stm32f7-staging 0.18.1

Device support crates for STM32F7 devices
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
///Register `SMCR` reader
pub type R = crate::R<SMCRrs>;
///Register `SMCR` writer
pub type W = crate::W<SMCRrs>;
/**Slave mode selection

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum SMS {
    ///0: Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal clock.
    Disabled = 0,
    ///1: Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2 level.
    EncoderMode1 = 1,
    ///2: Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1 level.
    EncoderMode2 = 2,
    ///3: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input.
    EncoderMode3 = 3,
    ///4: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers.
    ResetMode = 4,
    ///5: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled.
    GatedMode = 5,
    ///6: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled.
    TriggerMode = 6,
    ///7: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.
    ExtClockMode = 7,
}
impl From<SMS> for u8 {
    #[inline(always)]
    fn from(variant: SMS) -> Self {
        variant as _
    }
}
impl crate::FieldSpec for SMS {
    type Ux = u8;
}
impl crate::IsEnum for SMS {}
///Field `SMS` reader - Slave mode selection
pub type SMS_R = crate::FieldReader<SMS>;
impl SMS_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> SMS {
        match self.bits {
            0 => SMS::Disabled,
            1 => SMS::EncoderMode1,
            2 => SMS::EncoderMode2,
            3 => SMS::EncoderMode3,
            4 => SMS::ResetMode,
            5 => SMS::GatedMode,
            6 => SMS::TriggerMode,
            7 => SMS::ExtClockMode,
            _ => unreachable!(),
        }
    }
    ///Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal clock.
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        *self == SMS::Disabled
    }
    ///Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2 level.
    #[inline(always)]
    pub fn is_encoder_mode_1(&self) -> bool {
        *self == SMS::EncoderMode1
    }
    ///Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1 level.
    #[inline(always)]
    pub fn is_encoder_mode_2(&self) -> bool {
        *self == SMS::EncoderMode2
    }
    ///Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input.
    #[inline(always)]
    pub fn is_encoder_mode_3(&self) -> bool {
        *self == SMS::EncoderMode3
    }
    ///Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers.
    #[inline(always)]
    pub fn is_reset_mode(&self) -> bool {
        *self == SMS::ResetMode
    }
    ///Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled.
    #[inline(always)]
    pub fn is_gated_mode(&self) -> bool {
        *self == SMS::GatedMode
    }
    ///Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled.
    #[inline(always)]
    pub fn is_trigger_mode(&self) -> bool {
        *self == SMS::TriggerMode
    }
    ///External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.
    #[inline(always)]
    pub fn is_ext_clock_mode(&self) -> bool {
        *self == SMS::ExtClockMode
    }
}
///Field `SMS` writer - Slave mode selection
pub type SMS_W<'a, REG> = crate::FieldWriter<'a, REG, 3, SMS, crate::Safe>;
impl<'a, REG> SMS_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
    REG::Ux: From<u8>,
{
    ///Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal clock.
    #[inline(always)]
    pub fn disabled(self) -> &'a mut crate::W<REG> {
        self.variant(SMS::Disabled)
    }
    ///Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2 level.
    #[inline(always)]
    pub fn encoder_mode_1(self) -> &'a mut crate::W<REG> {
        self.variant(SMS::EncoderMode1)
    }
    ///Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1 level.
    #[inline(always)]
    pub fn encoder_mode_2(self) -> &'a mut crate::W<REG> {
        self.variant(SMS::EncoderMode2)
    }
    ///Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input.
    #[inline(always)]
    pub fn encoder_mode_3(self) -> &'a mut crate::W<REG> {
        self.variant(SMS::EncoderMode3)
    }
    ///Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers.
    #[inline(always)]
    pub fn reset_mode(self) -> &'a mut crate::W<REG> {
        self.variant(SMS::ResetMode)
    }
    ///Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled.
    #[inline(always)]
    pub fn gated_mode(self) -> &'a mut crate::W<REG> {
        self.variant(SMS::GatedMode)
    }
    ///Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled.
    #[inline(always)]
    pub fn trigger_mode(self) -> &'a mut crate::W<REG> {
        self.variant(SMS::TriggerMode)
    }
    ///External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.
