1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
//! <image src="https://user-images.githubusercontent.com/227204/226143511-66fe5264-6ab7-47b9-9551-90ba7e155b96.svg" alt="str0m logo" ></image>
//!
//! A synchronous sans I/O WebRTC implementation in Rust.
//!
//! This is a [Sans I/O][sansio] implementation meaning the `Rtc` instance itself is not doing any network
//! talking. Furthermore it has no internal threads or async tasks. All operations are synchronously
//! happening from the calls of the public API.
//!
//! This is deliberately not a standard `RTCPeerConnection` API since that isn't a great fit for Rust.
//! See more details in below section.
//!
//! # Join us
//!
//! We are discussing str0m things on Zulip. Join us using this [invitation link][zulip]. Or browse the
//! discussions anonymously at [str0m.zulipchat.com][zulip-anon]
//!
//! <image width="300px" src="https://user-images.githubusercontent.com/227204/209446544-f8a8d673-cb1b-4144-a0f2-42307b8d8869.gif" alt="silly clip showing video playing" ></image>
//!
//! # Usage
//!
//! The [`chat`][x-chat] example shows how to connect multiple browsers
//! together and act as an SFU (Signal Forwarding Unit). The example
//! multiplexes all traffic over one server UDP socket and uses two threads
//! (one for the web server, and one for the SFU loop).
//!
//! ## TLS
//!
//! For the browser to do WebRTC, all traffic must be under TLS. The
//! project ships with a self-signed certificate that is used for the
//! examples. The certificate is for hostname `str0m.test` since TLD .test
//! should never resolve to a real DNS name.
//!
//! ```text
//! cargo run --example chat
//! ```
//!
//! The log should prompt you to connect a browser to https://10.0.0.103:3000 – this will
//! most likely cause a security warning that you must get the browser to accept.
//!
//! The [`http-post`][x-post] example roughly illustrates how to receive
//! media data from a browser client. The example is single threaded and
//! is a bit simpler than the chat. It is a good starting point to understand the API.
//!
//! ```text
//! cargo run --example http-post
//! ```
//!
//! ## Passive
//!
//! For passive connections, i.e. where the media and initial OFFER is
//! made by a remote peer, we need these steps to open the connection.
//!
//! ```no_run
//! # use str0m::{Rtc, Candidate};
//! // Instantiate a new Rtc instance.
//! let mut rtc = Rtc::new();
//!
//! // Add some ICE candidate such as a locally bound UDP port.
//! let addr = "1.2.3.4:5000".parse().unwrap();
//! let candidate = Candidate::host(addr).unwrap();
//! rtc.add_local_candidate(candidate);
//!
//! // Accept an incoming offer from the remote peer
//! // and get the corresponding answer.
//! let offer = todo!();
//! let answer = rtc.sdp_api().accept_offer(offer).unwrap();
//!
//! // Forward the answer to the remote peer.
//!
//! // Go to _run loop_
//! ```
//!
//! ## Active
//!
//! Active connections means we are making the inital OFFER and waiting for a
//! remote ANSWER to start the connection.
//!
//! ```no_run
//! # use str0m::{Rtc, Candidate};
//! # use str0m::media::{MediaKind, Direction};
//! #
//! // Instantiate a new Rtc instance.
//! let mut rtc = Rtc::new();
//!
//! // Add some ICE candidate such as a locally bound UDP port.
//! let addr = "1.2.3.4:5000".parse().unwrap();
//! let candidate = Candidate::host(addr).unwrap();
//! rtc.add_local_candidate(candidate);
//!
//! // Create a `SdpApi`. The change lets us make multiple changes
//! // before sending the offer.
//! let mut change = rtc.sdp_api();
//!
//! // Do some change. A valid OFFER needs at least one "m-line" (media).
//! let mid = change.add_media(MediaKind::Audio, Direction::SendRecv, None, None);
//!
//! // Get the offer.
//! let (offer, pending) = change.apply().unwrap();
//!
//! // Forward the offer to the remote peer and await the answer.
//! // How to transfer this is outside the scope for this library.
//! let answer = todo!();
//!
//! // Apply answer.
//! rtc.sdp_api().accept_answer(pending, answer).unwrap();
//!
//! // Go to _run loop_
//! ```
//!
//! ## Run loop
//!
//! Driving the state of the `Rtc` forward is a run loop that, regardless of sync or async,
//! looks like this.
//!
//! ```no_run
//! # use str0m::{Rtc, Output, IceConnectionState, Event, Input};
//! # use str0m::net::Receive;
//! # use std::io::ErrorKind;
//! # use std::net::UdpSocket;
//! # use std::time::Instant;
//! # let rtc = Rtc::new();
//! #
//! // Buffer for reading incoming UDP packets.
//! let mut buf = vec![0; 2000];
//!
//! // A UdpSocket we obtained _somehow_.
//! let socket: UdpSocket = todo!();
//!
//! loop {
//! // Poll output until we get a timeout. The timeout means we
//! // are either awaiting UDP socket input or the timeout to happen.
//! let timeout = match rtc.poll_output().unwrap() {
//! // Stop polling when we get the timeout.
//! Output::Timeout(v) => v,
//!
//! // Transmit this data to the remote peer. Typically via
//! // a UDP socket. The destination IP comes from the ICE
//! // agent. It might change during the session.
//! Output::Transmit(v) => {
//! socket.send_to(&v.contents, v.destination).unwrap();
//! continue;
//! }
//!
//! // Events are mainly incoming media data from the remote
//! // peer, but also data channel data and statistics.
//! Output::Event(v) => {
//!
//! // Abort if we disconnect.
//! if v == Event::IceConnectionStateChange(IceConnectionState::Disconnected) {
//! return;
//! }
//!
//! // TODO: handle more cases of v here, such as incoming media data.
//!
//! continue;
//! }
//! };
//!
//! // Duration until timeout.
//! let duration = timeout - Instant::now();
//!
//! // socket.set_read_timeout(Some(0)) is not ok
//! if duration.is_zero() {
//! // Drive time forwards in rtc straight away.
//! rtc.handle_input(Input::Timeout(Instant::now())).unwrap();
//! continue;
//! }
//!
//! socket.set_read_timeout(Some(duration)).unwrap();
//!
//! // Scale up buffer to receive an entire UDP packet.
//! buf.resize(2000, 0);
//!
//! // Try to receive. Because we have a timeout on the socket,
//! // we will either receive a packet, or timeout.
//! // This is where having an async loop shines. We can await multiple things to
//! // happen such as outgoing media data, the timeout and incoming network traffic.
//! // When using async there is no need to set timeout on the socket.
//! let input = match socket.recv_from(&mut buf) {
//! Ok((n, source)) => {
//! // UDP data received.
//! buf.truncate(n);
//! Input::Receive(
//! Instant::now(),
//! Receive {
//! source,
//! destination: socket.local_addr().unwrap(),
//! contents: buf.as_slice().try_into().unwrap(),
//! },
//! )
//! }
//!
//! Err(e) => match e.kind() {
//! // Expected error for set_read_timeout().
//! // One for windows, one for the rest.
//! ErrorKind::WouldBlock
//! | ErrorKind::TimedOut => Input::Timeout(Instant::now()),
//!
//! e => {
//! eprintln!("Error: {:?}", e);
//! return; // abort
//! }
//! },
//! };
//!
//! // Input is either a Timeout or Receive of data. Both drive the state forward.
//! rtc.handle_input(input).unwrap();
//! }
//! ```
//!
//! ## Sending media data
//!
//! When creating the media, we can decide which codecs to support, and they
//! are negotiated with the remote side. Each codec corresponds to a
//! "payload type" (PT). To send media data we need to figure out which PT
//! to use when sending.
//!
//! ```no_run
//! # use str0m::Rtc;
//! # use str0m::media::Mid;
//! # let rtc: Rtc = todo!();
//! #
//! // Obtain mid from Event::MediaAdded
//! let mid: Mid = todo!();
//!
//! // Create a media writer for the mid.
//! let writer = rtc.writer(mid).unwrap();
//!
//! // Get the payload type (pt) for the wanted codec.
//! let pt = writer.payload_params()[0].pt();
//!
//! // Write the data
//! let wallclock = todo!(); // Absolute time of the data
//! let media_time = todo!(); // Media time, in RTP time
//! let data = todo!(); // Actual data
//! writer.write(pt, wallclock, media_time, data).unwrap();
//! ```
//!
//! ## Media time, wallclock and local time
//!
