1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

use std::{
    cmp::min,
    collections::{btree_map, BTreeMap, BTreeSet},
};

use devicemapper::Sectors;

use crate::{
    engine::{
        strat_engine::{backstore::transaction::RequestTransaction, metadata::BlockdevSize},
        types::DevUuid,
    },
    stratis::{StratisError, StratisResult},
};

/// A structure that keeps a bunch of segments organized by their initial
/// index. This is principally useful for the range allocator.
/// It enforces some invariants:
/// * No 0 length segment
/// * No contiguous segments; if two segments would be contiguous they are
/// coalesced into a single segment.
/// * No overlapping segments
/// * No segments that extend beyond limit
#[derive(Debug, Clone)]
pub struct PerDevSegments {
    // the end, no sectors can be allocated beyond this point
    limit: Sectors,
    // A map of chunks of data allocated for a single blockdev. The LHS
    // is the offset from the start of the device, the RHS is the length.
    // Uses a BTReeMap so that an iteration over the elements in the tree
    // will be ordered by the value of the LHS.
    used: BTreeMap<Sectors, Sectors>,
}

impl PerDevSegments {
    /// Create a new PerDevSegments struct with the designated limit and no
    /// used ranges.
    pub fn new(limit: Sectors) -> PerDevSegments {
        PerDevSegments {
            limit,
            used: BTreeMap::new(),
        }
    }

    /// The number of distinct ranges
    pub fn len(&self) -> usize {
        self.used.len()
    }

    /// The number of sectors occupied by all the ranges
    pub fn sum(&self) -> Sectors {
        self.used.values().cloned().sum()
    }

    /// The boundary past which no allocation is considered.
    pub fn limit(&self) -> Sectors {
        self.limit
    }

    pub fn iter(&self) -> Iter<'_> {
        Iter {
            items: self.used.iter(),
        }
    }

    // Locate two adjacent keys in used. LHS <= value and RHS >= value.
    // If LHS == RHS then they both equal value.
    // Postcondition: result == (None, None) <=> used.len() == 0
    fn locate_prev_and_next(&self, value: Sectors) -> (Option<Sectors>, Option<Sectors>) {
        let mut prev = None;
        let mut next = None;
        for &key in self.used.keys() {
            if value >= key {
                prev = Some(key);
            }
            if value <= key {
                next = Some(key);
                break;
            }
        }

        (prev, next)
    }

    // Return the result of what should be obtained on an insertion. A None at
    // the start or the end of the tuple indicates a contiguous range, hence
    // a removal from used if it was previously present.
    // Precondition: prev.is_some() -> prev in self.used
    // Precondition: next.is_some() -> next in self.used
    // Precondition: range.1 != 0
    // Postcondition: prev.is_none() -> result.0.is_none()
    // Postcondition: next.is_none() -> result.2.is_none()
    // Postcondition: prev.is_some() && result.0.is_none() -> result.1.0 == prev
    // Postcondition: range.0 + range.1 <= Sectors max
    #[allow(clippy::type_complexity)]
    fn insertion_result(
        &self,
        prev: Option<Sectors>,
        next: Option<Sectors>,
        range: &(Sectors, Sectors),
    ) -> StratisResult<(
        Option<(Sectors, Sectors)>,
        (Sectors, Sectors),
        Option<(Sectors, Sectors)>,
    )> {
        let &(start, len) = range;

        assert!(len != Sectors(0));

        let end = if let Some(end) = start.checked_add(len) {
            end
        } else {
            return Err(StratisError::Msg(format!(
                "range ({start}, {len}) extends beyond maximum possible size"
            )));
        };

        if end > self.limit {
            return Err(StratisError::Msg(format!(
                "range ({}, {}) extends beyond limit {}",
                start, len, self.limit
            )));
        };

        let res: (Sectors, Sectors) = (start, len);

        let (lhs, (new_start, new_len)) = if let Some(prev) = prev {
            let prev_len: Sectors = *self.used.get(&prev).expect("see precondition");
            if prev + prev_len > start {
                return Err(StratisError::Msg(format!(
                    "range to add ({start}, {len}) overlaps previous range ({prev}, {prev_len})"
                )));
            }