    #[inline(always)]
    pub fn ext_clock_mode(self) -> &'a mut crate::W<REG> {
        self.variant(SMS::ExtClockMode)
    }
}
/**Trigger selection

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum TS {
    ///0: Internal Trigger 0 (ITR0)
    Itr0 = 0,
    ///1: Internal Trigger 1 (ITR1)
    Itr1 = 1,
    ///2: Internal Trigger 2 (ITR2)
    Itr2 = 2,
    ///4: TI1 Edge Detector (TI1F_ED)
    Ti1fEd = 4,
    ///5: Filtered Timer Input 1 (TI1FP1)
    Ti1fp1 = 5,
    ///6: Filtered Timer Input 2 (TI2FP2)
    Ti2fp2 = 6,
    ///7: External Trigger input (ETRF)
    Etrf = 7,
}
impl From<TS> for u8 {
    #[inline(always)]
    fn from(variant: TS) -> Self {
        variant as _
    }
}
impl crate::FieldSpec for TS {
    type Ux = u8;
}
impl crate::IsEnum for TS {}
///Field `TS` reader - Trigger selection
pub type TS_R = crate::FieldReader<TS>;
impl TS_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> Option<TS> {
        match self.bits {
            0 => Some(TS::Itr0),
            1 => Some(TS::Itr1),
            2 => Some(TS::Itr2),
            4 => Some(TS::Ti1fEd),
            5 => Some(TS::Ti1fp1),
            6 => Some(TS::Ti2fp2),
            7 => Some(TS::Etrf),
            _ => None,
        }
    }
    ///Internal Trigger 0 (ITR0)
    #[inline(always)]
    pub fn is_itr0(&self) -> bool {
        *self == TS::Itr0
    }
    ///Internal Trigger 1 (ITR1)
    #[inline(always)]
    pub fn is_itr1(&self) -> bool {
        *self == TS::Itr1
    }
    ///Internal Trigger 2 (ITR2)
    #[inline(always)]
    pub fn is_itr2(&self) -> bool {
        *self == TS::Itr2
    }
    ///TI1 Edge Detector (TI1F_ED)
    #[inline(always)]
    pub fn is_ti1f_ed(&self) -> bool {
        *self == TS::Ti1fEd
    }
    ///Filtered Timer Input 1 (TI1FP1)
    #[inline(always)]
    pub fn is_ti1fp1(&self) -> bool {
        *self == TS::Ti1fp1
    }
    ///Filtered Timer Input 2 (TI2FP2)
    #[inline(always)]
    pub fn is_ti2fp2(&self) -> bool {
        *self == TS::Ti2fp2
    }
    ///External Trigger input (ETRF)
    #[inline(always)]
    pub fn is_etrf(&self) -> bool {
        *self == TS::Etrf
    }
}
///Field `TS` writer - Trigger selection
pub type TS_W<'a, REG> = crate::FieldWriter<'a, REG, 3, TS>;
impl<'a, REG> TS_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
    REG::Ux: From<u8>,
{
    ///Internal Trigger 0 (ITR0)
    #[inline(always)]
    pub fn itr0(self) -> &'a mut crate::W<REG> {
        self.variant(TS::Itr0)
    }
    ///Internal Trigger 1 (ITR1)
    #[inline(always)]
    pub fn itr1(self) -> &'a mut crate::W<REG> {
        self.variant(TS::Itr1)
    }
    ///Internal Trigger 2 (ITR2)
    #[inline(always)]
    pub fn itr2(self) -> &'a mut crate::W<REG> {
        self.variant(TS::Itr2)
    }
    ///TI1 Edge Detector (TI1F_ED)
    #[inline(always)]
    pub fn ti1f_ed(self) -> &'a mut crate::W<REG> {
        self.variant(TS::Ti1fEd)
    }
    ///Filtered Timer Input 1 (TI1FP1)
    #[inline(always)]
    pub fn ti1fp1(self) -> &'a mut crate::W<REG> {
        self.variant(TS::Ti1fp1)
    }
    ///Filtered Timer Input 2 (TI2FP2)
    #[inline(always)]
    pub fn ti2fp2(self) -> &'a mut crate::W<REG> {
        self.variant(TS::Ti2fp2)
    }
    ///External Trigger input (ETRF)
    #[inline(always)]
    pub fn etrf(self) -> &'a mut crate::W<REG> {
        self.variant(TS::Etrf)
    }
}
/**Master/Slave mode

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum MSM {
    ///0: No action
    NoSync = 0,
    ///1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event.