//! str0m has three main concepts of time. "now", media time and wallclock.
//!
//! ### Now
//!
//! Some calls in str0m, such as `Rtc::handle_input` takes a `now` argument
//! that is a `std::time::Instant`. These calls "drive the time forward" in
//! the internal state. This is used for everything like deciding when
//! to produce various feedback reports (RTCP) to remote peers, to
//! bandwidth estimation (BWE) and statistics.
//!
//! Str0m has _no internal clock_ calls. I.e. str0m never calls
//! `Instant::now()` itself. All time is external input. That means it's
//! possible to construct test cases driving an `Rtc` instance faster
//! than realtime (see the [integration tests][intg]).
//!
//! ### Media time
//!
//! Each RTP header has a 32 bit number that str0m calls _media time_.
//! Media time is in some time base that is dependent on the codec,
//! however all codecs in str0m use 90_000Hz for video and 48_000Hz
//! for audio.
//!
//! For video the `MediaTime` type is `<timestamp>/90_000` str0m extends
//! the 32 bit number in the RTP header to 64 bit taking into account
//! "rollover". 64 bit is such a large number the user doesn't need to
//! think about rollovers.
//!
//! ### Wallclock
//!
//! With _wallclock_ str0m means the time a sample of media was produced
//! at an originating source. I.e. if we are talking into a microphone the
//! wallclock is the NTP time the sound is sampled.
//!
//! We can't know the exact wallclock for media from a remote peer since
//! not every device is synchronized with NTP. Every sender does
//! periodically produce a Sender Report (SR) that contains the peer's
//! idea of its wallclock, however this number can be very wrong compared to
//! "real" NTP time.
//!
//! Furthermore, not all remote devices will have a linear idea of
//! time passing that exactly matches the local time. A minute on the
//! remote peer might not be exactly one minute locally.
//!
//! These timestamps become important when handling simultaneous audio from
//! multiple peers.
//!
//! When writing media we need to provide str0m with an estimated wallclock.
//! The simplest strategy is to only trust local time and use arrival time
//! of the incoming UDP packet. Another simple strategy is to lock some
//! time T at the first UDP packet, and then offset each wallclock using
//! `MediaTime`, i.e. for video we could have `T + <media time>/90_000`
//!
//! A production worthy SFU probably needs an even more sophisticated
//! strategy weighing in all possible time sources to get a good estimate
//! of the remote wallclock for a packet.
//!
//! # Project status
//!
//! Str0m was originally developed by Martin Algesten of
//! [Lookback][lookback]. We use str0m for a specific use case: str0m as a
//! server SFU (as opposed to peer-2-peer). That means we are heavily
//! testing and developing the parts needed for our use case. Str0m is
//! intended to be an all-purpose WebRTC library, which means it should
//! also work for peer-2-peer (mostly thinking about the ICE agent), but
//! these areas have not received as much attention and testing.
//!
//! Performance is very good, there have been some work the discover and
//! optimize bottlenecks. Such efforts are of course never ending with
//! diminishing returns. While there are no glaringly obvious performance
//! bottlenecks, more work is always welcome – both algorithmically and
//! allocation/cloning in hot paths etc.
//!
//! # Design
//!
//! Output from the `Rtc` instance can be grouped into three kinds.
//!
//! 1. Events (such as receiving media or data channel data).
//! 2. Network output. Data to be sent, typically from a UDP socket.
//! 3. Timeouts. Indicates when the instance next expects a time input.
//!
//! Input to the `Rtc` instance is:
//!
//! 1. User operations (such as sending media or data channel data).
//! 2. Network input. Typically read from a UDP socket.
//! 3. Timeouts. As obtained from the output above.
//!
//! The correct use can be seen in the above [Run loop](#run-loop) or in the
//! examples.
//!
//! Sans I/O is a pattern where we turn both network input/output as well
//! as time passing into external input to the API. This means str0m has
//! no internal threads, just an enormous state machine that is driven
//! forward by different kinds of input.
//!
//! ## Sample or RTP level?
//!
//! Str0m defaults to the "sample level" which treats the RTP as an internal detail. The user
//! will thus mainly interact with:
//!
//! 1. [`Event::MediaData`] to receive full "samples" (audio frames or video frames).
//! 2. [`Writer::write`][crate::media::Writer::write] to write full samples.
//! 3. [`Writer::request_keyframe`][crate::media::Writer::request_keyframe] to request keyframes.
//!
//! ### Sample level
//!
//! All codecs such as h264, vp8, vp9 and opus outputs what we call
//! "Samples". A sample has a very specific meaning for audio, but this
//! project uses it in a broader sense, where a sample is either a video
//! or audio time stamped chunk of encoded data that typically represents
//! a chunk of audio, or _one single frame for video_.
//!
//! Samples are not suitable to use directly in UDP (RTP) packets - for
//! one they are too big. Samples are therefore further chunked up by
//! codec specific payloaders into RTP packets.
//!
//! ### RTP level
//!
//! Str0m also provides an RTP level API. This would be similar to many other
//! RTP libraries where the RTP packets themselves are the the API surface
//! towards the user (when building an SFU one would often talk about "forwarding
//! RTP packets", while with str0m we can also "forward samples").
//!
//! ### RTP mode
//!
//! str0m has a lower level API which let's the user write/receive RTP
//! packets directly. Using this API requires a deeper knowledge of
//! RTP and WebRTC.
//!
//! To enable RTP mode
//!
//! ```
//! # use str0m::Rtc;
//! let rtc = Rtc::builder()
//! // Enable RTP mode for this Rtc instance.
//! // This disables `MediaEvent` and the `Writer::write` API.
//! .set_rtp_mode(true)
//! .build();
//! ```
//!
//! RTP mode gives us some new API points.
//!
//! 1. [`Event::RtpPacket`] emitted for every incoming RTP packet. Empty packets for bandwidth
//! estimation are silently discarded.
//! 2. [`StreamTx::write_rtp`][crate::rtp::StreamTx::write_rtp] to write outgoing RTP packets.
//! 3. [`StreamRx::request_keyframe`][crate::rtp::StreamRx::request_keyframe] to request keyframes from remote.
//!
//! ## NIC enumeration and TURN (and STUN)
//!
//! The [ICE RFC][ice] talks about "gathering ice candidates". This means
//! inspecting the local network interfaces and potentially binding UDP
//! sockets on each usable interface. Since str0m is Sans I/O, this part
//! is outside the scope of what str0m does. How the user figures out
//! local IP addresses, via config or via looking up local NICs is not
//! something str0m cares about.
//!
//! TURN is a way of obtaining IP addresses that can be used as fallback
//! in case direct connections fail. We consider TURN similar to
//! enumerating local network interfaces – it's a way of obtaining
//! sockets.
//!
//! All discovered candidates, be they local (NIC) or remote sockets
//! (TURN), are added to str0m and str0m will perform the task of ICE
//! agent, forming "candidate pairs" and figuring out the best connection
//! while the actual task of sending the network traffic is left to the
//! user.
//!
//! ## The importance of `&mut self`
//!
//! Rust shines when we can eschew locks and heavily rely `&mut` for data
//! write access. Since str0m has no internal threads, we never have to
//! deal with shared data. Furthermore the the internals of the library is
//! organized such that we don't need multiple references to the same
//! entities. In str0m there are no `Rc`, `Mutex`, `mpsc`, `Arc`(*), or
//! other locks.
//!
//! This means all input to the lib can be modelled as
//! `handle_something(&mut self, something)`.
//!
//! (*) Ok. There is one `Arc` if you use Windows where we also require openssl.
//!
//! ## Not a standard WebRTC "Peer Connection" API
//!
//! The library deliberately steps away from the "standard" WebRTC API as
//! seen in JavaScript and/or [webrtc-rs][webrtc-rs] (or [Pion][pion] in Go).
//! There are few reasons for this.
//!
//! First, in the standard API, events are callbacks, which are not a
//! great fit for Rust. Callbacks require some kind of reference
//! (ownership?) over the entity the callback is being dispatched
//! upon. I.e. if in Rust we want `pc.addEventListener(x)`, `x` needs
//! to be wholly owned by `pc`, or have some shared reference (like
//! `Arc`). Shared references means shared data, and to get mutable shared
//! data, we will need some kind of lock. i.e. `Arc<Mutex<EventListener>>`
//! or similar.
//!
//! As an alternative we could turn all events into `mpsc` channels, but
//! listening to multiple channels is awkward without async.
//!