            if prev + prev_len == start {
                (None, (prev, prev_len + len))
            } else {
                (Some((prev, prev_len)), res)
            }
        } else {
            (None, res)
        };

        let (res, rhs) = if let Some(next) = next {
            if new_start + new_len > next {
                return Err(StratisError::Msg(format!(
                    "range to add ({new_start}, {new_len}) overlaps subsequent range starting at {next}"
                )));
            }

            let next_len: Sectors = *self.used.get(&next).expect("see precondition");

            if new_start + new_len == next {
                ((new_start, new_len + next_len), None)
            } else {
                ((new_start, new_len), Some((next, next_len)))
            }
        } else {
            ((new_start, new_len), None)
        };

        Ok((lhs, res, rhs))
    }

    /// Insert specified range into self. Return an error if there is any
    /// overlap between the specified range and existing ranges. If the range
    /// is contiguous with an existing range, combine the two.
    /// Inserting a 0 length range has no effect.
    pub fn insert(&mut self, range: &(Sectors, Sectors)) -> StratisResult<()> {
        let &(start, len) = range;

        if start > self.limit {
            return Err(StratisError::Msg(format!(
                "value specified for start of range, {}, exceeds limit, {}",
                start, self.limit
            )));
        }

        if len == Sectors(0) {
            return Ok(());
        }

        let (prev, next) = self.locate_prev_and_next(start);
        let (prev_res, (new_start, new_len), next_res) =
            self.insertion_result(prev, next, range)?;

        if let Some(prev) = prev {
            if prev_res.is_none() {
                self.used.remove(&prev);
            }
        }

        if let Some(next) = next {
            if next_res.is_none() {
                self.used.remove(&next);
            }
        }

        assert!(
            self.used.insert(new_start, new_len).is_none(),
            "removed in previous steps if present"
        );

        Ok(())
    }

    /// Insert specified ranges into self. Return an error if any of the
    /// ranges overlaps with existing ranges in self or if the specified ranges
    /// overlap w/ each other.
    /// The operation is atomic; either all ranges or none will be inserted.
    pub fn insert_all(&mut self, ranges: &[(Sectors, Sectors)]) -> StratisResult<()> {
        let mut temp = PerDevSegments::new(self.limit);
        for range in ranges.iter() {
            temp.insert(range)?;
        }

        let union = self.union(&temp)?;

        self.used = union.used;

        Ok(())
    }

    /// Take the union of two PerDevSegments. Require that both PerDevSegments
    /// objects have the same limit, for simplicity.
    pub fn union(&self, other: &PerDevSegments) -> StratisResult<PerDevSegments> {
        if self.limit != other.limit {
            return Err(StratisError::Msg(
                "limits differ between PerDevSegments structs, can not do a union".into(),
            ));
        }

        let keys = self
            .used
            .keys()
            .chain(other.used.keys())
            .cloned()
            .collect::<BTreeSet<Sectors>>();

        let mut union = PerDevSegments::new(self.limit);

        for key in keys.iter().rev() {
            if let Some(val) = self.used.get(key) {
                union.insert(&(*key, *val))?;
            }
            if let Some(val) = other.used.get(key) {
                union.insert(&(*key, *val))?;
            }
        }

        Ok(union)
    }

    /// A PerDevSegments object that is the complement of self, i.e., its
    /// used ranges are self's free ranges and vice-versa.
    pub fn complement(&self) -> PerDevSegments {
        let mut free = BTreeMap::new();
        let mut prev_end = Sectors(0);
        for (&start, &len) in self.used.iter() {
            let range = start - prev_end;
            if range != Sectors(0) {
                free.insert(prev_end, range);
            }
            prev_end = start + len; // always less than self.limit
        }

        if prev_end < self.limit {
            free.insert(prev_end, self.limit - prev_end);
        }

        PerDevSegments {
            limit: self.limit,
            used: free,
        }
    }

