1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
use std::{error::Error, fmt::Debug};
use super::*;
use log::{debug, error};
use tokio::task::JoinHandle;
use tokio_stream::StreamExt;
const ACTIVE_FILE_CONSUMER_IDLE_TIMEOUT: Duration = Duration::from_millis(10);
/// A map of keys to offsets
pub type CompactionMap = HashMap<Key, Offset>;
/// Returned by a compaction reducer function when there is no capacity
/// to process any more keys. A compactor will use this information to
/// determine whether another compaction pass is required.
#[derive(Debug, PartialEq, Eq)]
pub struct MaxKeysReached(pub bool);
/// A compactor strategy's role is to be fed consumer records for a single topic
/// and ultimately determine, for each record key, what the earliest offset is
/// that may be retained. Upon the consumer completing, logged will then proceed
/// to remove unwanted records from the commit log.
#[async_trait]
pub trait CompactionStrategy {
/// The state to manage throughout a compaction run.
type S: Debug + Send;
/// The key function computes a key that will be used by the compactor for
/// subsequent use. In simple scenarios, this key can be the key field from
/// the topic's record itself.
///
/// BEWARE!!! It is good practice to encrypt the record's data. Having a key
/// constructed from record data will expose it to being unencrypted. If this
/// is a problem then override this method to decrypt and the record data
/// each time the [Self::reduce] function is called. The advantage though of
/// simply using the record's key directly is speed as we can avoid a
/// decryption stage.
fn key(r: &ConsumerRecord) -> Key {
r.key
}
/// Produce the initial state for the reducer function.
async fn init(&self) -> Self::S;
/// The reducer function receives a mutable state reference, a key and a consumer
/// record, and returns a bool indicating whether the function has
/// reached its maximum number of distinct keys. If it has then
/// compaction may occur again once the current consumption of records
/// has finished. The goal is to avoid needing to process every type of
/// topic/partition/key in one go i.e. a subset can be processed, and then another
/// subset etc. This strategy helps to manage memory.
fn reduce(state: &mut Self::S, key: Key, record: ConsumerRecord) -> MaxKeysReached;
/// The collect function is responsible for mapping the state into
/// a map of keys and their minimum offsets. The compactor will filter out
/// the first n keys in a subsequent run where n is the number of keys
/// found on the first run. This permits memory to be controlled given
/// a large number of distinct keys. The cost of the re-run strategy is that
/// additional compaction scans will be required, resulting in more I/O.
fn collect(state: Self::S) -> CompactionMap;
}
/// The goal of key-based retention is to keep the latest record for a given
/// key within a topic. This is the same as Kafka's key-based retention and
/// effectively makes the commit log a key value store.
///
/// KeyBasedRetention is guaranteed to return a key that is the record's key.
pub struct KeyBasedRetention {
max_compaction_keys: usize,
}
impl KeyBasedRetention {
/// A max_compaction_keys parameter is used to limit the number of distinct topic/partition/keys
/// processed in a single run of the compactor.
pub fn new(max_compaction_keys: usize) -> Self {
Self {
max_compaction_keys,
}
}
}
/// The state associated with key based retention.
pub type KeyBasedRetentionState = (CompactionMap, usize);
#[async_trait]
impl CompactionStrategy for KeyBasedRetention {
type S = KeyBasedRetentionState;
async fn init(&self) -> KeyBasedRetentionState {
(
CompactionMap::with_capacity(self.max_compaction_keys),
self.max_compaction_keys,
)
}
fn reduce(
state: &mut KeyBasedRetentionState,
key: Key,
record: ConsumerRecord,
) -> MaxKeysReached {
let (compaction_map, max_keys) = state;
let l = compaction_map.len();
match compaction_map.entry(key) {
Entry::Occupied(mut e) => {
*e.get_mut() = record.offset;
MaxKeysReached(false)
}
Entry::Vacant(e) if l < *max_keys => {
e.insert(record.offset);
MaxKeysReached(false)
}
Entry::Vacant(_) => MaxKeysReached(true),
}
}
fn collect(state: KeyBasedRetentionState) -> CompactionMap {
let (compaction_map, _) = state;
compaction_map
}
}
/// Similar to [KeyBasedRetention], but instead of retaining the latest offset for a key. this strategy retains
/// the oldest nth offset associated with a key.