    Sync = 1,
}
impl From<MSM> for bool {
    #[inline(always)]
    fn from(variant: MSM) -> Self {
        variant as u8 != 0
    }
}
///Field `MSM` reader - Master/Slave mode
pub type MSM_R = crate::BitReader<MSM>;
impl MSM_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> MSM {
        match self.bits {
            false => MSM::NoSync,
            true => MSM::Sync,
        }
    }
    ///No action
    #[inline(always)]
    pub fn is_no_sync(&self) -> bool {
        *self == MSM::NoSync
    }
    ///The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event.
    #[inline(always)]
    pub fn is_sync(&self) -> bool {
        *self == MSM::Sync
    }
}
///Field `MSM` writer - Master/Slave mode
pub type MSM_W<'a, REG> = crate::BitWriter<'a, REG, MSM>;
impl<'a, REG> MSM_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
{
    ///No action
    #[inline(always)]
    pub fn no_sync(self) -> &'a mut crate::W<REG> {
        self.variant(MSM::NoSync)
    }
    ///The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event.
    #[inline(always)]
    pub fn sync(self) -> &'a mut crate::W<REG> {
        self.variant(MSM::Sync)
    }
}
/**External trigger filter

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum ETF {
    ///0: No filter, sampling is done at fDTS
    NoFilter = 0,
    ///1: fSAMPLING=fCK_INT, N=2
    FckIntN2 = 1,
    ///2: fSAMPLING=fCK_INT, N=4
    FckIntN4 = 2,
    ///3: fSAMPLING=fCK_INT, N=8
    FckIntN8 = 3,
    ///4: fSAMPLING=fDTS/2, N=6
    FdtsDiv2N6 = 4,
    ///5: fSAMPLING=fDTS/2, N=8
    FdtsDiv2N8 = 5,
    ///6: fSAMPLING=fDTS/4, N=6
    FdtsDiv4N6 = 6,
    ///7: fSAMPLING=fDTS/4, N=8
    FdtsDiv4N8 = 7,
    ///8: fSAMPLING=fDTS/8, N=6
    FdtsDiv8N6 = 8,
    ///9: fSAMPLING=fDTS/8, N=8
    FdtsDiv8N8 = 9,
    ///10: fSAMPLING=fDTS/16, N=5
    FdtsDiv16N5 = 10,
    ///11: fSAMPLING=fDTS/16, N=6
    FdtsDiv16N6 = 11,
    ///12: fSAMPLING=fDTS/16, N=8
    FdtsDiv16N8 = 12,
    ///13: fSAMPLING=fDTS/32, N=5
    FdtsDiv32N5 = 13,
    ///14: fSAMPLING=fDTS/32, N=6
    FdtsDiv32N6 = 14,
    ///15: fSAMPLING=fDTS/32, N=8
    FdtsDiv32N8 = 15,
}
impl From<ETF> for u8 {
    #[inline(always)]
    fn from(variant: ETF) -> Self {
        variant as _
    }
}
impl crate::FieldSpec for ETF {
    type Ux = u8;
}
impl crate::IsEnum for ETF {}
///Field `ETF` reader - External trigger filter
pub type ETF_R = crate::FieldReader<ETF>;
impl ETF_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> ETF {
        match self.bits {
            0 => ETF::NoFilter,
            1 => ETF::FckIntN2,
            2 => ETF::FckIntN4,
            3 => ETF::FckIntN8,
            4 => ETF::FdtsDiv2N6,
            5 => ETF::FdtsDiv2N8,
            6 => ETF::FdtsDiv4N6,
            7 => ETF::FdtsDiv4N8,
            8 => ETF::FdtsDiv8N6,
            9 => ETF::FdtsDiv8N8,
            10 => ETF::FdtsDiv16N5,
            11 => ETF::FdtsDiv16N6,
            12 => ETF::FdtsDiv16N8,
            13 => ETF::FdtsDiv32N5,
            14 => ETF::FdtsDiv32N6,
            15 => ETF::FdtsDiv32N8,
            _ => unreachable!(),
        }
    }
    ///No filter, sampling is done at fDTS
    #[inline(always)]
    pub fn is_no_filter(&self) -> bool {
        *self == ETF::NoFilter
    }
    ///fSAMPLING=fCK_INT, N=2
    #[inline(always)]
    pub fn is_fck_int_n2(&self) -> bool {
        *self == ETF::FckIntN2
    }
