1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#![allow(non_snake_case, non_upper_case_globals)]
#![allow(non_camel_case_types)]
//! USB on the go full speed
//!
//! Used by: stm32f405, stm32f407, stm32f427, stm32f429, stm32f446
#[cfg(not(feature = "nosync"))]
pub use crate::stm32f4::peripherals::otg_fs_pwrclk::Instance;
pub use crate::stm32f4::peripherals::otg_fs_pwrclk::PCGCCTL;
pub use crate::stm32f4::peripherals::otg_fs_pwrclk::{RegisterBlock, ResetValues};
/// Access functions for the OTG_FS_PWRCLK peripheral instance
pub mod OTG_FS_PWRCLK {
use super::ResetValues;
#[cfg(not(feature = "nosync"))]
use super::Instance;
#[cfg(not(feature = "nosync"))]
const INSTANCE: Instance = Instance {
addr: 0x50000e00,
_marker: ::core::marker::PhantomData,
};
/// Reset values for each field in OTG_FS_PWRCLK
pub const reset: ResetValues = ResetValues {
PCGCCTL: 0x00000000,
};
#[cfg(not(feature = "nosync"))]
#[allow(renamed_and_removed_lints)]
#[allow(private_no_mangle_statics)]
#[no_mangle]
static mut OTG_FS_PWRCLK_TAKEN: bool = false;
/// Safe access to OTG_FS_PWRCLK
///
/// This function returns `Some(Instance)` if this instance is not
/// currently taken, and `None` if it is. This ensures that if you
/// do get `Some(Instance)`, you are ensured unique access to
/// the peripheral and there cannot be data races (unless other
/// code uses `unsafe`, of course). You can then pass the
/// `Instance` around to other functions as required. When you're
/// done with it, you can call `release(instance)` to return it.
///
/// `Instance` itself dereferences to a `RegisterBlock`, which
/// provides access to the peripheral's registers.
#[cfg(not(feature = "nosync"))]
#[inline]
pub fn take() -> Option<Instance> {
external_cortex_m::interrupt::free(|_| unsafe {
if OTG_FS_PWRCLK_TAKEN {
None
} else {
OTG_FS_PWRCLK_TAKEN = true;
Some(INSTANCE)
}
})
}
/// Release exclusive access to OTG_FS_PWRCLK
///
/// This function allows you to return an `Instance` so that it
/// is available to `take()` again. This function will panic if
/// you return a different `Instance` or if this instance is not
/// already taken.
#[cfg(not(feature = "nosync"))]
#[inline]
pub fn release(inst: Instance) {
external_cortex_m::interrupt::free(|_| unsafe {
if OTG_FS_PWRCLK_TAKEN && inst.addr == INSTANCE.addr {
OTG_FS_PWRCLK_TAKEN = false;
} else {
panic!("Released a peripheral which was not taken");
}
});
}
/// Unsafely steal OTG_FS_PWRCLK
///
/// This function is similar to take() but forcibly takes the
/// Instance, marking it as taken irregardless of its previous
/// state.
#[cfg(not(feature = "nosync"))]
#[inline]
pub unsafe fn steal() -> Instance {
OTG_FS_PWRCLK_TAKEN = true;
INSTANCE
}
}
/// Raw pointer to OTG_FS_PWRCLK
///
/// Dereferencing this is unsafe because you are not ensured unique
/// access to the peripheral, so you may encounter data races with
/// other users of this peripheral. It is up to you to ensure you
/// will not cause data races.
///
/// This constant is provided for ease of use in unsafe code: you can
/// simply call for example `write_reg!(gpio, GPIOA, ODR, 1);`.
pub const OTG_FS_PWRCLK: *const RegisterBlock = 0x50000e00 as *const _;
/// Access functions for the OTG_HS_PWRCLK peripheral instance
pub mod OTG_HS_PWRCLK {
use super::ResetValues;
#[cfg(not(feature = "nosync"))]
use super::Instance;
#[cfg(not(feature = "nosync"))]
const INSTANCE: Instance = Instance {
addr: 0x40040e00,
_marker: ::core::marker::PhantomData,
};
/// Reset values for each field in OTG_HS_PWRCLK
pub const reset: ResetValues = ResetValues {
PCGCCTL: 0x00000000,
};
#[cfg(not(feature = "nosync"))]
#[allow(renamed_and_removed_lints)]
#[allow(private_no_mangle_statics)]
#[no_mangle]
static mut OTG_HS_PWRCLK_TAKEN: bool = false;
/// Safe access to OTG_HS_PWRCLK
///
/// This function returns `Some(Instance)` if this instance is not
/// currently taken, and `None` if it is. This ensures that if you
/// do get `Some(Instance)`, you are ensured unique access to
/// the peripheral and there cannot be data races (unless other
/// code uses `unsafe`, of course). You can then pass the
/// `Instance` around to other functions as required. When you're
/// done with it, you can call `release(instance)` to return it.
///
/// `Instance` itself dereferences to a `RegisterBlock`, which
/// provides access to the peripheral's registers.
#[cfg(not(feature = "nosync"))]
#[inline]
pub fn take() -> Option<Instance> {
external_cortex_m::interrupt::free(|_| unsafe {
if OTG_HS_PWRCLK_TAKEN {
None
} else {
OTG_HS_PWRCLK_TAKEN = true;
Some(INSTANCE)
}
})
}
/// Release exclusive access to OTG_HS_PWRCLK
///
/// This function allows you to return an `Instance` so that it
/// is available to `take()` again. This function will panic if
/// you return a different `Instance` or if this instance is not
/// already taken.
#[cfg(not(feature = "nosync"))]
#[inline]
pub fn release(inst: Instance) {
external_cortex_m::interrupt::free(|_| unsafe {
if OTG_HS_PWRCLK_TAKEN && inst.addr == INSTANCE.addr {
OTG_HS_PWRCLK_TAKEN = false;
} else {
panic!("Released a peripheral which was not taken");
}
});
}
/// Unsafely steal OTG_HS_PWRCLK
///
/// This function is similar to take() but forcibly takes the
/// Instance, marking it as taken irregardless of its previous
/// state.
#[cfg(not(feature = "nosync"))]
#[inline]
pub unsafe fn steal() -> Instance {
OTG_HS_PWRCLK_TAKEN = true;
INSTANCE
}
}
/// Raw pointer to OTG_HS_PWRCLK
///
/// Dereferencing this is unsafe because you are not ensured unique
/// access to the peripheral, so you may encounter data races with
/// other users of this peripheral. It is up to you to ensure you
/// will not cause data races.
///
/// This constant is provided for ease of use in unsafe code: you can
/// simply call for example `write_reg!(gpio, GPIOA, ODR, 1);`.
pub const OTG_HS_PWRCLK: *const RegisterBlock = 0x40040e00 as *const _;