    #[cfg(test)]
    fn invariant(&self) {
        // No segment has 0 len
        assert!(self.used.values().all(|&l| l != Sectors(0)));
        // No adjacent segments are contiguous, no adjacent segments overlap
        assert!(self
            .used
            .iter()
            .collect::<Vec<_>>()
            .windows(2)
            .all(|l| *l[0].0 + *l[0].1 < *l[1].0));
        // Last segment does not extend past limit
        assert!(self
            .used
            .iter()
            .next_back()
            .map(|(s, l)| *s + *l <= self.limit)
            .unwrap_or(true));
        // The complement really is the complement
        let same = self.complement().complement();
        assert_eq!(same.limit, self.limit);
        assert_eq!(same.used, self.used);
    }
}

/// An iterator for PerDevSegments
pub struct Iter<'a> {
    items: btree_map::Iter<'a, Sectors, Sectors>,
}

impl<'a> Iterator for Iter<'a> {
    type Item = (&'a Sectors, &'a Sectors);

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.items.next()
    }
}

#[derive(Debug)]
pub struct RangeAllocator {
    segments: PerDevSegments,
}

impl RangeAllocator {
    /// Create a new RangeAllocator with the specified (offset, length)
    /// ranges marked as used.
    pub fn new(
        limit: BlockdevSize,
        initial_used: &[(Sectors, Sectors)],
    ) -> StratisResult<RangeAllocator> {
        let mut segments = PerDevSegments::new(limit.sectors());
        segments.insert_all(initial_used)?;
        Ok(RangeAllocator { segments })
    }

    /// The maximum allocation from this manager
    #[cfg(test)]
    pub fn size(&self) -> BlockdevSize {
        BlockdevSize::new(self.segments.limit())
    }

    /// Available sectors
    pub fn available(&self) -> Sectors {
        self.segments.limit() - self.used()
    }

    /// Allocated sectors
    pub fn used(&self) -> Sectors {
        self.segments.sum()
    }

    /// Attempt to allocate.
    /// Returns a PerDevSegments object containing the allocated ranges.
    /// The device UUID is used to filter out all segment requests on devices
    /// other than the specified device.
    pub fn request(
        &self,
        uuid: DevUuid,
        amount: Sectors,
        transaction: &RequestTransaction,
    ) -> StratisResult<PerDevSegments> {
        let trans_used = transaction
            .get_blockdevmgr()
            .into_iter()
            .filter_map(|seg| {
                if seg.uuid == uuid {
                    Some((seg.segment.start, seg.segment.length))
                } else {
                    None
                }
            })
            .try_fold(
                PerDevSegments::new(self.segments.limit()),
                |mut segs, seg| {
                    segs.insert(&seg)?;
                    StratisResult::Ok(segs)
                },
            )?;

        let total_segments = self.segments.union(&trans_used)?;

        let mut segs = PerDevSegments::new(self.segments.limit());
        let mut needed = amount;

        for (&start, &len) in total_segments.complement().iter() {
            if needed == Sectors(0) {
                break;
            }
            let to_use = min(needed, len);
            let used_range = (start, to_use);
            segs.insert(&used_range)
                .expect("wholly disjoint from other elements in segs");
            needed -= to_use;
        }
        Ok(segs)
    }

    /// Commit an allocation determined to be valid.
    ///
    /// This method does not actually modify metadata but is required for bookkeeping
    /// for the internal block device allocation data structure.
    pub fn commit(&mut self, segs: PerDevSegments) {
        self.segments = self
            .segments
            .union(&segs)
            .expect("all segments verified to be in available ranges");
    }