//! Second, in the standard API, entities like `RTCPeerConnection` and
//! `RTCRtpTransceiver`, are easily clonable and/or long lived
//! references. I.e. `pc.getTranscievers()` returns objects that can be
//! retained and owned by the caller. This pattern is fine for garbage
//! collected or reference counted languages, but not great with Rust.
//!
//! ## Panics, Errors and unwraps
//!
//! Rust adheres to [fail-last][ff]. That means rather than brushing state
//! bugs under the carpet, it panics. We make a distinction between errors and
//! bugs.
//!
//! * Errors are as a result of incorrect or impossible to understand user input.
//! * Bugs are broken internal invariants (assumptions).
//!
//! If you scan the str0m code you find a few `unwrap()` (or `expect()`). These
//! will (should) always be accompanied by a code comment that explains why the
//! unwrap is okay. This is an internal invariant, a state assumption that
//! str0m is responsible for maintaining.
//!
//! We do not believe it's correct to change every `unwrap()`/`expect()` into
//! `unwrap_or_else()`, `if let Some(x) = x { ... }` etc, because doing so
//! brushes an actual problem (an incorrect assumption) under the carpet. Trying
//! to hobble along with an incorrect state would at best result in broken
//! behavior, at worst a security risk!
//!
//! Panics are our friends: *panic means bug*
//!
//! And also: str0m should *never* panic on any user input. If you encounter a panic,
//! please report it!
//!
//! ### Catching panics
//!
//! Panics should be incredibly rare, or we have a serious problem as a project. For an SFU,
//! it might not be ideal if str0m encounters a bug and brings the entire server down with it.
//!
//! For those who want an extra level of safety, we recommend looking at [`catch_unwind`][catch]
//! to safely discard a faulty `Rtc` instance. Since `Rtc` has no internal threads, locks or async
//! tasks, discarding the instance never risk poisoning locks or other issues that can happen
//! when catching a panic.
//!
//! [sansio]: https://sans-io.readthedocs.io
//! [quinn]: https://github.com/quinn-rs/quinn
//! [pion]: https://github.com/pion/webrtc
//! [webrtc-rs]: https://github.com/webrtc-rs/webrtc
//! [zulip]: https://str0m.zulipchat.com/join/hsiuva2zx47ujrwgmucjez5o/
//! [zulip-anon]: https://str0m.zulipchat.com
//! [ice]: https://www.rfc-editor.org/rfc/rfc8445
//! [lookback]: https://www.lookback.com
//! [x-post]: https://github.com/algesten/str0m/blob/main/examples/http-post.rs
//! [x-chat]: https://github.com/algesten/str0m/blob/main/examples/chat.rs
//! [intg]: https://github.com/algesten/str0m/blob/main/tests/unidirectional.rs#L12
//! [ff]: https://en.wikipedia.org/wiki/Fail-fast
//! [catch]: https://doc.rust-lang.org/std/panic/fn.catch_unwind.html
#![forbid(unsafe_code)]
#![allow(clippy::new_without_default)]
#![allow(clippy::bool_to_int_with_if)]
#![allow(clippy::assertions_on_constants)]
#![allow(clippy::manual_range_contains)]
#![deny(missing_docs)]
#[macro_use]
extern crate tracing;
use bwe::Bwe;
use change::{DirectApi, SdpApi};
use rtp::RawPacket;
use std::fmt;
use std::net::SocketAddr;
use std::time::{Duration, Instant};
use streams::RtpPacket;
use streams::StreamPaused;
use thiserror::Error;
mod dtls;
use dtls::DtlsCert;
use dtls::Fingerprint;
use dtls::{Dtls, DtlsEvent};
mod ice;
pub use ice::Candidate;
use ice::IceAgent;
use ice::IceAgentEvent;
use ice::IceCreds;
mod io;
use io::DatagramRecv;
mod packet;
#[path = "rtp/mod.rs"]
mod rtp_;
use rtp_::Bitrate;
use rtp_::{Extension, ExtensionMap, InstantExt};
/// Low level RTP access.
pub mod rtp {
/// Feedback for RTP.
pub mod rtcp {
pub use crate::rtp_::{Descriptions, ExtendedReport, Fir, Goodbye, Nack, Pli};
pub use crate::rtp_::{Dlrr, NackEntry, ReceptionReport, ReportBlock};
pub use crate::rtp_::{FirEntry, ReceiverReport, SenderInfo, SenderReport, Twcc};
pub use crate::rtp_::{ReportList, Rrtr, Rtcp, Sdes, SdesType};
}
use self::rtcp::Rtcp;
pub use crate::rtp_::{Extension, ExtensionMap, ExtensionValues};
pub use crate::rtp_::{RtpHeader, SeqNo, Ssrc, VideoOrientation};
pub use crate::streams::{RtpPacket, StreamPaused, StreamRx, StreamTx};
/// Debug output of the unencrypted RTP and RTCP packets.
///
/// Enable using [`RtcConfig::enable_raw_packets()`][crate::RtcConfig::enable_raw_packets].
/// This clones data, and is therefore expensive.
/// Should not be enabled outside of tests and troubleshooting.
#[derive(Debug)]
pub enum RawPacket {
/// Sent RTCP.
RtcpTx(Rtcp),
/// Incoming RTCP.
RtcpRx(Rtcp),
/// Sent RTP.
RtpTx(RtpHeader, Vec<u8>),
/// Incoming RTP.
RtpRx(RtpHeader, Vec<u8>),
}
}
pub mod bwe;
mod sctp;
use sctp::{RtcSctp, SctpEvent};
mod sdp;
pub mod format;
use format::CodecConfig;
pub use ice::IceConnectionState;
pub mod channel;
use channel::{Channel, ChannelData, ChannelHandler, ChannelId};
pub mod media;
use media::{Direction, Media, Mid, Pt, Rid, Writer};
use media::{KeyframeRequest, KeyframeRequestKind};
use media::{MediaAdded, MediaChanged, MediaData};
pub mod change;
mod util;
use util::{already_happened, not_happening, Soonest};
mod session;
use session::Session;
pub mod stats;
use stats::{MediaEgressStats, MediaIngressStats, PeerStats, Stats, StatsEvent, StatsSnapshot};
mod streams;
/// Network related types to get socket data in/out of [`Rtc`].
pub mod net {
pub use crate::io::{DatagramRecv, DatagramSend, Receive, Transmit};
}
/// Various error types.
pub mod error {
pub use crate::dtls::DtlsError;
pub use crate::ice::IceError;
pub use crate::io::NetError;
pub use crate::packet::PacketError;
pub use crate::rtp_::RtpError;
pub use crate::sctp::{ProtoError, SctpError};
pub use crate::sdp::SdpError;
}
const VERSION: &str = env!("CARGO_PKG_VERSION");
/// Errors for the whole Rtc engine.
#[derive(Debug, Error)]
#[non_exhaustive]
pub enum RtcError {
/// Some problem with the remote SDP.
#[error("remote sdp: {0}")]
RemoteSdp(String),
/// SDP errors.
#[error("{0}")]
Sdp(#[from] error::SdpError),
/// RTP errors.
#[error("{0}")]
Rtp(#[from] error::RtpError),
/// Other IO errors.
#[error("{0}")]
Io(#[from] std::io::Error),
/// DTLS errors
#[error("{0}")]
Dtls(#[from] error::DtlsError),
/// RTP packetization error
#[error("{0} {1} {2}")]
Packet(Mid, Pt, error::PacketError),
/// The PT attempted to write to is not known.
#[error("PT is unknown {0}")]
UnknownPt(Pt),
/// The Rid attempted to write is not known.
#[error("RID is unknown {0}")]
UnknownRid(Rid),
/// If MediaWriter.write fails because we can't find an SSRC to use.
#[error("No sender source")]
NoSenderSource,
/// Using `write_rtp` for a stream with RTX without providing a rtx_pt.
#[error("When outgoing stream has RTX, write_rtp must be called with rtp_pt set")]
ResendRequiresRtxPt,
/// Direction does not allow sending of Media data.
#[error("Direction does not allow sending: {0}")]
NotSendingDirection(Direction),
/// Direction does not allow receiving media data.
#[error("Direction does not allow receiving")]
NotReceivingDirection,
/// If MediaWriter.request_keyframe fails because we can't find an SSRC to use.
#[error("No receiver source (rid: {0:?})")]
// TODO: remove rid here.
NoReceiverSource(Option<Rid>),
/// The keyframe request failed because the kind of request is not enabled
/// in the media.
