1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
// Copyright © 2021-2022 HQS Quantum Simulations GmbH. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
// express or implied. See the License for the specific language governing permissions and
// limitations under the License.
use super::{GetValueMixed, HermitianMixedProduct, MixedIndex};
use crate::bosons::BosonProduct;
use crate::fermions::FermionProduct;
use crate::spins::PauliProduct;
use crate::{CorrespondsTo, StruqtureError, SymmetricIndex};
use num_complex::Complex64;
use serde::{
    de::{Error, SeqAccess, Visitor},
    ser::SerializeTuple,
    Deserialize, Deserializer, Serialize, Serializer,
};
use std::{ops::Mul, str::FromStr};
use tinyvec::TinyVec;
/// A mixed product of pauli products, boson products and fermion products.
///
/// A [crate::spins::PauliProduct] is a representation of products of pauli matrices acting on qubits. It is used in order to build the corresponding spin terms of a hamiltonian.
///
/// A [crate::bosons::BosonProduct] is a product of bosonic creation and annihilation operators.
/// It is used as an index for non-hermitian, normal ordered bosonic operators.
///
/// A [crate::fermions::FermionProduct] is a product of fermionic creation and annihilation operators.
/// It is used as an index for non-hermitian, normal ordered fermionic operators.
///
/// # Example
///
/// ```
/// use struqture::prelude::*;
/// use struqture::spins::PauliProduct;
/// use struqture::bosons::BosonProduct;
/// use struqture::fermions::FermionProduct;
/// use struqture::mixed_systems::MixedProduct;
///
/// let m_product = MixedProduct::new([PauliProduct::new().z(0)], [BosonProduct::new([0], [1]).unwrap()], [FermionProduct::new([0], [0]).unwrap()]).unwrap();
/// println!("{}", m_product);
///
/// ```
#[derive(Debug, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Default)]
pub struct MixedProduct {
    /// List of spin sub-indices
    pub(crate) spins: TinyVec<[PauliProduct; 2]>,
    /// List of boson sub-indices
    pub(crate) bosons: TinyVec<[BosonProduct; 2]>,
    /// List of fermion sub-indices
    pub(crate) fermions: TinyVec<[FermionProduct; 2]>,
}
impl Serialize for MixedProduct {
    /// Serialization function for MixedProduct according to string type.
    ///
    /// # Arguments
    ///
    /// * `self` - MixedProduct to be serialized.
    /// * `serializer` - Serializer used for serialization.
    ///
    /// # Returns
    ///
    /// `S::Ok` - Serialized instance of MixedProduct.
    /// `S::Error` - Error in the serialization process.
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let readable = serializer.is_human_readable();
        if readable {
            serializer.serialize_str(&self.to_string())
        } else {
            let mut tuple = serializer.serialize_tuple(3)?;
            tuple.serialize_element(&self.spins.as_slice())?;
            tuple.serialize_element(&self.bosons.as_slice())?;
            tuple.serialize_element(&self.fermions.as_slice())?;
            tuple.end()
        }
    }
}
/// Deserializing directly from string.
///
impl<'de> Deserialize<'de> for MixedProduct {
    /// Deserialization function for MixedProduct.
    ///
    /// # Arguments
    ///
    /// * `self` - Serialized instance of MixedProduct to be deserialized.
    /// * `deserializer` - Deserializer used for deserialization.
    ///
    /// # Returns
    ///
    /// `DecoherenceProduct` - Deserialized instance of MixedProduct.
