1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
use core::ops::{Deref, DerefMut};
use stm32f4xx_hal::stm32::ETHERNET_DMA;

use crate::{
    desc::Descriptor,
    ring::{RingEntry, RingDescriptor},
};

/// Owned by DMA engine
const TXDESC_0_OWN: u32 = 1 << 31;
/// Interrupt on completion
const TXDESC_0_IC: u32 = 1 << 30;
/// First segment of frame
const TXDESC_0_FS: u32 = 1 << 28;
/// Last segment of frame
const TXDESC_0_LS: u32 = 1 << 29;
/// Transmit end of ring
const TXDESC_0_TER: u32 = 1 << 21;
/// Second address chained
const TXDESC_0_TCH: u32 = 1 << 20;
/// Error status
const TXDESC_0_ES: u32 = 1 << 15;

const TXDESC_1_TBS_SHIFT: usize = 0;
const TXDESC_1_TBS_MASK: u32 = 0x0fff << TXDESC_1_TBS_SHIFT;

#[derive(Debug, PartialEq)]
pub enum TxError {
    /// Ring buffer is full
    WouldBlock,
}

#[repr(C)]
#[derive(Clone)]
pub struct TxDescriptor {
    desc: Descriptor
}

impl Default for TxDescriptor {
    fn default() -> Self {
        let mut desc = Descriptor::default();
        unsafe {
            desc.write(0,
                       TXDESC_0_TCH | TXDESC_0_IC |
                       TXDESC_0_FS | TXDESC_0_LS);
        }
        TxDescriptor { desc }
    }
}

impl TxDescriptor {
    /// Is owned by the DMA engine?
    fn is_owned(&self) -> bool {
        (self.desc.read(0) & TXDESC_0_OWN) == TXDESC_0_OWN
    }

    /// Pass ownership to the DMA engine
    fn set_owned(&mut self) {
        unsafe { self.desc.modify(0, |w| w | TXDESC_0_OWN); }
    }

    #[allow(unused)]
    fn has_error(&self) -> bool {
        (self.desc.read(0) & TXDESC_0_ES) == TXDESC_0_ES
    }

    fn set_buffer1(&mut self, buffer: *const u8) {
        unsafe {
            self.desc.write(2, buffer as u32);
        }
    }

    fn set_buffer1_len(&mut self, len: usize) {
        unsafe {
            self.desc.modify(1, |w| {
                (w & !TXDESC_1_TBS_MASK) |
                ((len as u32) << TXDESC_1_TBS_SHIFT)
            });
        }
    }

    // points to next descriptor (RCH)
    fn set_buffer2(&mut self, buffer: *const u8) {
        unsafe { self.desc.write(3, buffer as u32); }
    }

    fn set_end_of_ring(&mut self) {
        unsafe { self.desc.modify(0, |w| w | TXDESC_0_TER); }
    }
}

pub type TxRingEntry = RingEntry<TxDescriptor>;

impl RingDescriptor for TxDescriptor {
    fn setup(&mut self, buffer: *const u8, _len: usize, next: Option<&Self>) {
        self.set_buffer1(buffer);
        match next {
            Some(next) =>
                self.set_buffer2(&next.desc as *const Descriptor as *const u8),
            None => {
                self.set_buffer2(0 as *const u8);
                self.set_end_of_ring();
            },
        };
    }
}

impl TxRingEntry {
    fn prepare_packet<'a>(&'a mut self, length: usize) -> Option<TxPacket<'a>> {
        assert!(length <= self.as_slice().len());

        if ! self.desc().is_owned() {
            self.desc_mut().set_buffer1_len(length);
            Some(TxPacket { entry: self, length })
        } else {
            None
        }
    }
}

pub struct TxPacket<'a> {
    entry: &'a mut TxRingEntry,
    length: usize,
}

impl<'a> Deref for TxPacket<'a> {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        &self.entry.as_slice()[0..self.length]
    }
}

impl<'a> DerefMut for TxPacket<'a> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.entry.as_mut_slice()[0..self.length]
    }
}

impl<'a> TxPacket<'a> {
    // Pass to DMA engine
    pub fn send(self) {
        self.entry.desc_mut().set_owned();
    }
}

/// Tx DMA state
pub struct TxRing<'a> {
    entries: &'a mut [TxRingEntry],
    next_entry: usize,
}

impl<'a> TxRing<'a> {
    /// Allocate
    ///
    /// `start()` will be needed before `send()`
    pub fn new(entries: &'a mut [TxRingEntry]) -> Self {
        TxRing {
            entries,
            next_entry: 0,
        }
    }

    /// Start the Tx DMA engine
    pub fn start(&mut self, eth_dma: &ETHERNET_DMA) {
        // Setup ring
        {
            let mut previous: Option<&mut TxRingEntry> = None;
            for entry in self.entries.iter_mut() {
                previous.map(|previous| previous.setup(Some(entry)));
                previous = Some(entry);
            }
            previous.map(|previous| previous.setup(None));
        }
        
        let ring_ptr = self.entries[0].desc() as *const TxDescriptor;
        // Register TxDescriptor
        eth_dma.dmatdlar.write(|w| {
            w.stl().bits(ring_ptr as u32)
        });

        // Start transmission
        eth_dma.dmaomr.modify(|_, w| w.st().set_bit());
    }

    pub fn send<F: FnOnce(&mut [u8]) -> R, R>(&mut self, length: usize, f: F) -> Result<R, TxError> {
        let entries_len = self.entries.len();

        match self.entries[self.next_entry].prepare_packet(length) {
            Some(mut pkt) => {
                let r = f(pkt.deref_mut());
                pkt.send();

                self.next_entry += 1;
                if self.next_entry >= entries_len {
                    self.next_entry = 0;
                }
                Ok(r)
            }
            None =>
                Err(TxError::WouldBlock)
        }
    }

    /// Demand that the DMA engine polls the current `TxDescriptor`
    /// (when we just transferred ownership to the hardware).
    pub fn demand_poll(&self, eth_dma: &ETHERNET_DMA) {
        eth_dma.dmatpdr.write(|w| unsafe { w.tpd().bits(1) });
    }

    /// Is the Tx DMA engine running?
    pub fn is_running(&self, eth_dma: &ETHERNET_DMA) -> bool {
        self.running_state(&eth_dma).is_running()
    }

    fn running_state(&self, eth_dma: &ETHERNET_DMA) -> RunningState {
        match eth_dma.dmasr.read().tps().bits() {
            // Reset or Stop Transmit Command issued
            0b000 => RunningState::Stopped,
            // Fetching transmit transfer descriptor
            0b001 => RunningState::Running,
            // Waiting for status
            0b010 => RunningState::Running,
            // Reading Data from host memory buffer and queuing it to transmit buffer
            0b011 => RunningState::Running,
            0b100 | 0b101 => RunningState::Reserved,
            // Transmit descriptor unavailable
            0b110 => RunningState::Suspended,
            _ => RunningState::Unknown,
        }
    }
}

#[derive(Debug, PartialEq)]
enum RunningState {
    /// Reset or Stop Transmit Command issued
    Stopped,
    /// Fetching transmit transfer descriptor;
    /// Waiting for status;
    /// Reading Data from host memory buffer and queuing it to transmit buffer
    Running,
    /// Reserved for future use
    Reserved,
    /// Transmit descriptor unavailable
    Suspended,
    /// Invalid value
    Unknown,
}

impl RunningState {
    pub fn is_running(&self) -> bool {
        *self == RunningState::Running
    }
}