    ///fSAMPLING=fCK_INT, N=4
    #[inline(always)]
    pub fn is_fck_int_n4(&self) -> bool {
        *self == ETF::FckIntN4
    }
    ///fSAMPLING=fCK_INT, N=8
    #[inline(always)]
    pub fn is_fck_int_n8(&self) -> bool {
        *self == ETF::FckIntN8
    }
    ///fSAMPLING=fDTS/2, N=6
    #[inline(always)]
    pub fn is_fdts_div2_n6(&self) -> bool {
        *self == ETF::FdtsDiv2N6
    }
    ///fSAMPLING=fDTS/2, N=8
    #[inline(always)]
    pub fn is_fdts_div2_n8(&self) -> bool {
        *self == ETF::FdtsDiv2N8
    }
    ///fSAMPLING=fDTS/4, N=6
    #[inline(always)]
    pub fn is_fdts_div4_n6(&self) -> bool {
        *self == ETF::FdtsDiv4N6
    }
    ///fSAMPLING=fDTS/4, N=8
    #[inline(always)]
    pub fn is_fdts_div4_n8(&self) -> bool {
        *self == ETF::FdtsDiv4N8
    }
    ///fSAMPLING=fDTS/8, N=6
    #[inline(always)]
    pub fn is_fdts_div8_n6(&self) -> bool {
        *self == ETF::FdtsDiv8N6
    }
    ///fSAMPLING=fDTS/8, N=8
    #[inline(always)]
    pub fn is_fdts_div8_n8(&self) -> bool {
        *self == ETF::FdtsDiv8N8
    }
    ///fSAMPLING=fDTS/16, N=5
    #[inline(always)]
    pub fn is_fdts_div16_n5(&self) -> bool {
        *self == ETF::FdtsDiv16N5
    }
    ///fSAMPLING=fDTS/16, N=6
    #[inline(always)]
    pub fn is_fdts_div16_n6(&self) -> bool {
        *self == ETF::FdtsDiv16N6
    }
    ///fSAMPLING=fDTS/16, N=8
    #[inline(always)]
    pub fn is_fdts_div16_n8(&self) -> bool {
        *self == ETF::FdtsDiv16N8
    }
    ///fSAMPLING=fDTS/32, N=5
    #[inline(always)]
    pub fn is_fdts_div32_n5(&self) -> bool {
        *self == ETF::FdtsDiv32N5
    }
    ///fSAMPLING=fDTS/32, N=6
    #[inline(always)]
    pub fn is_fdts_div32_n6(&self) -> bool {
        *self == ETF::FdtsDiv32N6
    }
    ///fSAMPLING=fDTS/32, N=8
    #[inline(always)]
    pub fn is_fdts_div32_n8(&self) -> bool {
        *self == ETF::FdtsDiv32N8
    }
}
///Field `ETF` writer - External trigger filter
pub type ETF_W<'a, REG> = crate::FieldWriter<'a, REG, 4, ETF, crate::Safe>;
impl<'a, REG> ETF_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
    REG::Ux: From<u8>,
{
    ///No filter, sampling is done at fDTS
    #[inline(always)]
    pub fn no_filter(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::NoFilter)
    }
    ///fSAMPLING=fCK_INT, N=2
    #[inline(always)]
    pub fn fck_int_n2(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FckIntN2)
    }
    ///fSAMPLING=fCK_INT, N=4
    #[inline(always)]
    pub fn fck_int_n4(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FckIntN4)
    }
    ///fSAMPLING=fCK_INT, N=8
    #[inline(always)]
    pub fn fck_int_n8(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FckIntN8)
    }
    ///fSAMPLING=fDTS/2, N=6
    #[inline(always)]
    pub fn fdts_div2_n6(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv2N6)
    }
    ///fSAMPLING=fDTS/2, N=8
    #[inline(always)]
    pub fn fdts_div2_n8(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv2N8)
    }
    ///fSAMPLING=fDTS/4, N=6
    #[inline(always)]
    pub fn fdts_div4_n6(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv4N6)
    }
    ///fSAMPLING=fDTS/4, N=8
    #[inline(always)]
    pub fn fdts_div4_n8(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv4N8)
    }
    ///fSAMPLING=fDTS/8, N=6
    #[inline(always)]
    pub fn fdts_div8_n6(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv8N6)