    /// `D::Error` - Error in the deserialization process.
    fn deserialize<D>(deserializer: D) -> Result<MixedProduct, D::Error>
    where
        D: Deserializer<'de>,
    {
        let human_readable = deserializer.is_human_readable();
        if human_readable {
            struct TemporaryVisitor;
            impl<'de> Visitor<'de> for TemporaryVisitor {
                type Value = MixedProduct;
                fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
                    formatter.write_str("String")
                }
                fn visit_str<E>(self, v: &str) -> Result<MixedProduct, E>
                where
                    E: serde::de::Error,
                {
                    MixedProduct::from_str(v).map_err(|err| E::custom(format!("{:?}", err)))
                }
                fn visit_borrowed_str<E>(self, v: &'de str) -> Result<MixedProduct, E>
                where
                    E: serde::de::Error,
                {
                    MixedProduct::from_str(v).map_err(|err| E::custom(format!("{:?}", err)))
                }
            }
            deserializer.deserialize_str(TemporaryVisitor)
        } else {
            struct MixedProductVisitor;
            impl<'de> serde::de::Visitor<'de> for MixedProductVisitor {
                type Value = MixedProduct;
                fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
                    std::fmt::Formatter::write_str(
                        formatter,
                        "Tuple of two sequences of unsigned integers",
                    )
                }
                // when variants are marked by String values
                fn visit_seq<M>(self, mut access: M) -> Result<Self::Value, M::Error>
                where
                    M: SeqAccess<'de>,
                {
                    let spins: TinyVec<[PauliProduct; 2]> = match access.next_element()? {
                        Some(x) => x,
                        None => {
                            return Err(M::Error::custom("Missing spin sequence".to_string()));
                        }
                    };
                    let bosons: TinyVec<[BosonProduct; 2]> = match access.next_element()? {
                        Some(x) => x,
                        None => {
                            return Err(M::Error::custom("Missing boson sequence".to_string()));
                        }
                    };
                    let fermions: TinyVec<[FermionProduct; 2]> = match access.next_element()? {
                        Some(x) => x,
                        None => {
                            return Err(M::Error::custom("Missing fermion sequence".to_string()));
                        }
                    };
                    Ok(MixedProduct {
                        spins,
                        bosons,
                        fermions,
                    })
                }
            }
            let pp_visitor = MixedProductVisitor;
            deserializer.deserialize_tuple(3, pp_visitor)
        }
    }
}
impl MixedIndex for MixedProduct {
    type SpinIndexType = PauliProduct;
    type BosonicIndexType = BosonProduct;
    type FermionicIndexType = FermionProduct;
    /// Creates a new MixedProduct.
    ///
    /// # Arguments
    ///
    /// * `spins` - Products of pauli operators acting on qubits.
    /// * `bosons` - Products of bosonic creation and annihilation operators.
    /// * `fermions` - Products of fermionic creation and annihilation operators.
    ///
    /// # Returns
    ///
    /// * Ok(`Self`) - a new MixedProduct with the input of spins and bosons.
    fn new(
        spins: impl IntoIterator<Item = Self::SpinIndexType>,
        bosons: impl IntoIterator<Item = Self::BosonicIndexType>,
        fermions: impl IntoIterator<Item = Self::FermionicIndexType>,
    ) -> Result<Self, StruqtureError> {
        Ok(Self {
            spins: spins.into_iter().collect(),
            bosons: bosons.into_iter().collect(),
            fermions: fermions.into_iter().collect(),
        })
    }
    // From trait
    fn spins(&self) -> std::slice::Iter<PauliProduct> {
        self.spins.iter()
    }
    // From trait
    fn bosons(&self) -> std::slice::Iter<BosonProduct> {
        self.bosons.iter()
    }
    // From trait
    fn fermions(&self) -> std::slice::Iter<FermionProduct> {
        self.fermions.iter()
    }
    /// Creates a pair (MixedProduct, CalculatorComplex).
    ///
    /// The first item is the valid MixedProduct created from the input spins, bosons and fermions.
    /// The second term is the input CalculatorComplex transformed according to the valid order of inputs.
    ///
    /// # Arguments
    ///
    /// * `spins` - The PauliProducts to have in the MixedProduct.
    /// * `bosons` - The BosonProducts to have in the MixedProduct.
    /// * `fermions` - The FermionProducts to have in the MixedProduct.