#[error("Requested feedback is not enabled: {0:?}")]
FeedbackNotEnabled(KeyframeRequestKind),
/// Parser errors from network packet parsing.
#[error("{0}")]
Net(#[from] error::NetError),
/// ICE agent errors.
#[error("{0}")]
Ice(#[from] error::IceError),
/// SCTP (data channel engine) errors.
#[error("{0}")]
Sctp(#[from] error::SctpError),
/// [`SdpApi`] was not done in a correct order.
///
/// For [`SdpApi`][change::SdpApi]:
///
/// 1. We created an [`SdpOffer`][change::SdpOffer].
/// 2. The remote side created an [`SdpOffer`][change::SdpOffer] at the same time.
/// 3. We applied the remote side [`SdpApi::accept_offer()`][change::SdpOffer].
/// 4. The we used the [`SdpPendingOffer`][change::SdpPendingOffer] created in step 1.
#[error("Changes made out of order")]
ChangesOutOfOrder,
/// The [`Writer`] was used twice without doing `Rtc::poll_output` in between. This
/// is an incorrect usage pattern of the str0m API.
#[error("Consecutive calls to write() without poll_output() in between")]
WriteWithoutPoll,
}
/// Instance that does WebRTC. Main struct of the entire library.
///
/// ## Usage
///
/// ```no_run
/// # use str0m::{Rtc, Output, Input};
/// let mut rtc = Rtc::new();
///
/// loop {
/// let timeout = match rtc.poll_output().unwrap() {
/// Output::Timeout(v) => v,
/// Output::Transmit(t) => {
/// // TODO: Send data to remote peer.
/// continue; // poll again
/// }
/// Output::Event(e) => {
/// // TODO: Handle event.
/// continue; // poll again
/// }
/// };
///
/// // TODO: Wait for one of two events, reaching `timeout`
/// // or receiving network input. Both are encapsulated
/// // in the Input enum.
/// let input: Input = todo!();
///
/// rtc.handle_input(input).unwrap();
/// }
/// ```
pub struct Rtc {
alive: bool,
ice: IceAgent,
dtls: Dtls,
sctp: RtcSctp,
chan: ChannelHandler,
stats: Option<Stats>,
session: Session,
remote_fingerprint: Option<Fingerprint>,
remote_addrs: Vec<SocketAddr>,
send_addr: Option<SendAddr>,
last_now: Instant,
peer_bytes_rx: u64,
peer_bytes_tx: u64,
change_counter: usize,
}
struct SendAddr {
source: SocketAddr,
destination: SocketAddr,
}
/// Events produced by [`Rtc::poll_output()`].
#[derive(Debug)]
#[non_exhaustive]
#[allow(clippy::large_enum_variant)]
#[rustfmt::skip]
pub enum Event {
// =================== ICE related events ===================
/// Emitted when we got ICE connection and established DTLS.
Connected,
/// ICE connection state changes tells us whether the [`Rtc`] instance is
/// connected to the peer or not.
IceConnectionStateChange(IceConnectionState),
// =================== Media related events ==================
/// Upon adding new media to the session. The lines are emitted.
///
/// Upon this event, the [`Media`] instance is available via [`Rtc::media()`].
MediaAdded(MediaAdded),
/// Incoming media data sent by the remote peer.
MediaData(MediaData),
/// Changes to the media may be emitted.
///
///. Currently only covers a change of direction.
MediaChanged(MediaChanged),
// =================== Data channel related events ===================
/// A data channel has opened.
///
/// The string is the channel label which is set by the opening peer and can
/// be used to identify the purpose of the channel when there are more than one.
///
/// The negotiation is to set up an SCTP association via DTLS. Subsequent data
/// channels reuse the same association.
///
/// Upon this event, the [`Channel`] can be obtained via [`Rtc::channel()`].
///
/// For [`SdpApi`]: The first ever data channel results in an SDP
/// negotiation, and this events comes at the end of that.
ChannelOpen(ChannelId, String),
/// Incoming data channel data from the remote peer.
ChannelData(ChannelData),
/// A data channel has been closed.
ChannelClose(ChannelId),
// =================== Statistics and BWE related events ===================
/// Statistics event for the Rtc instance
///
/// Includes both media traffic (rtp payload) as well as all traffic
PeerStats(PeerStats),
/// Aggregated statistics for each media (mid, rid) in the ingress direction
MediaIngressStats(MediaIngressStats),
/// Aggregated statistics for each media (mid, rid) in the egress direction
MediaEgressStats(MediaEgressStats),
/// A new estimate from the bandwidth estimation subsystem.
EgressBitrateEstimate(Bitrate),
// =================== RTP related events ===================
/// Incoming keyframe request for media that we are sending to the remote peer.
///
/// The request is either PLI (Picture Loss Indication) or FIR (Full Intra Request).
KeyframeRequest(KeyframeRequest),
/// Whether an incoming encoded stream is paused.
///
/// This means the stream has not received any data for some time (default 1.5 seconds).
StreamPaused(StreamPaused),
/// Incoming RTP data.
RtpPacket(RtpPacket),
/// Debug output of incoming and outgoing RTCP/RTP packets.
///
/// Enable using [`RtcConfig::enable_raw_packets()`].
/// This clones data, and is therefore expensive.
/// Should not be enabled outside of tests and troubleshooting.
RawPacket(RawPacket),
/// Internal for passing data from Session to Rtc.
#[doc(hidden)]
Error(RtcError),
}
/// Input as expected by [`Rtc::handle_input()`]. Either network data or a timeout.
#[derive(Debug)]
pub enum Input<'a> {
/// A timeout without any network input.
Timeout(Instant),
/// Network input.
Receive(Instant, net::Receive<'a>),
}
/// Output produced by [`Rtc::poll_output()`]
#[allow(clippy::large_enum_variant)]
pub enum Output {
/// When the [`Rtc`] instance expects an [`Input::Timeout`].
Timeout(Instant),
/// Network data that is to be sent.
Transmit(net::Transmit),
/// Some event such as media data arriving from the remote peer or connection events.
Event(Event),
}
impl Rtc {
/// Creates a new instance with default settings.
///
/// To configure the instance, use [`RtcConfig`].
///
/// ```
/// use str0m::Rtc;
///
/// let rtc = Rtc::new();
/// ```
pub fn new() -> Self {
let config = RtcConfig::default();
Self::new_from_config(config)
}
/// Creates a config builder that configures an [`Rtc`] instance.
///
/// ```
/// # use str0m::Rtc;
/// let rtc = Rtc::builder()
/// .set_ice_lite(true)
/// .build();
/// ```
pub fn builder() -> RtcConfig {
RtcConfig::new()
}
pub(crate) fn new_from_config(config: RtcConfig) -> Self {
let session = Session::new(&config);
let mut ice = IceAgent::with_local_credentials(config.local_ice_credentials);
if config.ice_lite {
ice.set_ice_lite(config.ice_lite);
}
Rtc {
alive: true,
ice,
dtls: Dtls::new(config.dtls_cert, config.fingerprint_verification)
.expect("DTLS to init without problem"),
session,
sctp: RtcSctp::new(),
chan: ChannelHandler::default(),
stats: config.stats_interval.map(Stats::new),
remote_fingerprint: None,
remote_addrs: vec![],
send_addr: None,
last_now: already_happened(),
peer_bytes_rx: 0,
peer_bytes_tx: 0,
change_counter: 0,
}
}
/// Tests if this instance is still working.
///
/// Certain events will straight away disconnect the `Rtc` instance, such as
/// the DTLS fingerprint from the setup not matching that of the TLS negotiation
/// (since that would potentially indicate a MITM attack!).
///
/// The instance can be manually disconnected using [`Rtc::disconnect()`].
///
/// ```
/// # use str0m::Rtc;
/// let mut rtc = Rtc::new();
///
/// assert!(rtc.is_alive());
///
/// rtc.disconnect();
/// assert!(!rtc.is_alive());
/// ```
pub fn is_alive(&self) -> bool {
self.alive
}
/// Force disconnects the instance making [`Rtc::is_alive()`] return `false`.
///
/// This makes [`Rtc::poll_output`] and [`Rtc::handle_input`] go inert and not
/// produce anymore network output or events.
///
/// ```
/// # use str0m::Rtc;
/// let mut rtc = Rtc::new();
///
/// rtc.disconnect();
/// assert!(!rtc.is_alive());
/// ```
pub fn disconnect(&mut self) {
if self.alive {
info!("Set alive=false");
self.alive = false;
}
}
/// Add a local ICE candidate. Local candidates are socket addresses the `Rtc` instance
/// use for communicating with the peer.