pub struct NthKeyBasedRetention {
max_compaction_keys: usize,
max_records_per_key: usize,
}
impl NthKeyBasedRetention {
/// A max_compaction_keys parameter is used to limit the number of distinct topic/partition/keys
/// processed in a single run of the compactor. The max_records_per_key is used to retain the
/// nth oldest key.
pub fn new(max_compaction_keys: usize, max_records_per_key: usize) -> Self {
Self {
max_compaction_keys,
max_records_per_key,
}
}
}
/// The state associated with nth key based retention.
pub type NthKeyBasedRetentionState = (HashMap<Key, VecDeque<Offset>>, usize, usize);
#[async_trait]
impl CompactionStrategy for NthKeyBasedRetention {
type S = NthKeyBasedRetentionState;
async fn init(&self) -> NthKeyBasedRetentionState {
(
HashMap::with_capacity(self.max_compaction_keys),
self.max_compaction_keys,
self.max_records_per_key,
)
}
fn reduce(
state: &mut NthKeyBasedRetentionState,
key: Key,
record: ConsumerRecord,
) -> MaxKeysReached {
let (compaction_map, max_keys, max_records_per_key) = state;
let l = compaction_map.len();
match compaction_map.entry(key) {
Entry::Occupied(mut e) => {
let offsets = e.get_mut();
if offsets.len() == *max_records_per_key {
offsets.pop_front();
}
offsets.push_back(record.offset);
MaxKeysReached(false)
}
Entry::Vacant(e) if l < *max_keys => {
let mut offsets = VecDeque::with_capacity(*max_records_per_key);
offsets.push_back(record.offset);
e.insert(offsets);
MaxKeysReached(false)
}
Entry::Vacant(_) => MaxKeysReached(true),
}
}
fn collect(state: NthKeyBasedRetentionState) -> CompactionMap {
let (compaction_map, _, _) = state;
compaction_map
.into_iter()
.flat_map(|(k, mut v)| v.pop_front().map(|v| (k, v)))
.collect::<CompactionMap>()
}
}
/// Responsible for interacting with a commit log for the purposes of
/// subscribing to a provided topic.
#[derive(Clone)]
pub(crate) struct ScopedTopicSubscriber<CL>
where
CL: CommitLog,
{
commit_log: CL,
subscriptions: Vec<Subscription>,
}
impl<CL> ScopedTopicSubscriber<CL>
where
CL: CommitLog,
{
pub fn new(commit_log: CL, topic: Topic) -> Self {
Self {
commit_log,
subscriptions: vec![Subscription { topic }],
}
}
pub fn subscribe<'a>(&'a self) -> Pin<Box<dyn Stream<Item = ConsumerRecord> + Send + 'a>> {
self.commit_log.scoped_subscribe(
"compactor",
vec![],
self.subscriptions.clone(),
Some(ACTIVE_FILE_CONSUMER_IDLE_TIMEOUT),
)
}
}
/// Responsible for performing operations on topic storage.