    }
    ///fSAMPLING=fDTS/8, N=8
    #[inline(always)]
    pub fn fdts_div8_n8(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv8N8)
    }
    ///fSAMPLING=fDTS/16, N=5
    #[inline(always)]
    pub fn fdts_div16_n5(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv16N5)
    }
    ///fSAMPLING=fDTS/16, N=6
    #[inline(always)]
    pub fn fdts_div16_n6(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv16N6)
    }
    ///fSAMPLING=fDTS/16, N=8
    #[inline(always)]
    pub fn fdts_div16_n8(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv16N8)
    }
    ///fSAMPLING=fDTS/32, N=5
    #[inline(always)]
    pub fn fdts_div32_n5(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv32N5)
    }
    ///fSAMPLING=fDTS/32, N=6
    #[inline(always)]
    pub fn fdts_div32_n6(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv32N6)
    }
    ///fSAMPLING=fDTS/32, N=8
    #[inline(always)]
    pub fn fdts_div32_n8(self) -> &'a mut crate::W<REG> {
        self.variant(ETF::FdtsDiv32N8)
    }
}
/**External trigger prescaler

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum ETPS {
    ///0: Prescaler OFF
    Div1 = 0,
    ///1: ETRP frequency divided by 2
    Div2 = 1,
    ///2: ETRP frequency divided by 4
    Div4 = 2,
    ///3: ETRP frequency divided by 8
    Div8 = 3,
}
impl From<ETPS> for u8 {
    #[inline(always)]
    fn from(variant: ETPS) -> Self {
        variant as _
    }
}
impl crate::FieldSpec for ETPS {
    type Ux = u8;
}
impl crate::IsEnum for ETPS {}
///Field `ETPS` reader - External trigger prescaler
pub type ETPS_R = crate::FieldReader<ETPS>;
impl ETPS_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> ETPS {
        match self.bits {
            0 => ETPS::Div1,
            1 => ETPS::Div2,
            2 => ETPS::Div4,
            3 => ETPS::Div8,
            _ => unreachable!(),
        }
    }
    ///Prescaler OFF
    #[inline(always)]
    pub fn is_div1(&self) -> bool {
        *self == ETPS::Div1
    }
    ///ETRP frequency divided by 2
    #[inline(always)]
    pub fn is_div2(&self) -> bool {
        *self == ETPS::Div2
    }
    ///ETRP frequency divided by 4
    #[inline(always)]
    pub fn is_div4(&self) -> bool {
        *self == ETPS::Div4
    }
    ///ETRP frequency divided by 8
    #[inline(always)]
    pub fn is_div8(&self) -> bool {
        *self == ETPS::Div8
    }
}
///Field `ETPS` writer - External trigger prescaler
pub type ETPS_W<'a, REG> = crate::FieldWriter<'a, REG, 2, ETPS, crate::Safe>;
impl<'a, REG> ETPS_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
    REG::Ux: From<u8>,
{
    ///Prescaler OFF
    #[inline(always)]
    pub fn div1(self) -> &'a mut crate::W<REG> {
        self.variant(ETPS::Div1)
    }
    ///ETRP frequency divided by 2
    #[inline(always)]
    pub fn div2(self) -> &'a mut crate::W<REG> {
        self.variant(ETPS::Div2)
    }
    ///ETRP frequency divided by 4
    #[inline(always)]
    pub fn div4(self) -> &'a mut crate::W<REG> {
        self.variant(ETPS::Div4)
    }
    ///ETRP frequency divided by 8
    #[inline(always)]
    pub fn div8(self) -> &'a mut crate::W<REG> {
        self.variant(ETPS::Div8)
    }
}
/**External clock enable

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ECE {
    ///0: External clock mode 2 disabled
    Disabled = 0,
    ///1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal.