///
/// This library has no built-in discovery of local network addresses on the host
/// or NATed addresses via a STUN server or TURN server. The user of the library
/// is expected to add new local candidates as they are discovered.
///
/// In WebRTC lingo, the `Rtc` instance is permanently in a mode of [Trickle Ice][1]. It's
/// however advisable to add at least one local candidate before starting the instance.
///
/// ```
/// # use str0m::{Rtc, Candidate};
/// let mut rtc = Rtc::new();
///
/// let a = "127.0.0.1:5000".parse().unwrap();
/// let c = Candidate::host(a).unwrap();
///
/// rtc.add_local_candidate(c);
/// ```
///
/// [1]: https://www.rfc-editor.org/rfc/rfc8838.txt
pub fn add_local_candidate(&mut self, c: Candidate) {
self.ice.add_local_candidate(c);
}
/// Add a remote ICE candidate. Remote candidates are addresses of the peer.
///
/// For [`SdpApi`]: Remote candidates are typically added via
/// receiving a remote [`SdpOffer`][change::SdpOffer] or [`SdpAnswer`][change::SdpAnswer].
///
/// However for the case of [Trickle Ice][1], this is the way to add remote candidates
/// that are "trickled" from the other side.
///
/// ```
/// # use str0m::{Rtc, Candidate};
/// let mut rtc = Rtc::new();
///
/// let a = "1.2.3.4:5000".parse().unwrap();
/// let c = Candidate::host(a).unwrap();
///
/// rtc.add_remote_candidate(c);
/// ```
///
/// [1]: https://www.rfc-editor.org/rfc/rfc8838.txt
pub fn add_remote_candidate(&mut self, c: Candidate) {
self.ice.add_remote_candidate(c);
}
/// Checks if we are connected.
///
/// This tests both if we have ICE connection and DTLS is ready.
///
pub fn is_connected(&self) -> bool {
self.ice.state().is_connected() && self.dtls.is_connected()
}
/// Make changes to the Rtc session via SDP.
///
/// ```no_run
/// # use str0m::Rtc;
/// # use str0m::media::{MediaKind, Direction};
/// # use str0m::change::SdpAnswer;
/// let mut rtc = Rtc::new();
///
/// let mut changes = rtc.sdp_api();
/// let mid_audio = changes.add_media(MediaKind::Audio, Direction::SendOnly, None, None);
/// let mid_video = changes.add_media(MediaKind::Video, Direction::SendOnly, None, None);
///
/// let (offer, pending) = changes.apply().unwrap();
/// let json = serde_json::to_vec(&offer).unwrap();
///
/// // Send json OFFER to remote peer. Receive an answer back.
/// let answer: SdpAnswer = todo!();
///
/// rtc.sdp_api().accept_answer(pending, answer).unwrap();
/// ```
pub fn sdp_api(&mut self) -> SdpApi {
SdpApi::new(self)
}
/// Makes direct changes to the Rtc session.
///
/// This is a low level API. For "normal" use via SDP, see [`Rtc::sdp_api()`].
pub fn direct_api(&mut self) -> DirectApi {
DirectApi::new(self)
}
/// Send outgoing media data (samples) or request keyframes.
///
/// Returns `None` if the direction isn't sending (`sendrecv` or `sendonly`).
///
/// ```no_run
/// # use str0m::Rtc;
/// # use str0m::media::{MediaData, Mid};
/// # use str0m::format::PayloadParams;
/// let mut rtc = Rtc::new();
///
/// // add candidates, do SDP negotiation
/// let mid: Mid = todo!(); // obtain mid from Event::MediaAdded.
///
/// // Writer for this mid.
/// let writer = rtc.writer(mid).unwrap();
///
/// // Get incoming media data from another peer
/// let data: MediaData = todo!();
///
/// // Match incoming PT to an outgoing PT.
/// let pt = writer.match_params(data.params).unwrap();
///
/// writer.write(pt, data.network_time, data.time, &data.data).unwrap();
/// ```
///
/// This is a sample level API: For RTP level see [`DirectApi::stream_tx()`] and [`DirectApi::stream_rx()`].
///
pub fn writer(&mut self, mid: Mid) -> Option<Writer> {
if self.session.rtp_mode {
panic!("In rtp_mode use direct_api().stream_tx().write_rtp()");
}
self.session.media_by_mid_mut(mid)?;
Some(Writer::new(&mut self.session, mid))
}
/// Currently configured media.
///
/// Read only access. Changes are made via [`Rtc::sdp_api()`] or [`Rtc::direct_api()`].
pub fn media(&self, mid: Mid) -> Option<&Media> {
self.session.media_by_mid(mid)
}
fn init_dtls(&mut self, active: bool) -> Result<(), RtcError> {
if self.dtls.is_inited() {
return Ok(());
}
info!("DTLS setup is: {:?}", active);
self.dtls.set_active(active);
if active {
self.dtls.handle_handshake()?;
}
Ok(())
}
fn init_sctp(&mut self, client: bool) {
// If we got an m=application line, ensure we have negotiated the
// SCTP association with the other side.
if self.sctp.is_inited() {
return;
}
self.sctp.init(client, self.last_now);
}
/// Creates a new Mid that is not in the session already.
pub(crate) fn new_mid(&self) -> Mid {
loop {
let mid = Mid::new();
if !self.session.has_mid(mid) {
break mid;
}
}
}
/// Poll the `Rtc` instance for output. Output can be three things, something to _Transmit_
/// via a UDP socket (maybe via a TURN server). An _Event_, such as receiving media data,
/// or a _Timeout_.
///
/// The user of the library is expected to continuously call this function and deal with
/// the output until it encounters an [`Output::Timeout`] at which point no further output
/// is produced (if polled again, it will result in just another timeout).
///
/// After exhausting the `poll_output`, the function will only produce more output again
/// when one of two things happen:
///
/// 1. The polled timeout is reached.
/// 2. New network input.
///
/// See [`Rtc`] instance documentation for how this is expected to be used in a loop.
pub fn poll_output(&mut self) -> Result<Output, RtcError> {
let o = self.do_poll_output()?;
match &o {
Output::Event(e) => match e {
Event::ChannelData(_) | Event::MediaData(_) => trace!("{:?}", e),
_ => debug!("{:?}", e),
},
Output::Transmit(t) => {
self.peer_bytes_tx += t.contents.len() as u64;
trace!("OUT {:?}", t)
}
Output::Timeout(_t) => {}
}
Ok(o)
}
fn do_poll_output(&mut self) -> Result<Output, RtcError> {
if !self.alive {
return Ok(Output::Timeout(not_happening()));
}
while let Some(e) = self.ice.poll_event() {
match e {
IceAgentEvent::IceRestart(_) => {
//
}
IceAgentEvent::IceConnectionStateChange(v) => {
return Ok(Output::Event(Event::IceConnectionStateChange(v)))
}
IceAgentEvent::DiscoveredRecv { source } => {
info!("ICE remote address: {:?}", source);
self.remote_addrs.push(source);
while self.remote_addrs.len() > 20 {
self.remote_addrs.remove(0);
}
}
IceAgentEvent::NominatedSend {
source,
destination,
} => {
info!(
"ICE nominated send from: {:?} to: {:?}",
source, destination
);
self.send_addr = Some(SendAddr {
source,
destination,
});
}
}
}
let mut dtls_connected = false;
while let Some(e) = self.dtls.poll_event() {
match e {
DtlsEvent::Connected => {
debug!("DTLS connected");
dtls_connected = true;
}
DtlsEvent::SrtpKeyingMaterial(mat, srtp_profile) => {
info!(
"DTLS set SRTP keying material and profile: {}",
srtp_profile
);
let active = self.dtls.is_active().expect("DTLS must be inited by now");
self.session.set_keying_material(mat, srtp_profile, active);
}
DtlsEvent::RemoteFingerprint(v1) => {
debug!("DTLS verify remote fingerprint");
if let Some(v2) = &self.remote_fingerprint {
if v1 != *v2 {
self.disconnect();
return Err(RtcError::RemoteSdp("remote fingerprint no match".into()));
}
} else {
self.disconnect();
return Err(RtcError::RemoteSdp("no a=fingerprint before dtls".into()));
}
}
DtlsEvent::Data(v) => {
self.sctp.handle_input(self.last_now, &v);
}
}
}
if dtls_connected {
return Ok(Output::Event(Event::Connected));
}
while let Some(e) = self.sctp.poll() {
match e {
SctpEvent::Transmit { mut packets } => {
if let Some(v) = packets.front() {
if let Err(e) = self.dtls.handle_input(v) {
if e.is_would_block() {
self.sctp.push_back_transmit(packets);
break;
} else {
return Err(e.into());
}
}
packets.pop_front();
break;
}
}
SctpEvent::Open { id, label } => {
self.chan.ensure_channel_id_for(id);
let id = self.chan.channel_id_by_stream_id(id).unwrap();
return Ok(Output::Event(Event::ChannelOpen(id, label)));
}
SctpEvent::Close { id } => {
let Some(id) = self.chan.channel_id_by_stream_id(id) else {
warn!("Drop ChannelClose event for id: {:?}", id);
continue;
};
return Ok(Output::Event(Event::ChannelClose(id)));
}
SctpEvent::Data { id, binary, data } => {
let Some(id) = self.chan.channel_id_by_stream_id(id) else {
warn!("Drop ChannelData event for id: {:?}", id);
continue;
};
let cd = ChannelData { id, binary, data };
return Ok(Output::Event(Event::ChannelData(cd)));
}
}
}
if let Some(ev) = self.session.poll_event() {
if let Event::Error(err) = ev {
return Err(err);
} else {
return Ok(Output::Event(ev));
}
}
if let Some(e) = self.stats.as_mut().and_then(|s| s.poll_output()) {
return Ok(match e {
StatsEvent::Peer(s) => Output::Event(Event::PeerStats(s)),
StatsEvent::MediaIngress(s) => Output::Event(Event::MediaIngressStats(s)),
StatsEvent::MediaEgress(s) => Output::Event(Event::MediaEgressStats(s)),
});
}
if let Some(v) = self.ice.poll_transmit() {
return Ok(Output::Transmit(v));
}
if let Some(send) = &self.send_addr {
// These can only be sent after we got an ICE connection.