pub(crate) struct TopicStorageOps<E, W>
where
E: Error,
W: Write,
{
age_active: Box<dyn FnMut() -> Result<Option<Offset>, E> + Send>,
new_work_writer: Box<dyn FnMut() -> Result<W, E> + Send>,
replace_history_files: Box<dyn FnMut() -> Result<(), E> + Send>,
}
impl<E, W> TopicStorageOps<E, W>
where
E: Error,
W: Write,
{
pub fn new<AA, NWF, RCHF, RPHF>(
age_active: AA,
new_work_file: NWF,
mut recover_history_files: RCHF,
replace_history_files: RPHF,
) -> Self
where
AA: FnMut() -> Result<Option<Offset>, E> + Send + 'static,
NWF: FnMut() -> Result<W, E> + Send + 'static,
RCHF: FnMut() -> Result<(), E> + Send + 'static,
RPHF: FnMut() -> Result<(), E> + Send + 'static,
{
let _ = recover_history_files();
Self {
age_active: Box::new(age_active),
new_work_writer: Box::new(new_work_file),
replace_history_files: Box::new(replace_history_files),
}
}
pub fn age_active(&mut self) -> Result<Option<Offset>, E> {
(self.age_active)()
}
pub fn new_work_writer(&mut self) -> Result<W, E> {
(self.new_work_writer)()
}
pub fn replace_history_files(&mut self) -> Result<(), E> {
(self.replace_history_files)()
}
}
/// A compactor actually performs the work of compaction. It is a state
/// machine with the following major transitions:
///
/// Idle -> Analyzing -> Compacting -> Idle
///
/// An async function named `step` is provided that will step through
/// the state machine. Its present stratgey is to back-pressure by not
/// returning when the size of the active file has reached the threshold
/// for compaction when compaction is already in progress. If a producer
/// is sensitive to back-pressure (this should be rare given the correct
/// dimensioning of the compactor's configuration) then awaiting on
/// producing messages can be avoided. The primary aim of the compactor is to
/// manage storage space. Exhausting storage can perhaps create a
/// similar number of problems upstream as back-pressuring and awaiting
/// a reply to producing a message. It is left to the application developer
/// on which strategy should be adopted and it will depend on the real-time
/// consequences of being back-pressured.
///
/// While idle, we are notified with the file size of the active portion
/// of the commit log. If the active size exceeds a provided threshold of
/// bytes, e.g. the erase size of a flash drive, then we move to the
/// Analysing stage.
///
/// During analysis, we call upon the compaction strategy to collect a
/// map of offsets. These offsets are then supplied to the Compacting stage.
///
/// The Compacting stage will perform the work of producing a new history
/// file given the map of offsets.
///
/// If the analysis stage did not finish entirely then analysis is run
/// again until it is. Otherwise, back to idle.
///
/// A note on running the strategy again: It is not scalable to store a
/// set of all of the keys we have previously encountered so as to avoid
/// using them again on a subsequent run. Instead, we note the record
/// offset of the first record where the compaction strategy detects
/// that the max number of compaction keys has been reached. We then
/// begin our subsequent scan from that offset. We are therefore
/// guaranteed to encounter a key that was not able to be processed on
/// the run so far. The worst case scenario is that we would re-run
/// compaction having only ever discovered one new key to process given
/// a heavy presence of prior-run keys being detected again before other
/// keys become apparent. Detecting only one new key at a time would
/// slow down compaction overall, and back-pressure would ultimately
/// occur on producing to the log. Compaction should eventually finish
/// though. We also expect the worst-case scenario to be avoidable
/// given consideration by an application developer in terms of the
/// number of keys that can be processed by a strategy in one run. Application
/// developers should at least strive to dimension their compaction
/// strategies with a number of keys that are sufficient to require
/// only a single compaction pass.
pub(crate) struct Compactor<E, W, CL, CS>
where
E: Error,
W: Write,
CL: CommitLog,
CS: CompactionStrategy + Send + 'static,