    /// Increase the available size of the RangeAlloc data structure.
    ///
    /// Precondition: new_size > self.limit
    pub fn increase_size(&mut self, new_size: Sectors) {
        assert!(new_size > self.segments.limit);
        self.segments.limit = new_size;
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    /// Test proper operation of RangeAllocator.
    /// 1. Instantiate a RangeAllocator.
    /// 2. Verify that no sectors are used (all are available).
    /// 3. Insert range (10, 100) into the allocator.
    /// 4. Verify that 100 sectors are taken and 28 remain.
    /// 5. Request 50 sectors from the allocator.
    /// 6. Verify that the maximum available, 28, were returned in two ranges.
    /// 7. Remove two adjacent ranges of total length 60 sectors.
    /// 8. Verify that number of available sectors is 60, used is 68.
    /// 9. Request all available, then verify that nothing is left.
    fn test_allocator_allocations() {
        let mut allocator = RangeAllocator::new(BlockdevSize::new(Sectors(128)), &[]).unwrap();

        assert_eq!(allocator.used(), Sectors(0));
        assert_eq!(allocator.available(), Sectors(128));

        allocator
            .segments
            .insert_all(&[(Sectors(10), Sectors(100))])
            .unwrap();

        assert_eq!(allocator.used(), Sectors(100));
        assert_eq!(allocator.available(), Sectors(28));

        let seg = allocator
            .request(
                DevUuid::new_v4(),
                Sectors(50),
                &RequestTransaction::default(),
            )
            .unwrap();
        allocator.commit(seg.clone());
        assert_eq!(seg.len(), 2);
        assert_eq!(seg.sum(), Sectors(28));
        assert_eq!(allocator.used(), Sectors(128));
        assert_eq!(allocator.available(), Sectors(0));

        let available = allocator.available();
        let seg = allocator
            .request(DevUuid::new_v4(), available, &RequestTransaction::default())
            .unwrap();
        allocator.commit(seg);
        assert_eq!(allocator.available(), Sectors(0));
    }

    #[test]
    // Verify some proper functioning when allocator initialized with ranges.
    fn test_allocator_initialized_with_range() {
        let mut allocator = PerDevSegments::new(Sectors(128));

        let ranges = [
            (Sectors(20), Sectors(10)),
            (Sectors(10), Sectors(10)),
            (Sectors(30), Sectors(10)),
        ];
        allocator.insert_all(&ranges).unwrap();

        assert_eq!(allocator.used.len(), 1);
        assert_eq!(
            allocator.used.iter().next().unwrap(),
            (&Sectors(10), &Sectors(30))
        );
    }

    #[test]
    /// Verify that insert() properly coalesces adjacent allocations.
    fn test_allocator_insert_ranges_contig() {
        let mut allocator = PerDevSegments::new(Sectors(128));

        allocator.insert(&(Sectors(20), Sectors(10))).unwrap();
        allocator.insert(&(Sectors(10), Sectors(10))).unwrap();
        allocator.insert(&(Sectors(30), Sectors(10))).unwrap();

        assert_eq!(allocator.used.len(), 1);
        assert_eq!(
            allocator.used.iter().next().unwrap(),
            (&Sectors(10), &Sectors(30))
        );
        allocator.invariant();
    }

    #[test]
    /// Verify that the largest possible limit may be used for the
    /// allocator.
    fn test_max_allocator_range() {
        use std::u64::MAX;

        PerDevSegments::new(Sectors(MAX));
    }

    #[test]
    /// Verify that if two argument ranges overlap there is an error.
    fn test_allocator_insert_prev_overlap() {
        let mut allocator = PerDevSegments::new(Sectors(128));

        let bad_insert_ranges = [(Sectors(21), Sectors(20)), (Sectors(40), Sectors(40))];
        assert_matches!(allocator.insert_all(&bad_insert_ranges), Err(_))
    }

    #[test]
    /// Verify that if two argument ranges overlap there is an error.
    fn test_allocator_insert_next_overlap() {
        let mut allocator = PerDevSegments::new(Sectors(128));

        let bad_insert_ranges = [(Sectors(40), Sectors(1)), (Sectors(39), Sectors(2))];
        assert_matches!(allocator.insert_all(&bad_insert_ranges), Err(_))
    }