    /// * `value` - The CalculatorComplex to transform.
    ///
    /// # Returns
    ///
    /// * `Ok((MixedProduct, CalculatorComplex))` - The valid MixedProduct and the corresponding transformed CalculatorComplex.
    fn create_valid_pair(
        spins: impl IntoIterator<Item = Self::SpinIndexType>,
        bosons: impl IntoIterator<Item = Self::BosonicIndexType>,
        fermions: impl IntoIterator<Item = Self::FermionicIndexType>,
        value: qoqo_calculator::CalculatorComplex,
    ) -> Result<(Self, qoqo_calculator::CalculatorComplex), StruqtureError> {
        let spins: TinyVec<[PauliProduct; 2]> = spins.into_iter().collect();
        let bosons: TinyVec<[BosonProduct; 2]> = bosons.into_iter().collect();
        let fermions: TinyVec<[FermionProduct; 2]> = fermions.into_iter().collect();
        Ok((
            Self {
                spins,
                bosons,
                fermions,
            },
            value,
        ))
    }
}
impl FromStr for MixedProduct {
    type Err = StruqtureError;
    /// Constructs a MixedProduct from a string.
    ///
    /// # Arguments
    ///
    /// * `s` - The string to convert.
    ///
    /// # Returns
    ///
    /// * `Ok(Self)` - The successfully converted MixedProduct.
    /// * `Err(StruqtureError::ParsingError)` - Encountered subsystem that is neither spin, nor boson, nor fermion.
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let mut spins: TinyVec<[PauliProduct; 2]> = TinyVec::<[PauliProduct; 2]>::with_capacity(2);
        let mut bosons: TinyVec<[BosonProduct; 2]> = TinyVec::<[BosonProduct; 2]>::with_capacity(2);
        let mut fermions: TinyVec<[FermionProduct; 2]> =
            TinyVec::<[FermionProduct; 2]>::with_capacity(2);
        let subsystems = s.split(':').filter(|s| !s.is_empty());
        for subsystem in subsystems {
            if let Some(rest) = subsystem.strip_prefix('S') {
                spins.push(PauliProduct::from_str(rest)?);
            } else if let Some(rest) = subsystem.strip_prefix('B') {
                bosons.push(BosonProduct::from_str(rest)?);
            } else if let Some(rest) = subsystem.strip_prefix('F') {
                fermions.push(FermionProduct::from_str(rest)?);
            } else {
                return Err(StruqtureError::ParsingError {
                    target_type: "MixedIndex".to_string(),
                    msg: format!(
                        "Encountered subsystem that is neither spin, nor boson, nor fermion: {}",
                        subsystem
                    ),
                });
            }
        }
        Ok(Self {
            spins,
            bosons,
            fermions,
        })
    }
}
impl<'a> GetValueMixed<'a, MixedProduct> for MixedProduct {
    /// Gets the key corresponding to the input index (here, itself).
    ///
    /// # Arguments
    ///
    /// * `index` - The index for which to get the corresponding Product.
    ///
    /// # Returns
    ///
    /// * `Self` - The corresponding MixedProduct.
    fn get_key(index: &MixedProduct) -> Self {
        index.clone()
    }
    /// Gets the transformed value corresponding to the input index and value (here, itself).
    ///
    /// # Arguments
    ///
    /// * `index` - The index to transform the value by.
    /// * `value` - The value to be transformed.
    ///
    /// # Returns
    ///
    /// * `CalculatorComplex` - The transformed value.
    fn get_transform(
        _index: &MixedProduct,
        value: qoqo_calculator::CalculatorComplex,
    ) -> qoqo_calculator::CalculatorComplex {
        value
    }
}
impl<'a> GetValueMixed<'a, HermitianMixedProduct> for MixedProduct {
    /// Gets the key corresponding to the input index.
    ///
    /// # Arguments
    ///
    /// * `index` - The index for which to get the corresponding Product.