{
compaction_strategy: CS,
compaction_threshold: u64,
scoped_topic_subscriber: ScopedTopicSubscriber<CL>,
topic_storage_ops: TopicStorageOps<E, W>,
state: State<CS>,
}
#[derive(Debug)]
enum CompactionError {
CannotSerialize,
#[allow(dead_code)]
IoError(io::Error),
}
enum State<CS>
where
CS: CompactionStrategy,
{
Idle,
PreparingAnalyze(Option<Offset>),
Analyzing(JoinHandle<(CS::S, Option<Offset>)>, Offset),
PreparingCompaction(CompactionMap, Offset, Option<Offset>),
Compacting(JoinHandle<Result<(), CompactionError>>, Option<Offset>),
}
impl<CS> Debug for State<CS>
where
CS: CompactionStrategy,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Idle => write!(f, "Idle"),
Self::PreparingAnalyze(arg0) => f.debug_tuple("PreparingAnalyze").field(arg0).finish(),
Self::Analyzing(arg0, arg1) => {
f.debug_tuple("Analyzing").field(arg0).field(arg1).finish()
}
Self::PreparingCompaction(arg0, arg1, arg2) => f
.debug_tuple("PreparingCompaction")
.field(arg0)
.field(arg1)
.field(arg2)
.finish(),
Self::Compacting(arg0, arg1) => {
f.debug_tuple("Compacting").field(arg0).field(arg1).finish()
}
}
}
}
impl<E, W, CL, CS> Compactor<E, W, CL, CS>
where
E: Error + Send + 'static,
W: Write + Send + 'static,
CL: CommitLog + Clone + Send + 'static,
CS: CompactionStrategy + Send + 'static,
{
pub fn new(
compaction_strategy: CS,
compaction_threshold: u64,
scoped_topic_subscriber: ScopedTopicSubscriber<CL>,
topic_storage_ops: TopicStorageOps<E, W>,
) -> Self {
Self {
compaction_strategy,
compaction_threshold,
scoped_topic_subscriber,
topic_storage_ops,
state: State::Idle,
}
}
pub fn is_idle(&self) -> bool {
matches!(self.state, State::Idle)
}
pub async fn step(&mut self, mut active_file_size: u64) {
loop {
let mut step_again = false;
let next_state = match &mut self.state {
State::Idle if active_file_size < self.compaction_threshold => None,
State::Idle => {
step_again = true;
Some(State::PreparingAnalyze(None))
}
State::PreparingAnalyze(mut next_start_offset) => {
let r = self.topic_storage_ops.age_active();
if let Ok(Some(end_offset)) = r {
let task_scoped_topic_subscriber = self.scoped_topic_subscriber.clone();
let task_init = self.compaction_strategy.init().await;
let h = tokio::spawn(async move {
let mut strategy_state = task_init;
let mut records = task_scoped_topic_subscriber.subscribe();
let start_offset = next_start_offset;
next_start_offset = None;
while let Some(record) = records.next().await {
let record_offset = record.offset;
if record_offset > end_offset {
break;
}
if Some(record_offset) >= start_offset
&& matches!(
CS::reduce(&mut strategy_state, CS::key(&record), record),
MaxKeysReached(true)
)
&& next_start_offset.is_none()
{
next_start_offset = Some(record_offset);
}
}
(strategy_state, next_start_offset)
});
step_again = true;
Some(State::Analyzing(h, end_offset))
} else {
error!("Could not age the active file/locate end offset. Aborting compaction. {r:?}");
Some(State::Idle)
}
}
State::Analyzing(h, end_offset) => {
step_again = active_file_size >= self.compaction_threshold;
if step_again || h.is_finished() {
let r = h.await;
let s = if let Ok((strategy_state, next_start_offset)) = r {
let compaction_map = CS::collect(strategy_state);
State::PreparingCompaction(
compaction_map,
*end_offset,
next_start_offset,
)
} else {
error!("Some error analysing compaction: {r:?}");
State::Idle
};
Some(s)
} else {
None
}
}
State::PreparingCompaction(compaction_map, end_offset, next_start_offset) => {
let r = self.topic_storage_ops.new_work_writer();
if let Ok(mut writer) = r {
let task_compaction_map = compaction_map.clone();
let task_end_offset = *end_offset;
let task_scoped_topic_subscriber = self.scoped_topic_subscriber.clone();
let h = tokio::spawn(async move {
let mut records = task_scoped_topic_subscriber.subscribe();
while let Some(record) = records.next().await {
if record.offset > task_end_offset {
break;
}
let key = CS::key(&record);
let copy = task_compaction_map
.get(&key)
.map(|min_offset| record.offset >= *min_offset)
.unwrap_or(true);
if copy {
let storable_record = StorableRecord {
version: 0,
headers: record
.headers
.into_iter()
.map(|h| StorableHeader {
key: h.key,