let datagram = None
.or_else(|| self.dtls.poll_datagram())
.or_else(|| self.session.poll_datagram(self.last_now));
if let Some(contents) = datagram {
let t = net::Transmit {
source: send.source,
destination: send.destination,
contents,
};
return Ok(Output::Transmit(t));
}
}
let time_and_reason = (None, "<not happening>")
.soonest((self.ice.poll_timeout(), "ice"))
.soonest((self.session.poll_timeout(), "session"))
.soonest((self.sctp.poll_timeout(), "sctp"))
.soonest((self.chan.poll_timeout(&self.sctp), "chan"))
.soonest((self.stats.as_mut().and_then(|s| s.poll_timeout()), "stats"));
// trace!("poll_output timeout reason: {}", time_and_reason.1);
let time = time_and_reason.0.unwrap_or_else(not_happening);
// We want to guarantee time doesn't go backwards.
let next = if time < self.last_now {
self.last_now
} else {
time
};
Ok(Output::Timeout(next))
}
/// Check if this `Rtc` instance accepts the given input. This is used for demultiplexing
/// several `Rtc` instances over the same UDP server socket.
///
/// [`Input::Timeout`] is always accepted. [`Input::Receive`] is tested against the nominated
/// ICE candidate. If that doesn't match and the incoming data is a STUN packet, the accept call
/// is delegated to the ICE agent which recognizes the remote peer from `a=ufrag`/`a=password`
/// credentials negotiated in the SDP.
///
/// In a server setup, the server would try to find an `Rtc` instances using [`Rtc::accepts()`].
/// The first found instance would be given the input via [`Rtc::handle_input()`].
///
/// ```no_run
/// # use str0m::{Rtc, Input};
/// // A vec holding the managed rtc instances. One instance per remote peer.
/// let mut rtcs = vec![Rtc::new(), Rtc::new(), Rtc::new()];
///
/// // Configure instances with local ice candidates etc.
///
/// loop {
/// // TODO poll_timeout() and handle the output.
///
/// let input: Input = todo!(); // read network data from socket.
/// for rtc in &mut rtcs {
/// if rtc.accepts(&input) {
/// rtc.handle_input(input).unwrap();
/// }
/// }
/// }
/// ```
pub fn accepts(&self, input: &Input) -> bool {
let Input::Receive(_, r) = input else {
// always accept the Input::Timeout.
return true;
};
// This should cover Dtls, Rtp and Rtcp
if let Some(send_addr) = &self.send_addr {
// TODO: This assume symmetrical routing, i.e. we are getting
// the incoming traffic from a remote peer from the same socket address
// we've nominated for sending via the ICE agent.
if r.source == send_addr.destination {
return true;
}
}
// STUN can use the ufrag/password to identify that a message belongs
// to this Rtc instance.
if let DatagramRecv::Stun(v) = &r.contents {
return self.ice.accepts_message(v);
}
false
}
/// Provide input to this `Rtc` instance. Input is either a [`Input::Timeout`] for some
/// time that was previously obtained from [`Rtc::poll_output()`], or [`Input::Receive`]
/// for network data.
///
/// Both the timeout and the network data contains a [`std::time::Instant`] which drives
/// time forward in the instance. For network data, the intention is to record the time
/// of receiving the network data as precise as possible. This time is used to calculate
/// things like jitter and bandwidth.
///
/// It's always okay to call [`Rtc::handle_input()`] with a timeout, also before the
/// time obtained via [`Rtc::poll_output()`].
///
/// ```no_run
/// # use str0m::{Rtc, Input};
/// # use std::time::Instant;
/// let mut rtc = Rtc::new();
///
/// loop {
/// let timeout: Instant = todo!(); // rtc.poll_output() until we get a timeout.
///
/// let input: Input = todo!(); // wait for network data or timeout.
/// rtc.handle_input(input);
/// }
/// ```
pub fn handle_input(&mut self, input: Input) -> Result<(), RtcError> {
if !self.alive {
return Ok(());
}
match input {
Input::Timeout(now) => self.do_handle_timeout(now)?,
Input::Receive(now, r) => {
self.do_handle_receive(now, r)?;
self.do_handle_timeout(now)?;
}
}
Ok(())
}
fn do_handle_timeout(&mut self, now: Instant) -> Result<(), RtcError> {
// We assume this first "now" is a time 0 start point for calculating ntp/unix time offsets.
// This initializes the conversion of Instant -> NTP/Unix time.
let _ = now.to_unix_duration();
self.last_now = now;
self.ice.handle_timeout(now);
self.sctp.handle_timeout(now);
self.chan.handle_timeout(now, &mut self.sctp);
self.session.handle_timeout(now)?;
if let Some(stats) = &mut self.stats {
if stats.wants_timeout(now) {
let mut snapshot = StatsSnapshot::new(now);
snapshot.peer_rx = self.peer_bytes_rx;
snapshot.peer_tx = self.peer_bytes_tx;
self.session.visit_stats(now, &mut snapshot);
stats.do_handle_timeout(&mut snapshot);
}
}
Ok(())
}
fn do_handle_receive(&mut self, now: Instant, r: net::Receive) -> Result<(), RtcError> {
trace!("IN {:?}", r);
self.last_now = now;
use net::DatagramRecv::*;
let bytes_rx = match r.contents {
// TODO: stun is already parsed (depacketized) here
Stun(_) => 0,
Dtls(v) | Rtp(v) | Rtcp(v) => v.len(),
};
self.peer_bytes_rx += bytes_rx as u64;
match r.contents {
Stun(_) => self.ice.handle_receive(now, r),
Dtls(_) => self.dtls.handle_receive(r)?,
Rtp(_) | Rtcp(_) => self.session.handle_receive(now, r),
}
Ok(())
}
/// Obtain handle for writing to a data channel.
///
/// This is first available when a [`ChannelId`] is advertised via [`Event::ChannelOpen`].
/// The function returns `None` also for IDs from [`SdpApi::add_channel()`].
///
/// Incoming channel data is via the [`Event::ChannelData`] event.
///
/// ```no_run
/// # use str0m::{Rtc, channel::ChannelId};
/// let mut rtc = Rtc::new();
///
/// let cid: ChannelId = todo!(); // obtain channel id from Event::ChannelOpen
/// let channel = rtc.channel(cid).unwrap();
/// // TODO write data channel data.
/// ```
pub fn channel(&mut self, id: ChannelId) -> Option<Channel<'_>> {
if !self.alive {
return None;
}
let sctp_stream_id = self.chan.stream_id_by_channel_id(id)?;
if !self.sctp.is_open(sctp_stream_id) {
return None;
}
Some(Channel::new(sctp_stream_id, self))
}
/// Configure the Bandwidth Estimate (BWE) subsystem.