    Enabled = 1,
}
impl From<ECE> for bool {
    #[inline(always)]
    fn from(variant: ECE) -> Self {
        variant as u8 != 0
    }
}
///Field `ECE` reader - External clock enable
pub type ECE_R = crate::BitReader<ECE>;
impl ECE_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> ECE {
        match self.bits {
            false => ECE::Disabled,
            true => ECE::Enabled,
        }
    }
    ///External clock mode 2 disabled
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        *self == ECE::Disabled
    }
    ///External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal.
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        *self == ECE::Enabled
    }
}
///Field `ECE` writer - External clock enable
pub type ECE_W<'a, REG> = crate::BitWriter<'a, REG, ECE>;
impl<'a, REG> ECE_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
{
    ///External clock mode 2 disabled
    #[inline(always)]
    pub fn disabled(self) -> &'a mut crate::W<REG> {
        self.variant(ECE::Disabled)
    }
    ///External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal.
    #[inline(always)]
    pub fn enabled(self) -> &'a mut crate::W<REG> {
        self.variant(ECE::Enabled)
    }
}
/**External trigger polarity

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ETP {
    ///0: ETR is noninverted, active at high level or rising edge
    NotInverted = 0,
    ///1: ETR is inverted, active at low level or falling edge
    Inverted = 1,
}
impl From<ETP> for bool {
    #[inline(always)]
    fn from(variant: ETP) -> Self {
        variant as u8 != 0
    }
}
///Field `ETP` reader - External trigger polarity
pub type ETP_R = crate::BitReader<ETP>;
impl ETP_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> ETP {
        match self.bits {
            false => ETP::NotInverted,
            true => ETP::Inverted,
        }
    }
    ///ETR is noninverted, active at high level or rising edge
    #[inline(always)]
    pub fn is_not_inverted(&self) -> bool {
        *self == ETP::NotInverted
    }
    ///ETR is inverted, active at low level or falling edge
    #[inline(always)]
    pub fn is_inverted(&self) -> bool {
        *self == ETP::Inverted
    }
}
///Field `ETP` writer - External trigger polarity
pub type ETP_W<'a, REG> = crate::BitWriter<'a, REG, ETP>;
impl<'a, REG> ETP_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
{
    ///ETR is noninverted, active at high level or rising edge
    #[inline(always)]
    pub fn not_inverted(self) -> &'a mut crate::W<REG> {
        self.variant(ETP::NotInverted)
    }
    ///ETR is inverted, active at low level or falling edge
    #[inline(always)]
    pub fn inverted(self) -> &'a mut crate::W<REG> {
        self.variant(ETP::Inverted)
    }
}
///Field `SMS_3` reader - Slave model selection - bit\[3\]
pub type SMS_3_R = crate::BitReader;
///Field `SMS_3` writer - Slave model selection - bit\[3\]
pub type SMS_3_W<'a, REG> = crate::BitWriter<'a, REG>;
impl R {
    ///Bits 0:2 - Slave mode selection
    #[inline(always)]
    pub fn sms(&self) -> SMS_R {
        SMS_R::new((self.bits & 7) as u8)
    }
    ///Bits 4:6 - Trigger selection
    #[inline(always)]
    pub fn ts(&self) -> TS_R {
        TS_R::new(((self.bits >> 4) & 7) as u8)
    }
    ///Bit 7 - Master/Slave mode
    #[inline(always)]