value: h.value,
})
.collect(),
timestamp: record.timestamp,
key: record.key,
value: record.value,
offset: record.offset,
};
let Ok(buf) =
postcard::to_stdvec_crc32(&storable_record, CRC.digest())
else {
return Err(CompactionError::CannotSerialize);
};
writer.write_all(&buf).map_err(CompactionError::IoError)?;
}
}
writer.flush().map_err(CompactionError::IoError)
});
step_again = true;
Some(State::Compacting(h, *next_start_offset))
} else {
error!("Could not create the new temp file. Aborting compaction.");
Some(State::Idle)
}
}
State::Compacting(h, next_start_offset) => {
step_again = active_file_size >= self.compaction_threshold;
if step_again || h.is_finished() {
let r = h.await;
let s = if r.is_ok() {
let r = self.topic_storage_ops.replace_history_files();
if r.is_ok() {
if next_start_offset.is_some() {
warn!("Subsequent logging pass required from offset {next_start_offset:?}");
State::PreparingAnalyze(*next_start_offset)
} else {
State::Idle
}
} else {
error!("Some error during compaction: {r:?}");
State::Idle
}
} else {
error!(
"Some error replacing the history file during compaction: {r:?}"
);
State::Idle
};
Some(s)
} else {
None
}
}
};
if let Some(next_state) = next_state {
debug!("Compaction moving to {next_state:?}");
self.state = next_state;
}
if !step_again {
break;
}
active_file_size = 0;
}
}
}
#[cfg(test)]
mod tests {
use std::{
env,
sync::atomic::{AtomicU32, Ordering},
};
use super::*;
#[tokio::test]
async fn test_key_based_retention() {
let topic = Topic::from("my-topic");
let r0 = ConsumerRecord {
topic: topic.clone(),
headers: vec![],
timestamp: None,
key: 0,
value: b"some-value-2".to_vec(),
partition: 0,
offset: 0,
};
let r1 = ConsumerRecord {
topic: topic.clone(),
headers: vec![],
timestamp: None,
key: 1,
value: b"some-value-2".to_vec(),
partition: 0,
offset: 1,
};
let r2 = ConsumerRecord {
topic: topic.clone(),
headers: vec![],
timestamp: None,
key: 0,
value: b"some-value-2".to_vec(),
partition: 0,
offset: 2,
};
let mut expected_compactor_result = HashMap::new();
expected_compactor_result.insert(0, 2);
let compaction = KeyBasedRetention::new(1);
let mut state = compaction.init().await;
assert_eq!(
KeyBasedRetention::reduce(&mut state, KeyBasedRetention::key(&r0), r0),
MaxKeysReached(false)
);
assert_eq!(
KeyBasedRetention::reduce(&mut state, KeyBasedRetention::key(&r1), r1),
MaxKeysReached(true),
);
assert_eq!(
KeyBasedRetention::reduce(&mut state, KeyBasedRetention::key(&r2), r2),
MaxKeysReached(false)
);
assert_eq!(KeyBasedRetention::collect(state), expected_compactor_result);
}
#[tokio::test]
async fn test_nth_key_based_retention() {
let topic = Topic::from("my-topic");
let r0 = ConsumerRecord {
topic: topic.clone(),
headers: vec![],
timestamp: None,
key: 0,
value: b"some-value-2".to_vec(),
partition: 0,
offset: 0,
};
let r1 = ConsumerRecord {
topic: topic.clone(),
headers: vec![],
timestamp: None,
key: 1,
value: b"some-value-2".to_vec(),
partition: 0,
offset: 1,
};
let r2 = ConsumerRecord {
topic: topic.clone(),
headers: vec![],
timestamp: None,
key: 0,
value: b"some-value-2".to_vec(),
partition: 0,
offset: 2,
};
let r3 = ConsumerRecord {
topic: topic.clone(),
headers: vec![],
timestamp: None,
key: 0,
value: b"some-value-2".to_vec(),
partition: 0,
offset: 3,
};
let mut expected_compactor_result = HashMap::new();
expected_compactor_result.insert(0, 2);
let compaction = NthKeyBasedRetention::new(1, 2);
let mut state = compaction.init().await;
assert_eq!(
NthKeyBasedRetention::reduce(&mut state, NthKeyBasedRetention::key(&r0), r0),
MaxKeysReached(false)
);
assert_eq!(
NthKeyBasedRetention::reduce(&mut state, NthKeyBasedRetention::key(&r1), r1),
MaxKeysReached(true),
);
assert_eq!(
NthKeyBasedRetention::reduce(&mut state, NthKeyBasedRetention::key(&r2), r2),
MaxKeysReached(false)
);
assert_eq!(
NthKeyBasedRetention::reduce(&mut state, NthKeyBasedRetention::key(&r3), r3),
MaxKeysReached(false)
);
assert_eq!(
NthKeyBasedRetention::collect(state),
expected_compactor_result
);
}
// Test the ability to put compaction strategies together that retains
// the last ten copies of a specific type of key for a topic, but the rest of the
// keys should leverage key based retention.