///
/// Only relevant if BWE was enabled in the [`RtcConfig::enable_bwe()`]
pub fn bwe(&mut self) -> Bwe {
Bwe(self)
}
fn is_correct_change_id(&self, change_id: usize) -> bool {
self.change_counter == change_id + 1
}
fn next_change_id(&mut self) -> usize {
let n = self.change_counter;
self.change_counter += 1;
n
}
/// The codec configs for sending/receiving data..
///
/// The configurations can be set with [`RtcConfig`] before setting up the session, and they
/// might be further updated by SDP negotiation.
pub fn codec_config(&self) -> &CodecConfig {
&self.session.codec_config
}
/// All media mids (not application). For integration tests.
#[doc(hidden)]
pub fn mids(&self) -> Vec<Mid> {
self.session.medias.iter().map(Media::mid).collect()
}
/// All current RTP header extensions. For integration tests.
#[doc(hidden)]
pub fn exts(&self) -> ExtensionMap {
self.session.exts
}
/// Current local ICE credentials. For integration tests.
#[doc(hidden)]
pub fn local_ice_creds(&self) -> IceCreds {
self.ice.local_credentials().clone()
}
}
/// Customized config for creating an [`Rtc`] instance.
///
/// ```
/// use str0m::RtcConfig;
///
/// let rtc = RtcConfig::new()
/// .set_ice_lite(true)
/// .build();
/// ```
///
/// Configs implement [`Clone`] to help create multiple `Rtc` instances.
#[derive(Debug, Clone)]
pub struct RtcConfig {
local_ice_credentials: IceCreds,
dtls_cert: DtlsCert,
fingerprint_verification: bool,
ice_lite: bool,
codec_config: CodecConfig,
exts: ExtensionMap,
stats_interval: Option<Duration>,
/// Whether to use Bandwidth Estimation to discover the egress bandwidth.
bwe_initial_bitrate: Option<Bitrate>,
reordering_size_audio: usize,
reordering_size_video: usize,
send_buffer_audio: usize,
send_buffer_video: usize,
rtp_mode: bool,
enable_raw_packets: bool,
}
impl RtcConfig {
/// Creates a new default config.
pub fn new() -> Self {
RtcConfig::default()
}
/// The auto generated local ice credentials.
pub fn local_ice_credentials(&self) -> &IceCreds {
&self.local_ice_credentials
}
/// The configured DtlsCert.
///
/// The certificate is uniquely created per new RtcConfig.
pub fn dtls_cert(&self) -> &DtlsCert {
&self.dtls_cert
}
/// Set DTLS certification.
pub fn set_dtls_cert(mut self, dtls_cert: DtlsCert) -> Self {
self.dtls_cert = dtls_cert;
self
}
/// Toggle ice lite. Ice lite is a mode for WebRTC servers with public IP address.
/// An [`Rtc`] instance in ice lite mode will not make STUN binding requests, but only
/// answer to requests from the remote peer.
///
/// See [ICE RFC][1]
///
/// [1]: https://www.rfc-editor.org/rfc/rfc8445#page-13
pub fn set_ice_lite(mut self, enabled: bool) -> Self {
self.ice_lite = enabled;
self
}
/// Get fingerprint verification mode.
///
/// ```
/// # use str0m::RtcConfig;
///
/// // Verify that fingerprint verification is enabled by default.
/// assert!(RtcConfig::default().fingerprint_verification());
/// ```
pub fn fingerprint_verification(&self) -> bool {
self.fingerprint_verification
}
/// Toggle certificate fingerprint verification.
///
/// By default the certificate fingerprint is verified.
pub fn set_fingerprint_verification(mut self, enabled: bool) -> Self {
self.fingerprint_verification = enabled;
self
}
/// Tells whether ice lite is enabled.
///
/// ```
/// # use str0m::Rtc;
/// let config = Rtc::builder();
///
/// // Defaults to false.
/// assert_eq!(config.ice_lite(), false);
/// ```
pub fn ice_lite(&self) -> bool {
self.ice_lite
}
/// Lower level access to precis configuration of codecs (payload types).
pub fn codec_config(&mut self) -> &mut CodecConfig {
&mut self.codec_config
}
/// Clear all configured codecs.
///
/// ```
/// # use str0m::RtcConfig;
///
/// // For the session to use only OPUS and VP8.
/// let mut rtc = RtcConfig::default()
/// .clear_codecs()
/// .enable_opus(true)
/// .enable_vp8(true)
/// .build();
/// ```
pub fn clear_codecs(mut self) -> Self {
self.codec_config.clear();
self
}
/// Enable opus audio codec.
///
/// Enabled by default.
pub fn enable_opus(mut self, enabled: bool) -> Self {
self.codec_config.enable_opus(enabled);
self
}
/// Enable VP8 video codec.
///
/// Enabled by default.
pub fn enable_vp8(mut self, enabled: bool) -> Self {
self.codec_config.enable_vp8(enabled);
self
}
/// Enable H264 video codec.
///
/// Enabled by default.
pub fn enable_h264(mut self, enabled: bool) -> Self {
self.codec_config.enable_h264(enabled);
self
}
// TODO: AV1 depacketizer/packetizer.
//
// /// Enable AV1 video codec.
// ///
// /// Enabled by default.
// pub fn enable_av1(mut self) -> Self {
// self.codec_config.add_default_av1();
// self
// }
/// Enable VP9 video codec.
///
/// Enabled by default.
pub fn enable_vp9(mut self, enabled: bool) -> Self {
self.codec_config.enable_vp9(enabled);
self
}
/// Configure the RTP extension mappings.
///
/// The default extension map is
///
/// ```
/// # use str0m::rtp::{Extension, ExtensionMap};
/// let exts = ExtensionMap::standard();
///
/// assert_eq!(exts.id_of(Extension::AudioLevel), Some(1));
/// assert_eq!(exts.id_of(Extension::AbsoluteSendTime), Some(2));
/// assert_eq!(exts.id_of(Extension::TransportSequenceNumber), Some(3));
/// assert_eq!(exts.id_of(Extension::RtpMid), Some(4));
/// assert_eq!(exts.id_of(Extension::RtpStreamId), Some(10));
/// assert_eq!(exts.id_of(Extension::RepairedRtpStreamId), Some(11));
/// assert_eq!(exts.id_of(Extension::VideoOrientation), Some(13));
/// ```
pub fn extension_map(&mut self) -> &mut ExtensionMap {
&mut self.exts
}
/// Clear out the standard extension mappings.
pub fn clear_extension_map(mut self) -> Self {
self.exts.clear();
self
}
/// Set an extension mapping on session level.
///
/// The media level will be capped by the extension enabled on session level.
///
/// The id must be 1-14 inclusive (1-indexed).
pub fn set_extension(mut self, id: u8, ext: Extension) -> Self {
self.exts.set(id, ext);
self
}
/// Set the interval between statistics events.
///
/// None turns off the stats events.
///
/// This includes [`MediaEgressStats`], [`MediaIngressStats`], [`MediaEgressStats`]
pub fn set_stats_interval(mut self, interval: Option<Duration>) -> Self {
self.stats_interval = interval;
self
}
/// The configured statistics interval.
///
/// None means statistics are disabled.
///
/// ```
/// # use str0m::Rtc;
/// # use std::time::Duration;
/// let config = Rtc::builder();
///
/// // Defaults to None.
/// assert_eq!(config.stats_interval(), None);
/// ```
pub fn stats_interval(&self) -> Option<Duration> {
self.stats_interval
}
/// Enables estimation of available bandwidth (BWE).
///
/// None disables the BWE. This is an estimation of the send bandwidth, not receive.
///
/// This includes setting the initial estimate to start with.
pub fn enable_bwe(mut self, initial_estimate: Option<Bitrate>) -> Self {
self.bwe_initial_bitrate = initial_estimate;
self
}
/// The initial bitrate as set by [`Self::enable_bwe()`].
///
/// ```
/// # use str0m::Rtc;
/// let config = Rtc::builder();
///
/// // Defaults to None - BWE off.
/// assert_eq!(config.bwe_initial_bitrate(), None);
/// ```
pub fn bwe_initial_bitrate(&self) -> Option<Bitrate> {
self.bwe_initial_bitrate
}
/// Sets the number of packets held back for reordering audio packets.
