1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//! Implements the [`Confidence`] enum, which represents a confidence interval.
//!

/// Confidence level of a confidence interval.
///
/// # Examples
///
/// To create a two-sided confidence interval with 95% confidence:
/// ```
/// # use stats_ci::Confidence;
/// #
/// let confidence = Confidence::new_two_sided(0.95);
/// ```
///
/// To create an upper one-sided confidence interval with 90% confidence:
/// ```
/// # use stats_ci::Confidence;
/// #
/// let confidence = Confidence::new_upper(0.9);
/// ```
///
/// To create a lower one-sided confidence interval with 99% confidence:
/// ```
/// # use stats_ci::Confidence;
/// #
/// let confidence = Confidence::new_lower(0.99);
/// ```
///
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum Confidence {
    TwoSided(f64),
    UpperOneSided(f64),
    LowerOneSided(f64),
}

impl Confidence {
    /// Create a new two-sided confidence interval with the given confidence level.
    ///
    /// # Arguments
    ///
    /// * `confidence` - the confidence level, e.g. 0.95 for 95% confidence
    ///
    /// # Panics
    ///
    /// * if `confidence` is not in the range (0, 1)
    ///
    pub fn new_two_sided(confidence: f64) -> Self {
        assert!(confidence > 0. && confidence < 1.);
        //     if confidence <= 0. || confidence >= 1. { return Err(CIError::InvalidConfidenceLevel(confidence)); }
        Confidence::TwoSided(confidence)
    }

    /// Create a new one-sided upper confidence interval with the given confidence level.
    ///
    /// # Arguments
    ///
    /// * `confidence` - the confidence level, e.g. 0.95 for 95% confidence
    ///
    /// # Panics
    ///
    /// * if `confidence` is not in the range (0, 1)
    ///
    pub fn new_upper(confidence: f64) -> Self {
        assert!(confidence > 0. && confidence < 1.);
        Confidence::UpperOneSided(confidence)
    }

    /// Create a new one-sided lower confidence interval with the given confidence level.
    ///
    /// # Arguments
    ///
    /// * `confidence` - the confidence level, e.g. 0.95 for 95% confidence
    ///
    /// # Panics
    ///
    /// * if `confidence` is not in the range (0, 1)
    ///
    pub fn new_lower(confidence: f64) -> Self {
        assert!(confidence > 0. && confidence < 1.);
        Confidence::LowerOneSided(confidence)
    }

    /// Return the confidence level of the interval as a number in the range (0, 1).
    ///
    pub fn level(&self) -> f64 {
        match self {
            Confidence::TwoSided(confidence)
            | Confidence::UpperOneSided(confidence)
            | Confidence::LowerOneSided(confidence) => *confidence,
        }
    }

    /// Test if the confidence interval is two-sided.
    ///
    pub fn is_two_sided(&self) -> bool {
        matches!(self, Confidence::TwoSided(_))
    }

    /// Test if the confidence interval is one-sided.
    ///
    pub fn is_one_sided(&self) -> bool {
        !self.is_two_sided()
    }

    /// Test if the confidence interval is upper (one-sided).
    ///
    pub fn is_upper(&self) -> bool {
        matches!(self, Confidence::UpperOneSided(_))
    }

    /// Test if the confidence interval is lower (one-sided).
    ///
    pub fn is_lower(&self) -> bool {
        matches!(self, Confidence::LowerOneSided(_))
    }

    /// Return the quantile of the confidence interval.
    ///
    /// For a two-sided interval, this is (1-\alpha/2) where \alpha is 1-confidence.
    /// For a one-sided interval, this is the confidence level.
    ///
    /// # Example
    ///
    /// `quantile()` returns 0.975 for two-sided 95% confidence.
    ///
    pub(crate) fn quantile(&self) -> f64 {
        match self {
            Confidence::TwoSided(confidence) => 1. - (1. - confidence) / 2.,
            Confidence::UpperOneSided(confidence) | Confidence::LowerOneSided(confidence) => {
                *confidence
            }
        }
    }
}

impl Default for Confidence {
    ///
    /// Create a new two-sided confidence interval with the default confidence level of 95%.
    ///
    fn default() -> Self {
        Confidence::new_two_sided(0.95)
    }
}

impl PartialOrd for Confidence {
    // NB: the partial ordering obtained from derivation rule is unsound, so we need to
    // implement it manually.
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        match (self, other) {
            (Confidence::TwoSided(x), Confidence::TwoSided(y))
            | (Confidence::UpperOneSided(x), Confidence::UpperOneSided(y))
            | (Confidence::LowerOneSided(x), Confidence::LowerOneSided(y)) => x.partial_cmp(y),
            _ => None,
        }
    }
}

use crate::error::CIError;
impl TryFrom<f64> for Confidence {
    type Error = CIError;

    fn try_from(confidence: f64) -> Result<Self, Self::Error> {
        if confidence > 0. && confidence < 1. {
            Ok(Confidence::new_two_sided(confidence))
        } else {
            Err(CIError::InvalidConfidenceLevel(confidence))
        }
    }
}

impl TryFrom<f32> for Confidence {
    type Error = CIError;

    fn try_from(confidence: f32) -> Result<Self, Self::Error> {
        Confidence::try_from(confidence as f64)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_ordering() {
        let two_sided = Confidence::new_two_sided(0.95);
        let upper = Confidence::new_upper(0.95);
        let lower = Confidence::new_lower(0.95);
        assert!(!(two_sided > upper));
        assert!(!(two_sided < upper));
        assert!(!(two_sided > lower));
        assert!(!(two_sided < lower));
        assert!(!(lower > upper));
        assert!(!(lower < upper));

        assert!(two_sided < Confidence::new_two_sided(0.99));
        assert!(two_sided > Confidence::new_two_sided(0.9));

        assert!(upper < Confidence::new_upper(0.99));
        assert!(upper > Confidence::new_upper(0.9));

        assert!(lower < Confidence::new_lower(0.99));
        assert!(lower > Confidence::new_lower(0.9));

        assert_eq!(two_sided, Confidence::new_two_sided(0.95));
        assert_eq!(upper, Confidence::new_upper(0.95));
        assert_eq!(lower, Confidence::new_lower(0.95));
    }

    #[test]
    fn test_quantile() {
        let two_sided = Confidence::new_two_sided(0.95);
        let upper = Confidence::new_upper(0.95);
        let lower = Confidence::new_lower(0.95);
        assert_eq!(two_sided.quantile(), 0.975);
        assert_eq!(upper.quantile(), 0.95);
        assert_eq!(lower.quantile(), 0.95);
    }

    #[test]
    fn test_send() {
        fn assert_send<T: Send>() {}
        assert_send::<Confidence>();
    }

    #[test]
    fn test_sync() {
        fn assert_sync<T: Sync>() {}
        assert_sync::<Confidence>();
    }
}