1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
use crate::*;
pub trait ArrayInterface<T>: AsRef<[T]> + AsMut<[T]> + Default {
/// Constructs a new, empty `Vec<T>`.
///
/// The array will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let mut arr: Array<u8, 64> = Array::new();
/// ```
fn new() -> Self;
/// Returns the number of elements the array can hold.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let arr: Array<u8, 4> = Array::new();
/// assert_eq!(arr.capacity(), 4);
/// ```
fn capacity(&self) -> usize;
/// Shortens the array, keeping the first `len` elements and dropping
/// the rest.
///
/// If `len` is greater than the array's current length, this has no
/// effect.
///
/// The [`drain`] method can emulate `truncate`, but causes the excess
/// elements to be returned instead of dropped.
///
/// Note that this method has no effect on the allocated capacity
/// of the array.
fn truncate(&mut self, len: usize) {
// This is safe because:
//
// * the slice passed to `drop_in_place` is valid; the `len > self.len`
// case avoids creating an invalid slice, and
// * the `len` of the array is shrunk before calling `drop_in_place`,
// such that no value will be dropped twice in case `drop_in_place`
// were to panic once (if it panics twice, the program aborts).
unsafe {
// Note: It's intentional that this is `>` and not `>=`.
// Changing it to `>=` has negative performance
// implications in some cases. See #78884 for more.
if len > self.len() {
return;
}
let remaining_len = self.len() - len;
let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
self.set_len(len);
ptr::drop_in_place(s);
}
}
/// Extracts a slice containing the entire array.
///
/// Equivalent to `&s[..]`.
#[inline]
fn as_slice(&self) -> &[T] {
self.as_ref()
}
/// Extracts a mutable slice of the entire array.
///
/// Equivalent to `&mut s[..]`.
#[inline]
fn as_mut_slice(&mut self) -> &mut [T] {
self.as_mut()
}
/// Returns a raw pointer to the array's buffer.
///
/// The caller must ensure that the array outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the array may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to
/// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
/// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
///
/// [`as_mut_ptr`]: Array::as_mut_ptr
fn as_ptr(&self) -> *const T;
/// Returns an unsafe mutable pointer to the array's buffer.
///
/// The caller must ensure that the array outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the array may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
fn as_mut_ptr(&mut self) -> *mut T;
/// Forces the length of the array to `new_len`.
///
/// This is a low-level operation that maintains none of the normal
/// invariants of the type. Normally changing the length of a array
/// is done using one of the safe operations instead, such as
/// [`truncate`] or [`clear`].
///
/// [`truncate`]: Array::truncate
/// [`clear`]: Array::clear
///
/// # Safety
///
/// - `new_len` must be less than or equal to [`capacity()`].
/// - The elements at `old_len..new_len` must be initialized.
///
/// [`capacity()`]: Vec::capacity
unsafe fn set_len(&mut self, len: usize);
/// Removes an element from the array and returns it.
///
/// The removed element is replaced by the last element of the array.
///
/// This does not preserve ordering, but is *O*(1).
/// If you need to preserve the element order, use [`remove`] instead.
///
/// [`remove`]: Array::remove
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let mut arr: Array<&str, 4> = Array::from(["foo", "bar", "baz", "qux"]);
///
/// assert_eq!(arr.swap_remove(1), "bar");
/// assert_eq!(arr[..], ["foo", "qux", "baz"]);
///
/// assert_eq!(arr.swap_remove(0), "foo");
/// assert_eq!(arr[..], ["baz", "qux"]);
/// ```
#[inline]
fn swap_remove(&mut self, index: usize) -> T {
#[cold]
#[inline(never)]
fn assert_failed(index: usize, len: usize) -> ! {
panic!(
"swap_remove index (is {}) should be < len (is {})",
index, len
);
}
let len = self.len();
if index >= len {
assert_failed(index, len);
}
unsafe {
// We replace self[index] with the last element. Note that if the
// bounds check above succeeds there must be a last element (which
// can be self[index] itself).
let value = ptr::read(self.as_ptr().add(index));
let base_ptr = self.as_mut_ptr();
ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
self.set_len(len - 1);
value
}
}
/// Inserts an element at position index within the array, shifting all elements after it to the right.
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let mut list: Array<u8, 3> = Array::from([3]);
/// list.insert(0, 1);
/// assert_eq!(&list[..], [1, 3]);
/// list.insert(1, 2);
/// assert_eq!(&list[..], [1, 2, 3]);
/// ```
///
/// # Panics
/// Panics if the index is out of bounds.
fn insert(&mut self, index: usize, element: T);
/// Removes an element from position index within the array, shifting all elements after it to the left.
///
/// Note: Because this shifts over the remaining elements, it has a
/// worst-case performance of *O*(*n*). If you don't need the order of elements
/// to be preserved, use [`swap_remove`] instead.