    ///
    /// # Returns
    ///
    /// * `Self` - The corresponding MixedProduct.
    fn get_key(index: &HermitianMixedProduct) -> Self {
        Self {
            spins: index.spins().cloned().collect(),
            bosons: index.bosons().cloned().collect(),
            fermions: index.fermions().cloned().collect(),
        }
    }
    /// Gets the transformed value corresponding to the input index and value (here, itself).
    ///
    /// # Arguments
    ///
    /// * `index` - The index to transform the value by.
    /// * `value` - The value to be transformed.
    ///
    /// # Returns
    ///
    /// * `CalculatorComplex` - The transformed value.
    fn get_transform(
        _index: &HermitianMixedProduct,
        value: qoqo_calculator::CalculatorComplex,
    ) -> qoqo_calculator::CalculatorComplex {
        value
    }
}
impl CorrespondsTo<MixedProduct> for MixedProduct {
    /// Gets the MixedProduct corresponding to self (here, itself).
    ///
    /// # Returns
    ///
    /// * `MixedProduct` - The MixedProduct corresponding to Self.
    fn corresponds_to(&self) -> MixedProduct {
        self.clone()
    }
}
impl SymmetricIndex for MixedProduct {
    // From trait
    fn hermitian_conjugate(&self) -> (Self, f64) {
        let mut coefficient = 1.0;
        let mut new_spins = self.spins.clone();
        for spin in new_spins.iter_mut() {
            let (conj_spin, coeff) = spin.hermitian_conjugate();
            *spin = conj_spin;
            coefficient *= coeff;
        }
        let mut new_bosons = self.bosons.clone();
        for boson in new_bosons.iter_mut() {
            let (conj_boson, coeff) = boson.hermitian_conjugate();
            *boson = conj_boson;
            coefficient *= coeff;
        }
        let mut new_fermions = self.fermions.clone();
        for fermion in new_fermions.iter_mut() {
            let (conj_fermion, coeff) = fermion.hermitian_conjugate();
            *fermion = conj_fermion;
            coefficient *= coeff;
        }
        (
            Self {
                spins: new_spins,
                bosons: new_bosons,
                fermions: new_fermions,
            },
            coefficient,
        )
    }
    // From trait
    fn is_natural_hermitian(&self) -> bool {
        self.bosons.iter().all(|b| b.is_natural_hermitian())
            && self.fermions.iter().all(|f| f.is_natural_hermitian())
    }
}
/// Implements the multiplication function of MixedProduct by MixedProduct.
///
impl Mul<MixedProduct> for MixedProduct {
    type Output = Result<Vec<(MixedProduct, Complex64)>, StruqtureError>;
    /// Implement `*` for MixedProduct and MixedProduct.
    ///
    /// # Arguments
    ///
    /// * `other` - The MixedProduct to multiply by.
    ///
    /// # Returns
    ///
    /// * `Ok(Vec<(MixedProduct, Complex64)>)` - The two MixedProducts multiplied.
    /// * `Err(StruqtureError::MissmatchedNumberSubsystems)` - Number of subsystems in left and right do not match.
