1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
//! Encode and decode `u32`s with the Stream VByte format.
//!
//! ```
//! use stream_vbyte::*;
//!
//! let nums: Vec<u32> = (0..12345).collect();
//! let mut encoded_data = Vec::new();
//! // make some space to encode into
//! encoded_data.resize(5 * nums.len(), 0x0);
//!
//! // use Scalar implementation that works on any hardware
//! let encoded_len = encode::<Scalar>(&nums, &mut encoded_data);
//! println!("Encoded {} u32s into {} bytes", nums.len(), encoded_len);
//!
//! let mut decoded_nums = Vec::new();
//! decoded_nums.resize(nums.len(), 0);
//! // now decode
//! decode::<Scalar>(&encoded_data, nums.len(), &mut decoded_nums);
//!
//! assert_eq!(nums, decoded_nums);
//!
//! ```
//!
extern crate byteorder;

use std::cmp;
use byteorder::{ByteOrder, LittleEndian};

mod tables;

#[cfg(feature = "x86_ssse3")]
pub mod x86;

pub trait Encoder {
    /// Encode all input numbers that are in groups of 4.
    /// `control_bytes` will be exactly as long as the number of complete 4-number quads in `input`.
    /// Control bytes are written to `control_bytes` and encoded numbers to `encoded_nums`.
    /// Returns the total bytes written to `encoded_nums`.
    fn encode_quads(input: &[u32], control_bytes: &mut [u8], encoded_nums: &mut [u8]) -> usize;
}

pub trait Decoder {
    /// Decode encoded numbers in groups of 4 only.
    /// `control_bytes` will be exactly as long as the number of complete 4-number quads in `input`.
    /// Returns the number of numbers decoded and the total number of bytes read from
    /// `encoded_nums`.
    fn decode_quads(control_bytes: &[u8], encoded_nums: &[u8], output: &mut [u32]) -> (usize, usize);
}

/// Regular ol' byte shuffling.
/// Works on every platform, but it's not the quickest.
pub struct Scalar;

impl Encoder for Scalar {
    fn encode_quads(input: &[u32], control_bytes: &mut [u8], encoded_nums: &mut [u8]) -> usize {
        let mut bytes_written = 0;
        let mut nums_encoded = 0;

        for quads_encoded in 0..control_bytes.len() {
            let num0 = input[nums_encoded];
            let num1 = input[nums_encoded + 1];
            let num2 = input[nums_encoded + 2];
            let num3 = input[nums_encoded + 3];

            let len0 = encode_num_scalar(num0, &mut encoded_nums[bytes_written..]);
            let len1 = encode_num_scalar(num1, &mut encoded_nums[bytes_written + len0..]);
            let len2 = encode_num_scalar(num2, &mut encoded_nums[bytes_written + len0 + len1..]);
            let len3 = encode_num_scalar(num3, &mut encoded_nums[bytes_written + len0 + len1 + len2..]);

            // this is a few percent faster in my testing than using control_bytes.iter_mut()
            control_bytes[quads_encoded] = ((len0 - 1) | (len1 - 1) << 2 | (len2 - 1) << 4 | (len3 - 1) << 6) as u8;

            bytes_written += len0 + len1 + len2 + len3;
            nums_encoded += 4;
        }

        bytes_written
    }
}

impl Decoder for Scalar {
    fn decode_quads(_control_bytes: &[u8], _encoded_nums: &[u8], _output: &mut [u32]) -> (usize, usize) {
        // let the scalar loop decode the whole thing
        (0, 0)
    }
}

/// Encode the input slice into the output slice. The worst-case encoded length is 4 bytes per `u32`
/// plus another byte for every 4 `u32`s, including a trailing partial 4-some.
/// Returns the number of bytes written to the `output` slice.
pub fn encode<T: Encoder>(input: &[u32], output: &mut [u8]) -> usize {
    if input.len() == 0 {
        return 0;
    }

    let complete_quads = input.len() / 4;
    let leftover_numbers = input.len() % 4;
    let control_bytes_len = (input.len() + 3) / 4;

    let (control_bytes, encoded_bytes) = output.split_at_mut(control_bytes_len);

    let mut num_bytes_written = T::encode_quads(&input[..],
                                                &mut control_bytes[0..complete_quads],
                                                &mut encoded_bytes[..]);

    // last control byte, if there were leftovers
    if leftover_numbers > 0 {
        debug_assert!(leftover_numbers < 4);

        let mut control_byte = 0;
        let mut nums_encoded = complete_quads * 4;

        for i in 0..leftover_numbers {
            let num = input[nums_encoded];
            let len = encode_num_scalar(num, &mut encoded_bytes[num_bytes_written..]);

            control_byte |= ((len - 1) as u8) << (i * 2);

            num_bytes_written += len;
            nums_encoded += 1;
        }
        control_bytes[complete_quads] = control_byte;
    }

    control_bytes.len() + num_bytes_written
}

/// Decode `count` numbers from `input`, appending them to `output`. The `count` must be the same
/// as the number of items originally encoded.
/// Returns the number of bytes read from `input`.
pub fn decode<T: Decoder>(input: &[u8], count: usize, output: &mut [u32]) -> usize {
    // 4 numbers to decode per control byte
    let complete_quads = count / 4;
    let leftover_numbers = count % 4;
    let control_bytes_len = (count + 3) / 4;
    let control_bytes = &input[0..control_bytes_len];
    // data immediately follows control bytes
    let encoded_nums = &input[control_bytes_len..];

    let (mut nums_decoded, mut bytes_read) = T::decode_quads(&control_bytes[0..complete_quads],
                                                         &encoded_nums[..],
                                                         &mut output[..]);

    let control_bytes_decoded = nums_decoded / 4;

