1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
//!
//! Groups utility functions and types
//!
//! Offers support for the computation of compensated floating point sums (aka. Kahan summation).
//!
//! The main type is [`KahanSum`] where you can find further explanations and an example.

use num_traits::Float;

///
/// Kahan compensated summation register.
///
/// This is a register that can be used to sum a sequence of floating point numbers with a better precision than a naive summation.
///
/// See <https://en.wikipedia.org/wiki/Kahan_summation_algorithm>
///
/// # Examples
///
/// ```ignore
/// let repetitions = 10_000;
/// let mut naive = 0.0_f32;
/// let mut sum = KahanSum::new(0.0_f32);
/// (1..=repetitions).for_each(|_| {
///     sum += 0.1;
///     naive += 0.1;
/// });
/// assert_eq!(sum.sum(), repetitions as f32 * 0.1);
/// assert_ne!(naive, repetitions as f32 * 0.1);
/// ```
#[derive(Debug, Clone, Copy)]
pub struct KahanSum<T: Float> {
    sum: T,
    compensation: T,
}

impl<T: Float> KahanSum<T> {
    ///
    /// Create a new KahanSum register with the given initial value
    ///
    /// # Arguments
    ///
    /// * `value` - the initial value
    ///
    pub fn new(value: T) -> Self {
        Self {
            sum: value,
            compensation: T::zero(),
        }
    }

    ///
    /// Return the current value of the sum
    ///
    pub fn value(&self) -> T {
        self.sum + self.compensation
    }
}

impl<T: Float> Default for KahanSum<T> {
    fn default() -> Self {
        Self::new(T::zero())
    }
}

impl<T: Float> PartialEq for KahanSum<T> {
    fn eq(&self, other: &Self) -> bool {
        self.value() == other.value()
    }
}

impl<T: Float + std::fmt::Display> std::fmt::Display for KahanSum<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.value().fmt(f)
    }
}

impl<T: Float> std::ops::AddAssign<Self> for KahanSum<T> {
    fn add_assign(&mut self, rhs: Self) {
        kahan_add(&mut self.sum, rhs.sum, &mut self.compensation);
        kahan_add(&mut self.sum, rhs.compensation, &mut self.compensation);
    }
}

impl<T: Float> std::ops::AddAssign<T> for KahanSum<T> {
    fn add_assign(&mut self, rhs: T) {
        kahan_add(&mut self.sum, rhs, &mut self.compensation);
    }
}

impl<T: Float, X> std::ops::Add<X> for KahanSum<T>
where
    Self: std::ops::AddAssign<X>,
{
    type Output = Self;

    fn add(self, rhs: X) -> Self::Output {
        let mut sum = self;
        sum += rhs;
        sum
    }
}

impl<T: Float> From<T> for KahanSum<T> {
    fn from(value: T) -> Self {
        Self::new(value)
    }
}

///
/// Compensated Kahan summation.
/// See <https://en.wikipedia.org/wiki/Kahan_summation_algorithm>
///
/// The function is meant to be called at each iteration of the summation,
/// with relevant variables managed externally
///
/// # Arguments
///
/// * `current_sum` - the current sum
/// * `x` - the next value to add to the sum
/// * `compensation` - the compensation term
///
#[inline]
fn kahan_add<T: Float>(current_sum: &mut T, x: T, compensation: &mut T) {
    let sum = *current_sum;
    let c = *compensation;
    let y = x - c;
    let t = sum + y;
    *compensation = (t - sum) - y;
    *current_sum = t;
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::*;

    #[test]
    fn test_kahan_add() {
        type Float = f32;
        let iterations = 50_000_000_usize;
        let mut normal: Float = 0.;
        let mut kahan: Float = 0.;
        let mut kahan_c: Float = 0.;
        let x = 1.1;

        for _ in 0..iterations {
            normal += x;
            kahan_add(&mut kahan, x, &mut kahan_c);
        }
        let expected = iterations as Float * x;
        println!("should be: {}", expected);
        println!(
            "normal: {} (diff: {:.0}%)",
            normal,
            (normal - expected) / expected * 100.
        );
        println!(
            "kahan: {} (diff: {:.0}%)",
            kahan,
            (kahan - expected) / expected * 100.
        );
        assert_abs_diff_eq!(expected, kahan, epsilon = 1e-10);
        assert!((expected - normal).abs() > 500_000.); // normal summation is not accurate for f32
    }

    #[test]
    fn test_kahan_sum() {
        type Float = f32;

        let iterations = 50_000_000_usize;
        let mut normal: Float = 0.;
        let mut kahan = KahanSum::<Float>::default();
        let mut kahan2 = KahanSum::<Float>::default();

        let x = 1.1;

        for i in 0..iterations {
            normal += x;
            kahan += x;
            if i % 2 == 1 {
                let mut double = KahanSum::<Float>::default();
                double += x;
                double += x;
                kahan2 += double;
            }
        }
        let expected = iterations as Float * x;
        println!("should be: {}", expected);
        println!(
            "normal: {} (diff: {:.0}%)",
            normal,
            (normal - expected) / expected * 100.
        );
        println!(
            "kahan: {} (diff: {:.0}%)",
            kahan,
            (kahan.value() - expected) / expected * 100.
        );
        println!(
            "kahan2: {} (diff: {:.0}%)",
            kahan2,
            (kahan2.value() - expected) / expected * 100.
        );
        assert_abs_diff_eq!(expected, kahan.value(), epsilon = 1e-10);
        assert_abs_diff_eq!(expected, kahan2.value(), epsilon = 1e-10);
        assert!((expected - normal).abs() > 500_000.); // normal summation is not accurate for f32
    }

    #[test]
    fn test_doctest() {
        let repetitions = 10_000;
        let mut naive = 0.0_f32;
        let mut sum = KahanSum::new(0.0_f32);
        (1..=repetitions).for_each(|_| {
            sum += 0.1;
            naive += 0.1;
        });
        assert_eq!(sum.value(), repetitions as f32 * 0.1);
        assert_ne!(naive, repetitions as f32 * 0.1);
    }
}