    fn mul(self, rhs: MixedProduct) -> Self::Output {
        if self.spins().len() != rhs.spins().len()
            || self.bosons().len() != rhs.bosons().len()
            || self.fermions().len() != rhs.fermions().len()
        {
            return Err(StruqtureError::MissmatchedNumberSubsystems {
                target_number_spin_subsystems: self.spins().len(),
                target_number_boson_subsystems: self.bosons().len(),
                target_number_fermion_subsystems: self.fermions().len(),
                actual_number_spin_subsystems: rhs.spins().len(),
                actual_number_boson_subsystems: rhs.bosons().len(),
                actual_number_fermion_subsystems: rhs.fermions().len(),
            });
        }
        let mut coefficient = Complex64::new(1.0, 0.0);
        let mut result_vec: Vec<(MixedProduct, Complex64)> = Vec::new();
        let mut tmp_spins: Vec<PauliProduct> = Vec::with_capacity(self.spins().len());
        let mut tmp_bosons: Vec<Vec<BosonProduct>> = Vec::with_capacity(self.bosons().len());
        let mut tmp_fermions: Vec<Vec<(FermionProduct, f64)>> =
            Vec::with_capacity(self.fermions().len());
        for (left, right) in self.spins.into_iter().zip(rhs.spins.into_iter()) {
            let (val, coeff) = left * right;
            tmp_spins.push(val);
            coefficient *= coeff;
        }
        // iterate through boson subsystems and multiply subsystem
        for (left, right) in self.bosons.into_iter().zip(rhs.bosons.into_iter()) {
            let boson_multiplication = left.clone() * right.clone();
            if !tmp_bosons.is_empty() {
                let mut internal_tmp_bosons: Vec<Vec<BosonProduct>> = Vec::new();
                for bp in boson_multiplication.clone() {
                    for tmp_bp in tmp_bosons.iter() {
                        let mut tmp_entry = tmp_bp.clone();
                        tmp_entry.push(bp.clone());
                        internal_tmp_bosons.push(tmp_entry);
                    }
                }
                tmp_bosons = internal_tmp_bosons.clone();
            } else {
                for bp in boson_multiplication.clone() {
                    tmp_bosons.push(vec![bp]);
                }
            }
        }
        for (left, right) in self.fermions.into_iter().zip(rhs.fermions.into_iter()) {
            let fermion_multiplication = left * right;
            if !tmp_fermions.is_empty() {
                let mut internal_tmp_fermions: Vec<Vec<(FermionProduct, f64)>> = Vec::new();
                for fp in fermion_multiplication {
                    for tmp_fp in tmp_fermions.iter() {
                        let mut tmp_entry = tmp_fp.clone();
                        tmp_entry.push(fp.clone());
                        internal_tmp_fermions.push(tmp_entry);
                    }
                }
                tmp_fermions = internal_tmp_fermions;
            } else {
                for fp in fermion_multiplication.clone() {
                    tmp_fermions.push(vec![fp]);
                }
            }
        }
        // Combining results
        for boson in tmp_bosons.clone() {
            if !tmp_fermions.is_empty() {
                for fermion in tmp_fermions.iter() {
                    let mut fermion_vec: Vec<FermionProduct> = Vec::new();
                    let mut sign = Complex64::new(1.0, 0.0);
                    for (f, val) in fermion {
                        fermion_vec.push(f.clone());
                        sign *= val;
                    }
                    result_vec.push((
                        MixedProduct::new(tmp_spins.clone(), boson.clone(), fermion_vec)?,
                        coefficient * sign,
                    ));
                }
            } else {
                result_vec.push((
                    MixedProduct::new(tmp_spins.clone(), boson.clone(), vec![])?,
                    coefficient,
                ));
            }
        }
        if tmp_bosons.is_empty() && !tmp_fermions.is_empty() {
            for fermion in tmp_fermions.iter() {
                let mut fermion_vec: Vec<FermionProduct> = Vec::new();
                let mut sign = Complex64::new(1.0, 0.0);
                for (f, val) in fermion {
                    fermion_vec.push(f.clone());
                    sign *= val;
                }
                result_vec.push((
                    MixedProduct::new(tmp_spins.clone(), [], fermion_vec)?,
                    coefficient * sign,
                ));
            }
        } else if tmp_bosons.is_empty() && tmp_fermions.is_empty() {
            result_vec.push((MixedProduct::new(tmp_spins.clone(), [], [])?, coefficient))
        }
        Ok(result_vec)
    }
}
impl Mul<HermitianMixedProduct> for MixedProduct {
    type Output = Result<Vec<(MixedProduct, Complex64)>, StruqtureError>;
    /// Implement `*` for a MixedProduct and a HermitianMixedProduct.