    // handle any remaining full quads
    for &control_byte in control_bytes[control_bytes_decoded..complete_quads].iter() {
        let (len0, len1, len2, len3) = tables::SCALAR_DECODE_TABLE[control_byte as usize];
        let len0 = len0 as usize;
        let len1 = len1 as usize;
        let len2 = len2 as usize;
        let len3 = len3 as usize;

        output[nums_decoded] = decode_num_scalar(len0, &encoded_nums[bytes_read..]);
        output[nums_decoded + 1] = decode_num_scalar(len1, &encoded_nums[bytes_read + len0..]);
        output[nums_decoded + 2] = decode_num_scalar(len2, &encoded_nums[bytes_read + len0 + len1..]);
        output[nums_decoded + 3] = decode_num_scalar(len3, &encoded_nums[bytes_read + len0 + len1 + len2..]);

        bytes_read += len0 + len1 + len2 + len3;
        nums_decoded += 4;
    }

    // incomplete quad, if any
    if leftover_numbers > 0 {
        debug_assert!(leftover_numbers < 4);

        let control_byte = control_bytes[complete_quads];
        let mut nums_decoded = 4 * complete_quads;

        for i in 0..leftover_numbers {
            let bitmask = 0x03 << (i * 2);
            let len = ((control_byte & bitmask) >> (i * 2)) as usize + 1;
            output[nums_decoded] = decode_num_scalar(len, &encoded_nums[bytes_read..]);
            nums_decoded += 1;
            bytes_read += len;
        }
    }

    control_bytes.len() + bytes_read
}

fn encode_num_scalar(num: u32, output: &mut [u8]) -> usize {
    // this will calculate 0_u32 as taking 0 bytes, so ensure at least 1 byte
    let len = cmp::max(1_usize, 4 - num.leading_zeros() as usize / 8);
    let mut buf = [0_u8; 4];
    LittleEndian::write_u32(&mut buf, num);

    for i in 0..len {
        output[i] = buf[i];
    }

    len
}

fn decode_num_scalar(len: usize, input: &[u8]) -> u32 {
    let mut buf = [0_u8; 4];
    &buf[0..len].copy_from_slice(&input[0..len]);

    LittleEndian::read_u32(&buf)
}

#[cfg(test)]
mod tests {
    extern crate rand;

    use super::*;
    use self::rand::Rng;

    #[test]
    fn encode_num_zero() {
        let mut buf = [0; 4];

        assert_eq!(1, encode_num_scalar(0, &mut buf));
        assert_eq!(&[0x00_u8, 0x00_u8, 0x00_u8, 0x00_u8], &buf);
    }

    #[test]
    fn encode_num_bottom_two_bytes() {
        let mut buf = [0; 4];

        assert_eq!(2, encode_num_scalar((1 << 16) - 1, &mut buf));
        assert_eq!(&[0xFF_u8, 0xFF_u8, 0x00_u8, 0x00_u8], &buf);
    }

    #[test]
    fn encode_num_middleish() {
        let mut buf = [0; 4];

        assert_eq!(3, encode_num_scalar((1 << 16) + 3, &mut buf));
        assert_eq!(&[0x03_u8, 0x00_u8, 0x01_u8, 0x00_u8], &buf);
    }

    #[test]
    fn encode_num_u32_max() {
        let mut buf = [0; 4];

        assert_eq!(4, encode_num_scalar(u32::max_value(), &mut buf));
        assert_eq!(&[0xFF_u8, 0xFF_u8, 0xFF_u8, 0xFF_u8], &buf);
    }

    #[test]
    fn decode_num_zero() {
        assert_eq!(0, decode_num_scalar(1, &vec![0, 0, 0, 0]));
    }

    #[test]
    fn decode_num_u32_max() {
        assert_eq!(u32::max_value(), decode_num_scalar(4, &vec![0xFF, 0xFF, 0xFF, 0xFF]));
    }

    #[test]
    fn decode_num_4_byte() {
        // 0x04030201
        assert_eq!((4 << 24) + (3 << 16) + (2 << 8) + 1, decode_num_scalar(4, &vec![1, 2, 3, 4]));
    }

    #[test]
    fn decode_num_3_byte() {
        // 0x04030201
        assert_eq!((3 << 16) + (2 << 8) + 1, decode_num_scalar(3, &vec![1, 2, 3]));
    }

    #[test]
    fn decode_num_2_byte() {
        // 0x04030201
        assert_eq!((2 << 8) + 1, decode_num_scalar(2, &vec![1, 2]));
    }

    #[test]
    fn decode_num_1_byte() {
        // 0x04030201
        assert_eq!(1, decode_num_scalar(1, &vec![1]));
    }

    #[test]
    fn encode_decode_roundtrip_random() {
        let mut rng = rand::weak_rng();

        let mut buf = [0; 4];
        for _ in 0..100_000 {
            let num: u32 = rng.gen();
            let len = encode_num_scalar(num, &mut buf);
            let decoded = decode_num_scalar(len, &buf);

            assert_eq!(num, decoded);
        }
    }
}