    #[test]
    /// Verify that insert_ranges() errors when all sectors have already been
    /// allocated.
    fn test_allocator_failures_range_overwrite() {
        let mut allocator = RangeAllocator::new(BlockdevSize::new(Sectors(128)), &[]).unwrap();

        let seg = allocator
            .request(
                DevUuid::new_v4(),
                Sectors(128),
                &RequestTransaction::default(),
            )
            .unwrap();
        allocator.commit(seg.clone());
        assert_eq!(allocator.used(), Sectors(128));
        assert_eq!(
            seg.iter().collect::<Vec<_>>(),
            vec![(&Sectors(0), &Sectors(128))]
        );

        assert!(allocator.segments.complement().iter().next().is_none());

        assert_matches!(
            allocator.segments.insert_all(&[(Sectors(1), Sectors(1))]),
            Err(_)
        );
    }

    #[test]
    /// Verify that insert() errors when an element outside the range
    /// limit is requested.
    fn test_allocator_failures_overflow_limit() {
        let mut allocator = PerDevSegments::new(Sectors(128));

        // overflow limit range
        assert_matches!(allocator.insert(&(Sectors(1), Sectors(128))), Err(_));
        allocator.invariant();
    }

    #[test]
    /// Verify that insert() errors when an element in a requested range
    /// exceeds u64::MAX.
    fn test_allocator_failures_overflow_max() {
        use std::u64::MAX;

        let mut allocator = PerDevSegments::new(Sectors(MAX));

        // overflow max u64
        assert_matches!(allocator.insert(&(Sectors(MAX), Sectors(1))), Err(_));
        allocator.invariant();
    }

    #[test]
    /// Verify that if used is empty, the values for both prev and next will
    /// be None.
    fn test_allocator_indices_empty() {
        let allocator = PerDevSegments::new(Sectors(400));
        let result = allocator.locate_prev_and_next(Sectors(37));

        assert_eq!(result, (None, None));
        allocator.invariant();
    }

    #[test]
    /// Verify some facts if used is entirely occupied
    fn test_allocator_indices_full() {
        let mut allocator = PerDevSegments::new(Sectors(400));
        allocator.insert(&(Sectors(0), Sectors(400))).unwrap();

        // If index is after 0 only previous will have a value
        let result = allocator.locate_prev_and_next(Sectors(37));
        assert_eq!(result, (Some(Sectors(0)), None));

        // If index is exactly 0, previous and next are both 0.
        let result = allocator.locate_prev_and_next(Sectors(0));
        assert_eq!(result, (Some(Sectors(0)), Some(Sectors(0))));
        allocator.invariant();
    }

    #[test]
    /// Verify that locate_prev_and_next works even if value exceeds limit
    fn test_search_over_limit() {
        let mut allocator = PerDevSegments::new(Sectors(400));
        assert_eq!(allocator.locate_prev_and_next(Sectors(500)), (None, None));

        allocator.insert(&(Sectors(0), Sectors(400))).unwrap();
        assert_eq!(
            allocator.locate_prev_and_next(Sectors(500)),
            (Some(Sectors(0)), None)
        );

        allocator.invariant();
    }

    #[test]
    /// Verify that a segment of length 0 can not be inserted. Such a segment
    /// is just silently dropped if specified.
    fn test_allocator_zero_length_insertion() {
        let mut allocator = PerDevSegments::new(Sectors(400));
        assert_matches!(allocator.insert(&(Sectors(12), Sectors(0))), Ok(_));
        assert_eq!(allocator.len(), 0);
        allocator.invariant();
    }

    #[test]
    /// Verify invariant on PerDevSegment w/ 0 length
    fn test_allocator_zero_length() {
        let allocator = PerDevSegments::new(Sectors(0));
        allocator.invariant();
    }

    #[test]
    /// Verify that an insertion at the end with 0 length has no effect,
    /// but with 1 length returns an error.
    fn test_allocator_end_behavior() {
        let mut allocator = PerDevSegments::new(Sectors(127));
        allocator.insert(&(Sectors(127), Sectors(0))).unwrap();

        assert_eq!(allocator.len(), 0);

        assert_matches!(allocator.insert(&(Sectors(127), Sectors(1))), Err(_));

        allocator.invariant();
    }
}