    ///
    /// # Arguments
    ///
    /// * `other` - The HermitianMixedProduct to multiply by.
    ///
    /// # Returns
    ///
    /// * `Ok(Vec<(MixedProduct, Complex64)>)` - The two MixedProducts multiplied.
    /// * `Err(StruqtureError::MissmatchedNumberSubsystems)` - Number of subsystems in left and right do not match.
    ///
    /// # Panics
    ///
    /// * Could not convert rhs into a MixedProduct.
    fn mul(self, rhs: HermitianMixedProduct) -> Self::Output {
        if self.spins().len() != rhs.spins().len()
            || self.bosons().len() != rhs.bosons().len()
            || self.fermions().len() != rhs.fermions().len()
        {
            return Err(StruqtureError::MissmatchedNumberSubsystems {
                target_number_spin_subsystems: self.spins().len(),
                target_number_boson_subsystems: self.bosons().len(),
                target_number_fermion_subsystems: self.fermions().len(),
                actual_number_spin_subsystems: rhs.spins().len(),
                actual_number_boson_subsystems: rhs.bosons().len(),
                actual_number_fermion_subsystems: rhs.fermions().len(),
            });
        }
        let mut result_vec: Vec<(MixedProduct, Complex64)> = Vec::new();
        let mut right_to_mul: Vec<(MixedProduct, f64)> = Vec::new();
        let mhp_right = MixedProduct::new(rhs.spins, rhs.bosons, rhs.fermions)
            .expect("Could not convert rhs into a MixedProduct");
        right_to_mul.push((mhp_right.clone(), 1.0));
        if !mhp_right.is_natural_hermitian() {
            right_to_mul.push(mhp_right.hermitian_conjugate());
        }
        for (rhs, rsign) in right_to_mul {
            let mut coefficient = Complex64::new(rsign, 0.0);
            let mut tmp_spins: Vec<PauliProduct> = Vec::with_capacity(self.spins().len());
            let mut tmp_bosons: Vec<Vec<BosonProduct>> = Vec::with_capacity(self.bosons().len());
            let mut tmp_fermions: Vec<Vec<(FermionProduct, f64)>> =
                Vec::with_capacity(self.fermions().len());
            for (left, right) in self.clone().spins.into_iter().zip(rhs.spins.into_iter()) {
                let (val, coeff) = left * right;
                tmp_spins.push(val);
                coefficient *= coeff;
            }
            // iterate through boson subsystems and multiply subsystem
            for (left, right) in self.clone().bosons.into_iter().zip(rhs.bosons.into_iter()) {
                let boson_multiplication = left.clone() * right.clone();
                if !tmp_bosons.is_empty() {
                    let mut internal_tmp_bosons: Vec<Vec<BosonProduct>> = Vec::new();
                    for bp in boson_multiplication.clone() {
                        for tmp_bp in tmp_bosons.iter() {
                            let mut tmp_entry = tmp_bp.clone();
                            tmp_entry.push(bp.clone());
                            internal_tmp_bosons.push(tmp_entry);
                        }
                    }
                    tmp_bosons = internal_tmp_bosons.clone();
                } else {
                    for bp in boson_multiplication.clone() {
                        tmp_bosons.push(vec![bp]);
                    }
                }
            }
            for (left, right) in self
                .fermions
                .clone()
                .into_iter()
                .zip(rhs.fermions.into_iter())
            {
                let fermion_multiplication = left * right;
                if !tmp_fermions.is_empty() {
                    let mut internal_tmp_fermions: Vec<Vec<(FermionProduct, f64)>> = Vec::new();
                    for fp in fermion_multiplication {
                        for tmp_fp in tmp_fermions.iter() {
                            let mut tmp_entry = tmp_fp.clone();
                            tmp_entry.push(fp.clone());
                            internal_tmp_fermions.push(tmp_entry);
                        }
                    }