    pub fn msm(&self) -> MSM_R {
        MSM_R::new(((self.bits >> 7) & 1) != 0)
    }
    ///Bits 8:11 - External trigger filter
    #[inline(always)]
    pub fn etf(&self) -> ETF_R {
        ETF_R::new(((self.bits >> 8) & 0x0f) as u8)
    }
    ///Bits 12:13 - External trigger prescaler
    #[inline(always)]
    pub fn etps(&self) -> ETPS_R {
        ETPS_R::new(((self.bits >> 12) & 3) as u8)
    }
    ///Bit 14 - External clock enable
    #[inline(always)]
    pub fn ece(&self) -> ECE_R {
        ECE_R::new(((self.bits >> 14) & 1) != 0)
    }
    ///Bit 15 - External trigger polarity
    #[inline(always)]
    pub fn etp(&self) -> ETP_R {
        ETP_R::new(((self.bits >> 15) & 1) != 0)
    }
    ///Bit 16 - Slave model selection - bit\[3\]
    #[inline(always)]
    pub fn sms_3(&self) -> SMS_3_R {
        SMS_3_R::new(((self.bits >> 16) & 1) != 0)
    }
}
impl core::fmt::Debug for R {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("SMCR")
            .field("sms", &self.sms())
            .field("ts", &self.ts())
            .field("msm", &self.msm())
            .field("etf", &self.etf())
            .field("etps", &self.etps())
            .field("ece", &self.ece())
            .field("etp", &self.etp())
            .field("sms_3", &self.sms_3())
            .finish()
    }
}
impl W {
    ///Bits 0:2 - Slave mode selection
    #[inline(always)]
    pub fn sms(&mut self) -> SMS_W<SMCRrs> {
        SMS_W::new(self, 0)
    }
    ///Bits 4:6 - Trigger selection
    #[inline(always)]
    pub fn ts(&mut self) -> TS_W<SMCRrs> {
        TS_W::new(self, 4)
    }
    ///Bit 7 - Master/Slave mode
    #[inline(always)]
    pub fn msm(&mut self) -> MSM_W<SMCRrs> {
        MSM_W::new(self, 7)
    }
    ///Bits 8:11 - External trigger filter
    #[inline(always)]
    pub fn etf(&mut self) -> ETF_W<SMCRrs> {
        ETF_W::new(self, 8)
    }
    ///Bits 12:13 - External trigger prescaler
    #[inline(always)]
    pub fn etps(&mut self) -> ETPS_W<SMCRrs> {
        ETPS_W::new(self, 12)
    }
    ///Bit 14 - External clock enable
    #[inline(always)]
    pub fn ece(&mut self) -> ECE_W<SMCRrs> {
        ECE_W::new(self, 14)
    }
    ///Bit 15 - External trigger polarity
    #[inline(always)]
    pub fn etp(&mut self) -> ETP_W<SMCRrs> {
        ETP_W::new(self, 15)
    }
    ///Bit 16 - Slave model selection - bit\[3\]
    #[inline(always)]
    pub fn sms_3(&mut self) -> SMS_3_W<SMCRrs> {
        SMS_3_W::new(self, 16)
    }
}
/**slave mode control register

You can [`read`](crate::Reg::read) this register and get [`smcr::R`](R). You can [`reset`](crate::Reg::reset), [`write`](crate::Reg::write), [`write_with_zero`](crate::Reg::write_with_zero) this register using [`smcr::W`](W). You can also [`modify`](crate::Reg::modify) this register. See [API](https://docs.rs/svd2rust/#read--modify--write-api).

See register [structure](https://stm32-rs.github.io/stm32-rs/STM32F722.html#TIM2:SMCR)*/
pub struct SMCRrs;
impl crate::RegisterSpec for SMCRrs {
    type Ux = u32;
}
///`read()` method returns [`smcr::R`](R) reader structure
impl crate::Readable for SMCRrs {}
///`write(|w| ..)` method takes [`smcr::W`](W) writer structure
impl crate::Writable for SMCRrs {
    type Safety = crate::Unsafe;
}
///`reset()` method sets SMCR to value 0
impl crate::Resettable for SMCRrs {}