///
/// [`swap_remove`]: Array::swap_remove
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let mut list: Array<u8, 3> = Array::from([1, 2, 3]);
/// assert_eq!(list.remove(0), 1);
/// assert_eq!(list.remove(0), 2);
/// assert_eq!(list.remove(0), 3);
/// ```
///
/// # Panics
/// Panics if the index is out of bounds.
fn remove(&mut self, index: usize) -> T {
#[cold]
#[inline(never)]
#[track_caller]
fn assert_failed(index: usize, len: usize) -> ! {
panic!("removal index (is {}) should be < len (is {})", index, len);
}
let len = self.len();
if index >= len {
assert_failed(index, len);
}
unsafe {
// infallible
let ret;
{
// the place we are taking from.
let ptr = self.as_mut_ptr().add(index);
// copy it out, unsafely having a copy of the value on
// the stack and in the array at the same time.
ret = ptr::read(ptr);
// Shift everything down to fill in that spot.
ptr::copy(ptr.offset(1), ptr, len - index - 1);
}
self.set_len(len - 1);
ret
}
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(&e)` returns `false`.
/// This method operates in place, visiting each element exactly once in the
/// original order, and preserves the order of the retained elements.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let mut arr: Array<u8, 4> = Array::from([1, 2, 3, 4]);
///
/// arr.retain(|x| *x % 2 == 0);
/// assert_eq!(arr[..], [2, 4]);
/// ```
///
/// Because the elements are visited exactly once in the original order,
/// external state may be used to decide which elements to keep.
///
/// ```
/// use stack_array::*;
///
/// let mut arr: Array<u8, 5> = Array::from([1, 2, 3, 4, 5]);
/// let keep = [false, true, true, false, true];
/// let mut iter = keep.iter();
/// arr.retain(|_| *iter.next().unwrap());
/// assert_eq!(arr[..], [2, 3, 5]);
/// ```
fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&T) -> bool,
{
self.retain_mut(|elem| f(elem));
}
fn retain_mut<F>(&mut self, f: F)
where
F: FnMut(&mut T) -> bool;
/// Removes all but the first of consecutive elements in the array that resolve to the same
/// key.
///
/// If the array is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let mut arr: Array<u8, 5> = Array::from([10, 20, 21, 30, 20]);
///
/// arr.dedup_by_key(|i| *i / 10);
///
/// assert_eq!(arr[..], [10, 20, 30, 20]);
fn dedup_by_key<F, K>(&mut self, mut key: F)
where
F: FnMut(&mut T) -> K,
K: PartialEq,
{
self.dedup_by(|a, b| key(a) == key(b))
}
fn dedup_by<F>(&mut self, same_bucket: F)
where
F: FnMut(&mut T, &mut T) -> bool;
fn push(&mut self, value: T);
#[inline]
fn append(&mut self, other: &mut Self) {
unsafe {
let count = other.len();
let len = self.len();
let total_len = len + count;
self.ensure_capacity(total_len);
ptr::copy_nonoverlapping(
other.as_ptr() as *const T,
self.as_mut_ptr().add(len),
count,
);
self.set_len(total_len);
other.set_len(0);
}
}
/// Clears the array, removing all values.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let mut list: Array<u8, 3> = Array::from([1, 2, 3]);
/// list.clear();
/// assert!(list.is_empty());
/// ```
#[inline]
fn clear(&mut self) {
self.truncate(0)
}
/// Returns the number of elements currently in the array.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let arr: Array<u8, 3> = Array::from([1, 2]);
/// assert_eq!(arr.len(), 2);
/// ```
fn len(&self) -> usize;
/// Returns true if the array contains no elements.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let mut arr: Array<u8, 2> = Array::new();
/// assert!(arr.is_empty());
///
/// arr.push(1);
/// assert!(!arr.is_empty());
/// ```
#[inline]
fn is_empty(&self) -> bool {
self.len() == 0
}
//============================================================
fn ensure_capacity(&mut self, total_cap: usize) {
if total_cap > self.capacity() {
panic!(
"Array is full, Max capacity: {}, But got: {total_cap}",
self.capacity()
);
}
}
/// Removes the last element from a collection and returns it.
///
/// # Examples
///
/// ```rust
/// use stack_array::*;
///
/// let mut arr: Array<u8, 3> = Array::from([1, 2]);
/// assert_eq!(arr.pop(), 2);
/// assert_eq!(arr.pop(), 1);
/// assert!(arr.is_empty());
/// ```
///
/// # Panics
/// Panics if the array is empty.
fn pop(&mut self) -> T;
/// Returns the number of elements can be inserted into the array.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let arr: Array<u8, 3> = Array::from([1, 2]);
/// assert_eq!(arr.remaining_capacity(), 1);
/// ```
#[inline]
fn remaining_capacity(&self) -> usize {
self.capacity() - self.len()
}
/// Moves all the elements of `other` into `Self`
///
/// # Panics
///
/// Panics if the number of elements in the array overflows.
///
/// # Examples
///
/// ```
/// use stack_array::*;
///
/// let mut arr: Array<u8, 6> = Array::from([1, 2, 3]);
/// arr.append_slice([4, 5, 6]);
/// assert_eq!(arr[..], [1, 2, 3, 4, 5, 6]);
/// ```
#[inline]
fn append_slice(&mut self, other: impl AsRef<[T]>)
where
T: Copy,
{
let other = other.as_ref();
let count = other.len();
let len = self.len();
let total_len = len + count;
self.ensure_capacity(total_len);
unsafe {
ptr::copy_nonoverlapping(other.as_ptr(), self.as_mut_ptr().add(len), count);
self.set_len(total_len);
}
}
}