                    tmp_fermions = internal_tmp_fermions;
                } else {
                    for fp in fermion_multiplication.clone() {
                        tmp_fermions.push(vec![fp]);
                    }
                }
            }
            // Combining results
            for boson in tmp_bosons.clone() {
                if !tmp_fermions.is_empty() {
                    for fermion in tmp_fermions.iter() {
                        let mut fermion_vec: Vec<FermionProduct> = Vec::new();
                        let mut sign = Complex64::new(1.0, 0.0);
                        for (f, val) in fermion {
                            fermion_vec.push(f.clone());
                            sign *= val;
                        }
                        result_vec.push((
                            MixedProduct::new(tmp_spins.clone(), boson.clone(), fermion_vec)?,
                            coefficient * sign,
                        ));
                    }
                } else {
                    result_vec.push((
                        MixedProduct::new(tmp_spins.clone(), boson.clone(), vec![])?,
                        coefficient,
                    ));
                }
            }
            if tmp_bosons.is_empty() && !tmp_fermions.is_empty() {
                for fermion in tmp_fermions.iter() {
                    let mut fermion_vec: Vec<FermionProduct> = Vec::new();
                    let mut sign = Complex64::new(1.0, 0.0);
                    for (f, val) in fermion {
                        fermion_vec.push(f.clone());
                        sign *= val;
                    }
                    result_vec.push((
                        MixedProduct::new(tmp_spins.clone(), [], fermion_vec)?,
                        coefficient * sign,
                    ));
                }
            } else if tmp_bosons.is_empty() && tmp_fermions.is_empty() {
                result_vec.push((MixedProduct::new(tmp_spins.clone(), [], [])?, coefficient))
            }
        }
        Ok(result_vec)
    }
}
/// Implements the format function (Display trait) of MixedProduct.
///
impl std::fmt::Display for MixedProduct {
    /// Formats the MixedProduct using the given formatter.
    ///
    /// # Arguments
    ///
    /// * `f` - The formatter to use.
    ///
    /// # Returns
    ///
    /// * `std::fmt::Result` - The formatted MixedProduct.
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut string: String = String::new();
        for spin in self.spins() {
            string.push_str(format!("S{}:", spin).as_str());
        }
        for boson in self.bosons() {
            string.push_str(format!("B{}:", boson).as_str());
        }
        for fermion in self.fermions() {
            string.push_str(format!("F{}:", fermion).as_str());
        }
        write!(f, "{}", string)
    }
}
#[cfg(test)]
mod test {
    use super::*;
    use itertools::Itertools;
    use test_case::test_case;
    #[test_case("", &[], &[]; "empty")]
    #[test_case(":S0X1X:", &[], &[PauliProduct::from_str("0X1X").unwrap()]; "single spin systems")]
    #[test_case(":S0X1X:S0Z:", &[], &[PauliProduct::from_str("0X1X").unwrap(), PauliProduct::from_str("0Z").unwrap()]; "two spin systems")]
    #[test_case(":S0X1X:Bc0a1:", &[BosonProduct::from_str("c0a1").unwrap()], &[PauliProduct::from_str("0X1X").unwrap()]; "spin-boson systems")]
    fn from_string(stringformat: &str, bosons: &[BosonProduct], spins: &[PauliProduct]) {
        let test_new = <MixedProduct as std::str::FromStr>::from_str(stringformat);
        assert!(test_new.is_ok());
        let res = test_new.unwrap();
        let empty_bosons: Vec<BosonProduct> = bosons.to_vec();
        let res_bosons: Vec<BosonProduct> = res.bosons.iter().cloned().collect_vec();
        assert_eq!(res_bosons, empty_bosons);
        let empty_spins: Vec<PauliProduct> = spins.to_vec();
        let res_spins: Vec<PauliProduct> = res.spins.iter().cloned().collect_vec();
        assert_eq!(res_spins, empty_spins);
    }
}