// We will have events where the battery level and name change events will use
// key based retention, but we keep ten copies of the temperature sensed events via
// nth key based retention.
// We start off with our modelling of events.
type TemperatureSensorId = u32;
#[derive(Deserialize, Serialize)]
enum TemperatureSensorEvent {
BatteryLevelSensed(TemperatureSensorId, u32),
NameChanged(TemperatureSensorId, String),
TemperatureSensed(TemperatureSensorId, u32),
}
// Our event keys will occupy the top 12 bits of the key, meaning
// that we can have 4K types of record. We use the bottom 32
// bits as the sensor id.
const EVENT_TYPE_BIT_SHIFT: usize = 52;
// Convert from events into keys - this is a one-way process.
impl From<TemperatureSensorEvent> for Key {
fn from(val: TemperatureSensorEvent) -> Self {
let event_key = match val {
TemperatureSensorEvent::BatteryLevelSensed(id, _) => {
TemperatureSensorEventKey::BatteryLevelSensed(id)
}
TemperatureSensorEvent::NameChanged(id, _) => {
TemperatureSensorEventKey::NameChanged(id)
}
TemperatureSensorEvent::TemperatureSensed(id, _) => {
TemperatureSensorEventKey::TemperatureSensed(id)
}
};
let (event_type, id) = match event_key {
TemperatureSensorEventKey::BatteryLevelSensed(id) => (0u64, id),
TemperatureSensorEventKey::NameChanged(id) => (1u64, id),
TemperatureSensorEventKey::TemperatureSensed(id) => (2u64, id),
};
event_type << EVENT_TYPE_BIT_SHIFT | (id as u64)
}
}
// Introduce a type that represents just the key components of our
// event model object. This is so that we can conveniently coearce
// keys into something readable in the code.
enum TemperatureSensorEventKey {
BatteryLevelSensed(TemperatureSensorId),
NameChanged(TemperatureSensorId),
TemperatureSensed(TemperatureSensorId),
}
struct TemperatureSensorEventKeyParseError;
impl TryFrom<Key> for TemperatureSensorEventKey {
type Error = TemperatureSensorEventKeyParseError;
fn try_from(value: Key) -> Result<Self, Self::Error> {
let id = (value & 0x0000_0000_FFFF_FFFF) as u32;
match value >> EVENT_TYPE_BIT_SHIFT {
0 => Ok(TemperatureSensorEventKey::BatteryLevelSensed(id)),
1 => Ok(TemperatureSensorEventKey::NameChanged(id)),
2 => Ok(TemperatureSensorEventKey::TemperatureSensed(id)),
_ => Err(TemperatureSensorEventKeyParseError),
}
}
}
// We introduce a type here that captures behavior associated
// with our specific topic, including the ability to be registered
// for compaction.
struct TemperatureSensorTopic;
impl TemperatureSensorTopic {
fn name() -> Topic {
Topic::from("temp-sensor-events")
}
}
// This is the state object that will be used during compaction.
// We are using a hybrid of retention strategies, and of course,
// you can have your own.