///
/// Str0m tries to deliver the samples in order. This number determines how many
/// packets to "wait" before releasing media
/// [`contiguous: false`][crate::media::MediaData::contiguous].
///
/// This setting is ignored in [RTP mode][`RtcConfig::set_rtp_mode()`] where RTP
/// packets can arrive out of order.
pub fn set_reordering_size_audio(mut self, size: usize) -> Self {
self.reordering_size_audio = size;
self
}
/// Returns the setting for audio reordering size.
///
/// ```
/// # use str0m::Rtc;
/// let config = Rtc::builder();
///
/// // Defaults to 15.
/// assert_eq!(config.reordering_size_audio(), 15);
/// ```
///
/// This setting is ignored in [RTP mode][`RtcConfig::set_rtp_mode()`] where RTP
/// packets can arrive out of order.
pub fn reordering_size_audio(&self) -> usize {
self.reordering_size_audio
}
/// Sets the number of packets held back for reordering video packets.
///
/// Str0m tries to deliver the samples in order. This number determines how many
/// packets to "wait" before releasing media with gaps.
///
/// This must be at least as big as the number of packets the biggest keyframe can be split over.
///
/// WARNING: video is very different to audio. Setting this value too low will result in
/// missing video data. The 0 (as described for audio) is not relevant for video.
///
/// Default: 30
///
/// This setting is ignored in [RTP mode][`RtcConfig::set_rtp_mode()`] where RTP
/// packets can arrive out of order.
pub fn set_reordering_size_video(mut self, size: usize) -> Self {
self.reordering_size_video = size;
self
}
/// Returns the setting for video reordering size.
///
/// ```
/// # use str0m::Rtc;
/// let config = Rtc::builder();
///
/// // Defaults to 30.
/// assert_eq!(config.reordering_size_video(), 30);
/// ```
///
/// This setting is ignored in [RTP mode][`RtcConfig::set_rtp_mode()`] where RTP
/// packets can arrive out of order.
pub fn reordering_size_video(&self) -> usize {
self.reordering_size_video
}
/// Sets the buffer size for outgoing audio packets.
///
/// This must be larger than 0. The value configures an internal ring buffer used as a temporary
/// holding space between calling [`Writer::write`][crate::media::Writer::write()] and
/// [`Rtc::poll_output`].
///
/// For audio one call to `write()` typically results in one RTP packet since the entire payload
/// fits in one. If you can guarantee that every `write()` is a single RTP packet, and is always
/// followed by a `poll_output()`, it might be possible to set this value to 1. But that would give
/// no margins for unexpected patterns.
pub fn set_send_buffer_audio(mut self, size: usize) -> Self {
assert!(size > 0);
self.send_buffer_audio = size;
self
}
/// Returns the setting for audio resend size.
///
/// ```
/// # use str0m::Rtc;
/// let config = Rtc::builder();
///
/// // Defaults to 50.
/// assert_eq!(config.send_buffer_audio(), 50);
/// ```
pub fn send_buffer_audio(&self) -> usize {
self.send_buffer_audio
}
/// Sets the buffer size for outgoing video packets and resends.
///
/// This must be larger than 0. The value configures an internal ring buffer that is both
/// used as a temporary holding space between calling [`Writer::write`][crate::media::Writer::write()]
/// and [`Rtc::poll_output`] as well as for fulfilling resends.
///
/// For video, this buffer is used for more than for audio. First, a call to `write()` often
/// results in multiple RTP packets since large frames don't fit in one payload. That means the buffer
/// must be at least as large to hold all those packets. Second, when the remote requests resends (NACK),
/// those are fulfilled from this buffer. Third, for Bandwidth Estimation (BWE), when probing for
/// available bandwidth, packets from this buffer are used to do "spurious resends", i.e. we do resends
/// for packets that were not asked for.
pub fn set_send_buffer_video(mut self, size: usize) -> Self {
self.send_buffer_video = size;
self
}
/// Returns the setting for video resend size.
///
/// ```
/// # use str0m::Rtc;
/// let config = Rtc::builder();
///
/// // Defaults to 1000.
/// assert_eq!(config.send_buffer_video(), 1000);
/// ```
pub fn send_buffer_video(&self) -> usize {
self.send_buffer_video
}
/// Make the entire Rtc be in RTP mode.
///
/// This means all media, read from [`RtpPacket`][crate::rtp::RtpPacket] and written to
/// [`StreamTx::write_rtp`][crate::rtp::StreamTx::write_rtp] are RTP packetized.
/// It bypasses all internal packetization/depacketization inside str0m.
///
/// WARNING: This is a low level API and is not str0m's primary use case.
pub fn set_rtp_mode(mut self, enabled: bool) -> Self {
self.rtp_mode = enabled;
self
}
/// Checks if RTP mode is set.
///
/// ```
/// # use str0m::Rtc;
/// let config = Rtc::builder();
///
/// // Defaults to false.
/// assert_eq!(config.rtp_mode(), false);
/// ```
pub fn rtp_mode(&self) -> bool {
self.rtp_mode
}
/// Enable the [`Event::RawPacket`] event.
///
/// This clones data, and is therefore expensive.
/// Should not be enabled outside of tests and troubleshooting.
pub fn enable_raw_packets(mut self, enabled: bool) -> Self {
self.enable_raw_packets = enabled;
self
}
/// Create a [`Rtc`] from the configuration.
pub fn build(self) -> Rtc {
Rtc::new_from_config(self)
}
}
impl Default for RtcConfig {
fn default() -> Self {
Self {
local_ice_credentials: IceCreds::new(),
dtls_cert: DtlsCert::new(),
fingerprint_verification: true,
ice_lite: false,
codec_config: CodecConfig::new_with_defaults(),
exts: ExtensionMap::standard(),
stats_interval: None,
bwe_initial_bitrate: None,
reordering_size_audio: 15,
reordering_size_video: 30,
send_buffer_audio: 50,
send_buffer_video: 1000,
rtp_mode: false,
enable_raw_packets: false,
}
}
}
impl PartialEq for Event {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::IceConnectionStateChange(l0), Self::IceConnectionStateChange(r0)) => l0 == r0,
(Self::MediaAdded(m0), Self::MediaAdded(m1)) => m0 == m1,
(Self::MediaData(m1), Self::MediaData(m2)) => m1 == m2,
(Self::ChannelOpen(l0, l1), Self::ChannelOpen(r0, r1)) => l0 == r0 && l1 == r1,
(Self::ChannelData(l0), Self::ChannelData(r0)) => l0 == r0,
(Self::ChannelClose(l0), Self::ChannelClose(r0)) => l0 == r0,
_ => false,
}
}
}
impl Eq for Event {}
impl fmt::Debug for Rtc {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Rtc").finish()
}
}
/// Log a CSV like stat to stdout.
///
/// ```ignore
/// log_stat!("MY_STAT", 1, "hello", 3);
/// ```
///
/// will result in the following being printed
///
/// ```text
/// MY_STAT 1, hello, 3, {unix_timestamp_ms}
/// ````
///
/// These logs can be easily grepped for, parsed and graphed, or otherwise analyzed.
///
/// This macro turns into a NO-OP if the `_internal_dont_use_log_stats` feature is not enabled
macro_rules! log_stat {
($name:expr, $($arg:expr),+) => {
#[cfg(feature = "_internal_dont_use_log_stats")]
{
use std::time::SystemTime;
use std::io::{self, Write};
let now = SystemTime::now();
let since_epoch = now.duration_since(SystemTime::UNIX_EPOCH).unwrap();
let unix_time_ms = since_epoch.as_millis();
let mut lock = io::stdout().lock();
write!(lock, "{} ", $name).expect("Failed to write to stdout");
$(
write!(lock, "{},", $arg).expect("Failed to write to stdout");
)+
writeln!(lock, "{}", unix_time_ms).expect("Failed to write to stdout");
}
};
}
pub(crate) use log_stat;
#[cfg(test)]
mod test {
use std::panic::UnwindSafe;
use super::*;
#[test]
fn rtc_is_send() {
fn is_send<T: Send>(_t: T) {}
fn is_sync<T: Sync>(_t: T) {}
is_send(Rtc::new());
is_sync(Rtc::new());
}
#[test]
fn rtc_is_unwind_safe() {
fn is_unwind_safe<T: UnwindSafe>(_t: T) {}
is_unwind_safe(Rtc::new());
}
}
#[cfg(fuzzing)]
#[allow(missing_docs)]
pub mod fuzz {
pub use crate::streams::rtx_cache_buf::EvictingBuffer;
}