer as u8
                | (NvmCtrl1::EraseSector0
                    | NvmCtrl1::EraseSector1
                    | NvmCtrl1::EraseSector2
                    | NvmCtrl1::EraseSector3
                    | NvmCtrl1::EraseSector4)
                    .bits(),
        )?;
        self.issue_request()?;

        self.inner
            .write(Register::NvmCtrl1, NvmCtrl1Opcode::EraseSectors as u8)?;
        self.issue_request()
    }
}