#[derive(Debug)]
struct TemperatureSensorCompactionState {
temperature_events: NthKeyBasedRetentionState,
remaining_events: KeyBasedRetentionState,
}
const MAX_TEMPERATURE_SENSOR_IDS_PER_COMPACTION: usize = 10;
const MAX_TEMPERATURE_SENSOR_TEMPS_PER_ID: usize = 10;
#[async_trait]
impl CompactionStrategy for TemperatureSensorTopic {
type S = TemperatureSensorCompactionState;
async fn init(&self) -> TemperatureSensorCompactionState {
TemperatureSensorCompactionState {
temperature_events: NthKeyBasedRetention::new(
MAX_TEMPERATURE_SENSOR_IDS_PER_COMPACTION,
MAX_TEMPERATURE_SENSOR_TEMPS_PER_ID,
)
.init()
.await,
// We only have two types of event that we wish to use
// with key based retention: battery level and name changes.
remaining_events: KeyBasedRetention::new(
2 * MAX_TEMPERATURE_SENSOR_IDS_PER_COMPACTION,
)
.init()
.await,
}
}
fn reduce(
state: &mut TemperatureSensorCompactionState,
key: Key,
record: ConsumerRecord,
) -> MaxKeysReached {
let Ok(event_type) = TemperatureSensorEventKey::try_from(key) else {
return MaxKeysReached(false);
};
if matches!(event_type, TemperatureSensorEventKey::TemperatureSensed(_)) {
NthKeyBasedRetention::reduce(&mut state.temperature_events, key, record)
} else {
KeyBasedRetention::reduce(&mut state.remaining_events, key, record)
}
}
fn collect(state: TemperatureSensorCompactionState) -> CompactionMap {
let mut compaction_map = NthKeyBasedRetention::collect(state.temperature_events);
compaction_map.extend(KeyBasedRetention::collect(state.remaining_events));
compaction_map
}
}
// Now let's test all of that out!
#[tokio::test]
async fn test_both_retention_types() {
let e0 = TemperatureSensorEvent::BatteryLevelSensed(0, 10);
let v0 = postcard::to_stdvec(&e0).unwrap();
let r0 = ConsumerRecord {
topic: TemperatureSensorTopic::name(),
headers: vec![],
timestamp: None,
key: e0.into(),
value: v0,
partition: 0,
offset: 0,
};
let e1 = TemperatureSensorEvent::BatteryLevelSensed(0, 8);
let v1 = postcard::to_stdvec(&e1).unwrap();
let r1 = ConsumerRecord {
topic: TemperatureSensorTopic::name(),
headers: vec![],
timestamp: None,
key: e1.into(),
value: v1,
partition: 0,
offset: 1,
};
let e2 = TemperatureSensorEvent::TemperatureSensed(0, 30);
let v2 = postcard::to_stdvec(&e2).unwrap();
let r2 = ConsumerRecord {
topic: TemperatureSensorTopic::name(),
headers: vec![],
timestamp: None,
key: e2.into(),
value: v2,
partition: 0,
offset: 2,
};
let e3 = TemperatureSensorEvent::TemperatureSensed(0, 31);
let v3 = postcard::to_stdvec(&e3).unwrap();
let r3 = ConsumerRecord {
topic: TemperatureSensorTopic::name(),
headers: vec![],
timestamp: None,
key: e3.into(),
value: v3,
partition: 0,
offset: 3,
};
let mut expected_compactor_result = HashMap::new();
expected_compactor_result.insert(r1.key, 1);
expected_compactor_result.insert(r2.key, 2);
let compaction = TemperatureSensorTopic;
let mut state = compaction.init().await;
assert_eq!(
TemperatureSensorTopic::reduce(&mut state, TemperatureSensorTopic::key(&r0), r0),
MaxKeysReached(false)
);
assert_eq!(
TemperatureSensorTopic::reduce(&mut state, TemperatureSensorTopic::key(&r1), r1),
MaxKeysReached(false),
);
assert_eq!(
TemperatureSensorTopic::reduce(&mut state, TemperatureSensorTopic::key(&r2), r2),
MaxKeysReached(false)
);
assert_eq!(
TemperatureSensorTopic::reduce(&mut state, TemperatureSensorTopic::key(&r3), r3),
MaxKeysReached(false)
);
assert_eq!(
TemperatureSensorTopic::collect(state),
expected_compactor_result
);
}
#[derive(Clone)]
struct TestCommitLog;
#[async_trait]
impl CommitLog for TestCommitLog {
async fn offsets(&self, _topic: Topic, _partition: Partition) -> Option<PartitionOffsets> {
todo!()
}
async fn produce(&self, _record: ProducerRecord) -> ProduceReply {
todo!()
}
fn scoped_subscribe<'a>(
&'a self,
_consumer_group_name: &str,
_offsets: Vec<ConsumerOffset>,
_subscriptions: Vec<Subscription>,
_idle_timeout: Option<Duration>,
) -> Pin<Box<dyn Stream<Item = ConsumerRecord> + Send + 'a>> {
Box::pin(stream!({
yield ConsumerRecord {
topic: Topic::from(""),
headers: vec![],
timestamp: None,
key: 0,
value: b"".to_vec(),
partition: 0,
offset: 0,
};
yield ConsumerRecord {
topic: Topic::from(""),
headers: vec![],
timestamp: None,
key: 1,
value: b"".to_vec(),
partition: 0,
offset: 1,
};
}))
}
}
struct TestCompactionStrategy;
#[async_trait]
impl CompactionStrategy for TestCompactionStrategy {
type S = CompactionMap;
async fn init(&self) -> Self::S {
CompactionMap::new()
}
fn reduce(state: &mut Self::S, key: Key, record: ConsumerRecord) -> MaxKeysReached {
if state.is_empty() {
state.insert(key, record.offset);
MaxKeysReached(false)
} else {
MaxKeysReached(true)
}
}
fn collect(state: Self::S) -> CompactionMap {
state
}
}
#[tokio::test]
async fn test_compactor_end_to_end() {
let topic = Topic::from("my-topic");
let compaction_dir = env::temp_dir().join("test_compactor_end_to_end");
let _ = fs::remove_dir_all(&compaction_dir);
let _ = fs::create_dir_all(&compaction_dir);
println!("Writing to {compaction_dir:?}");
let cl = TestCommitLog;
let cs = TestCompactionStrategy;
let sts = ScopedTopicSubscriber::new(cl, topic);
let num_ages = Arc::new(AtomicU32::new(0));
let tso_num_ages = num_ages.clone();
let num_new_work_writers = Arc::new(AtomicU32::new(0));
let tso_num_new_work_writers = num_new_work_writers.clone();
let num_recover_histories = Arc::new(AtomicU32::new(0));
let tso_num_recover_histories = num_recover_histories.clone();
let num_rename_histories = Arc::new(AtomicU32::new(0));
let tso_num_rename_histories = num_rename_histories.clone();
let work_file = compaction_dir.join("work_file");
let tso_work_file = work_file.clone();
let tso = TopicStorageOps::new(
move || {
tso_num_ages.clone().fetch_add(1, Ordering::Relaxed);
Ok(Some(1))
},
move || {
tso_num_new_work_writers
.clone()
.fetch_add(1, Ordering::Relaxed);
File::create(tso_work_file.clone())
},
move || {
tso_num_recover_histories
.clone()
.fetch_add(1, Ordering::Relaxed);
Ok(())
},
move || {
tso_num_rename_histories
.clone()
.fetch_add(1, Ordering::Relaxed);
Ok(())
},
);
let mut c = Compactor::new(cs, 1, sts, tso);
let mut steps = 1u32;
c.step(1).await;
while steps < 10 && !c.is_idle() {
c.step(1).await;
steps = steps.wrapping_add(1);
}
assert!(c.is_idle());
assert_eq!(num_ages.load(Ordering::Relaxed), 2);
assert_eq!(num_new_work_writers.load(Ordering::Relaxed), 2);
assert_eq!(num_recover_histories.load(Ordering::Relaxed), 1);
assert_eq!(num_rename_histories.load(Ordering::Relaxed), 2);
let mut f = File::open(work_file).unwrap();
let mut buf = vec![];
let _ = f.read_to_end(&mut buf).unwrap();
// Two records should have been written back out.
assert_eq!(
buf,
[0, 0, 0, 0, 0, 0, 138, 124, 42, 87, 0, 0, 0, 1, 0, 1, 247, 109, 0, 0]
);
}
}